COMMUTATIVE ALGEBRA HW 2 SOLUTIONS

JC

Due in class Mon 5 September.

(1) A prime ideal J is minimal iff for all prime $I \subseteq J$ we have I = J. Show that every prime ideal contains a minimal prime ideal.

Note that any family of sets is partially ordered by \supseteq . So ZL easily implies that if a family of sets is such every chain has a lower bound, then every element contains a minimal element.

Now let P be the set of all prime ideals in R and let C be a chain in P. We may as well assume that C is non-empty. We need to check that C has a lower bound, so we try the most natural thing namely the intersection of C. As we mentioned in class it is trivial to check that $\bigcap C$ is an ideal, so we need to check it is prime. Let $x, y \notin \bigcap C$ and choose ideals J and K in C with $x \notin J$ and $y \notin K$. Since C is a chain without loss we have $J \subseteq K$, so that $y \notin J$. As J is prime $xy \notin J$ and so $xy \notin \bigcap C$.

(2) Identify the radical ideals of \mathbb{Z} .

A routine calculation shows that the radical ideals are (0) and (n) for n > 0 with no repeated prime factor (such n are sometimes called *quadratfrei*).

(3) Let R be a ring. The power series ring R[[x]] consists of all expressions $\sum_{i=0}^{\infty} r_i x^i$ with the obvious definitions of + and \times . Identify the units in R[[x]].

Note that $(\sum_{i} a_{i}x^{i})(\sum_{j} b_{j}x^{j}) = 1$ iff the system of equations $a_{0}b_{0} = 1$, $\sum_{j=0}^{n} a_{i}b_{n-i} = 0$ for all n > 0 is satisfied. So if $\sum_{i} a_{i}x^{i}$ is a unit then a_{0} is a unit. Conversely if a_{0} is a unit we may use the recursion $b_{0} = a_{0}^{-1}$, $b_{n} = -a_{0}^{-1}(\sum_{i=1}^{n} a_{i}b_{n-1})$ to determine the coefficients of a multiplicative inverse for $\sum_{i} a_{i}x^{i}$.

Cultural remark: This is actually easier than the analysis of units in R[x] for R not an ID.

(4) Let $\phi: R \to S$ be a ring HM and let J be an ideal of S. Show that if $I = \phi^{-1}[J]$ then I is an ideal of R, R/I is isomorphic to a subring of S/J, and "J is prime" implies "I is prime".

Consider the composition of ϕ and the usual quotient map $S \to S/J$. This has kernel I and its image is a subring of S/J, now appeal to the First Isomorphism Theorem for rings. If J is prime then S/J is an ID, subrings of IDs are always IDs so I is prime.

Cultural remark: this is another reason for focussing on prime ideals.