COMMUTATIVE ALGEBRA HW 3

JC

Due in class Fri 9 September.

- (1) Read the "Categories and products" handout on the course webpage.
- (2) Let R be a ring and define a category \mathcal{C} as follows. The objects are all triples (S, a, ϕ) where S is a ring, $\phi : R \to S$ is a ring HM and $a \in S$. The morphisms from (S_1, a_1, ϕ_1) to (S_2, a_2, ϕ_2) are all ring HMs $\psi : S_1 \to S_2$ such that $\psi \circ \phi_1 = \phi_2$ and $\psi(a_1) = a_2$. Show that $(R[x], x, \phi)$ is an initial object in this category, where ϕ is the usual inclusion map from R to R[x].
- (3) Let C be a category and let a and b be objects in C. A coproduct of a and b is an object c together with maps $f : a \to c$ and $g : b \to c$ such that for all c' and all $f' : a \to c'$, $g : b \to c'$ there is a unique $k : c \to c'$ such that $f' = k \circ f$, $g' = k \circ g$.
 - (a) Show that coproducts exist in the category whose objects are all the sets, and whose morphisms are all the functions between sets.
 - (b) Do coproducts exist in the category whose objects are all the abelian groups, and whose morphisms are all the group HMs between abelian groups?
- (4) (Ex 1.10 from A and M) Let A be a ring and let \mathcal{R} be its nilradical. Show that the following are equivalent:
 - (a) A has exactly one prime ideal.
 - (b) Every element of A is either a unit or nilpotent.
 - (c) A/\mathcal{R} is a field.