
COMMUTATIVE ALGEBRA HW 5 SOLUTIONS

JC

Due in class Wed 14 September.

(1) Let R be a UFD. Show that R[x] has infinitely many pairwise
non-associate irreducibles.

We imitate Euclid’s argument to produce an infinite sequence
of distinct monic irreducibles (note that a monic irreducible
has degree at least one and distinct monic polynomials are not
associates).

x is monic irreducible. Let f1, . . . fn be distinct monic irre-
ducibles. Then f1 . . . fn + 1 is monic of positive degree. In its
prime factorisation each factor has leading coefficient a unit so
we may as well assume that each prime factor is monic. Clearly
none of the prime factors appear among the fi.

Addendum: The original (broken) version of Q1 asked to
show that a UFD with at least one irreducible has infinitely
many irreducibles. Whether this is true depends on whether
we mean “infinitely many distinct irreducibles” (true as shown
by Spas) or “infinitely many non-associate irreducibles” (false
as shown by Yimu). The true version is not sufficient to do Q2.

Yimu’s example: let R be the subring of Q consisting of
rationals a/b with b odd. A little thought shows that R is a local
PID (hence UFD) with maximal ideal (2), 2 is the only prime
up to associates. But of course there are infinitely many units
so actually 2 has infinitely many associates. Cultural note: this
is an example of a DVR (= Discrete Valuation Ring), a class of
rings which is important in number theory and geometry.

Spas’ proof: If the UFD R has infinitely many units we are
done. So suppose we have only finitely many units. Suppose
for a contradiction that there are finitely many primes p1, . . . pn.
Since we are in a UFD the elements pt

1p2 . . . pm + 1 (for t > 0)
are all distinct so at least one is a nonunit, now we get the usual
contradiction a la Euclid.

(2) Let K be a field, let n ≥ 1 and let K(x1, . . . xn) be the field
of fractions of the polynomial ring K[x1, . . . xn]. Show that
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K(x1, . . . xn) is not ring-finite/K. Hint: K[x1, . . . xn−1] is a
UFD.

Suppose for a contradiction that K(x1, . . . xn) = K[r1, . . . rk]
where ri = fi/gi for fi, gi ∈ K[x1, . . . xn] with gi 6= 0. Let h be
an irreducible of K[x1, . . . xn] which does not divide any gi. We
may express 1/h as a polynomial in the ri with coefficients from
K, and clearing fractions we get an equation in K[x1, . . . xn] of
the shape gn1

1 . . . gk
nk = hF , contradicting our choice of h.

(3) We proved in class that if A ≤ B ≤ C are rings with A Noe-
therian and C both module-finite/B and ring-finite/A then B
is ring-finite/A, Show that this is false if we drop the hypothesis
that A is Noetherian.

Let R = Z[x0, x1, . . .]. This polynomial ring in infinitely
many variables is our prototypical non-Noetherian ring.

Let I = (x2
0)R and let C = R/I. Routinely if yi = xi + I then

C = Z[y0, y1, . . .] (I am cheating a little bit here by identifying
n ∈ Z with its coset n+I in the quotient ring C, since n 7→ n+I
is 1-1 it gives an isomorphic copy of Z inside C).

Let A = Z[y1, y2, . . .] and let B = A[y0y1, y0y2, . . .]. Clearly
C = A[y0] and since y2

0 = 0 in fact C = (1, y0)A so that C is
module-finite over A and hence a fortiori over B.

Suppose for a contradiction that B is ring-finite over A, say
B = A[b1, . . . bl]. Since each bl is in A[y0y1, . . . y0ym] for m
sufficiently large we will then have that B = A[y0y1, . . . y0ym]
for some large m. In particular y0ym+1 ∈ A[y0y1, . . . y0ym].

Going back to R it follows that there is some polynomial F
with integer coefficients and some n ≥ m such that x0xm+1 −
F (x1, . . . xn, x0x1, . . . x0xm) is in I, that is WLOG we have a
polynomial identity for some polynomial with integer coeffi-
cients

x0xm+1 = F (x1, . . . xn, x0x1, . . . x0xm) + G(x0, . . . xn)x2
0.

But this is impossible: two polynomials in Z[x0, . . . xn] are equal
iff each monomial xa0

0 . . . xan
n has the same coefficient and the

monomial x0xm+1 has coefficient zero on the RHS.
(4) Let X be a topological space. We say that A ⊆ X is closed

iff its complement X \ A is open. Given a ring R, identify the
prime ideals P such that {P} is closed in Spec(R).

Using the definitions, {P} is closed iff Spec(R) \ {P} is open
iff for every prime Q 6= P there is a such that Q ∈ Oa ⊆
Spec(R) \ {P} iff for every prime Q 6= P there is a ∈ P \Q iff
for every prime Q 6= P we have P * Q.
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If P is maximal then clearly this holds. If P is not maxi-
mal then P ( Q for some maximal (hence prime) Q. So in
conclusion {P} is closed iff P is maximal.


