COMMUTATIVE ALGEBRA HW 4

JC

Due in class Mon 12 September.

- (1) (A and M III.6) Let $A \neq \{0\}$ be a ring. let Σ be the set of all multiplicatively closed sets S with $0 \notin S$. Show that
 - (a) Σ has maximal elements.
 - (b) S is maximal in Σ iff $A \setminus S$ is a minimal prime ideal.
- (2) (A and M I.12) Recall that a *local ring* is a ring with a unique maximal ideal, equivalently a ring where the non-units form an ideal. Recall also that e is *idempotent* iff $e^2 = e$. Show that in a local ring the only idempotents are 0 and 1.
- (3) True or false? If R[x] is Noetherian then R is Noetherian.
- (4) A topological space is a set X equipped with a collection \mathcal{O} of subsets of X (the "open sets") satisfying the axioms:
 - (a) \emptyset and X are in \mathcal{O} .
 - (b) The intersection of any two elements of \mathcal{O} is an element of \mathcal{O} .

(c) The union of any set of elements of \mathcal{O} is an element of \mathcal{O} . (A homely example: Let (X, d) be a metric space and \mathcal{O} be the set of open sets for this metric)

Let R be an arbitrary ring and let Spec(R) (the spectrum of R) be the set of prime ideals of R. For each $a \in R$ let $O_a = \{P \in Spec(R) : a \notin P\}$. Define \mathcal{O} to be the set of all subsets of Spec(R) which are unions of sets of the form O_a , or more explicitly $X \in \mathcal{O}$ iff for every $P \in X$ there is $a \in R$ so that $P \in O_a \subseteq X$.

Show that this choice of \mathcal{O} makes Spec(R) into a topological space.