1. MOTIVATION

Commutative algebra is largely motivated by the technical demands of *algebraic* geometry and *algebraic number theory*.

1.1. Algebraic geometry. Consider the space \mathbb{C}^n and the polynomial ring $A = \mathbb{C}[x_1, \ldots x_n]$ in *n* variables. Let $X \subseteq A$ and define

$$V(X) = \{ \vec{a} \in \mathbb{C}^n : \forall f \in X \ f(\vec{a}) = 0 \}$$

Sets of this kind are called *varieties*.

A little thought shows that V(X) = V(I) where I is the ideal of A generated by X. So we only need study V(I) when I is an ideal.

1.2. Algebraic number theory. Let $f \in \mathbb{Q}[x]$ and let $\alpha_1, \ldots, \alpha_m$ be some roots of f. Let F be the least subfield of \mathbb{C} containing the α_i then $\mathbb{Q} \subseteq \mathbb{F}$ and F is a typical number field.

Cultural note: This is a serviceable but ugly definition of "number field".. It is equivalent to looking at subfields F of \mathbb{C} which are finite dimensional as \mathbb{Q} -vector spaces.

We say that $\alpha \in \mathbb{C}$ is an *algebraic integer* iff α is a root of some monic $f \in \mathbb{Z}[x]$. The algebraic integers form a subring of \mathbb{C} and the algebraic integers in \mathbb{Q} are precisely the elements of \mathbb{Z} . If F is a number field then the ring of integers of F consists of those $a \in F$ which are algebraic integers.

1.3. **Prime ideals.** We spend a great deal of time in this course on prime ideals. Here is some motivation.

[Geometric] The *irreducible varieties* are those of form V(P) for P prime in $A = \mathbb{C}[x_1, \ldots x_n]$. Every variety can be written as a finite union of irreducible varieties in an essentially unique way

[Arithmetic] If R is the ring of integers in a number field F then R need not be a UFD **but** every ideal I with $0 \neq I \neq R$ can be written uniquely as a product of prime ideals of R.

2. A THEOREM ON UFDS

Theorem 1. If R is a UFD then R[x] is a UFD.

Proof. Let F be the field of fractions of F, then $R \leq R[x] \leq F[x]$ where both R and F[x] are UFDs (R by hypothesis and F[x] because F is a field).

We need to be careful because the meaning of the terms "unit" and "irreducible" varies between R, R[x] and F[x].

Easily

(1) The units of R[x] are the units of R (since R is an ID).

(2) If $r \in R$ then r is irreducible in R iff r is irreducible in R[x].

(3) The units of F[x] are the units of F, that is all nonzero elements of F.

(4) If $r \in R$ is irreducible in R then r is irreducible in R[x] but a unit in F[x].

We see soon that irreducibles of R[x] with degree nonzero remain irreducible in F[x] and are (up to associates) the only irreducibles in F[x].

We need a technical idea (primitivity) and an important result by Gauss.

If $f \in R[x]$ we say that f is *primitive* iff $f \neq 0$ and 1 is a gcd for the coefficients of f, or equivalently there is no irreducible p of R which divides f in R[x].

Lemma 1. (Gauss' lemma) The product of two primitive polynomials is primitive.