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The axioms:

(1) A is a subset of cl(A).
(2) If A is a subset of cl(B) then cl(A) is a subset of cl(B).
(3) If x is in cl(A) then there is a finite subset A0 of A such that x

is in cl(A0).
(4) If x is in cl(A∪{y}) and x is not in cl(A) then y is in cl(A∪{x}).
(1) If A is a subset of B then cl(A) is a subset of cl(B).

Proof: A ⊆ B ⊆ cl(B) by Axiom 1, so cl(A) ⊆ cl(B) by
Axiom 2.

(2) cl(cl(A)) = cl(A).
By Axiom 1, cl(A) ⊆ cl(cl(A)). Also since cl(A) ⊆ cl(A), by

Axiom 2 we have cl(cl(A)) ⊆ cl(A).
(3) A set A is independent if a is not in cl(A \ {a}) for all a ∈ A.

An independent set B is a basis if in addition cl(B) = X. [Note
that in the VS example these concepts have the usual meanings]

Trivially (by what you proved above) a subset of an indepen-
dent set is independent.

Handy lemma: if A is independent and a /∈ cl(A) then A ∪
{a} is independent (a lot of you assumed this is true without
providing a proof, just showing that you have sound intuition!)

Proof of lemma: Let B = A ∪ {a}. Then a /∈ cl(B \ {a}) by
assumption. Let b ∈ A, and note that B \{b} = (A\{b})∪{a}.
Now b /∈ cl(A \ {b}) as A is independent, and so by Axiom 4 if
b ∈ cl(B\{b}) then a ∈ cl(A\{a}∪{a}) = cl(A), contradiction.

Show that an independent set is a basis iff it is a maximal
element in the poset of independent sets ordered by inclusion.

Proof: If B is a basis then b ∈ cl(B) for all b, so B ∪ {b} is
not independent for any b /∈ B.

Conversely if B is maximal independent then we must have
cl(B) = X, for otherwise we can find b /∈ cl(B) and then by the
Lemma above B ∪ {b} is independent.

(4) Show that the union of a chain of independent sets is indepen-
dent, and use ZL to conclude that any independent set can be
extended to a basis.

1



2 JC

Let C be a chain of independent sets and let A = ∪C. Let
a ∈ A and suppose for a contradiction that a ∈ cl(A \ {a}). By
Axiom 3 there is a finite set A0 ⊆ A\{a} with a ∈ cl(A0). Now
since C is a chain any finite subset of A is contained in some
element of C, in particular we may find B ∈ C with A0 ∪ {a} ⊆
B. But now we get a ∈ cl(A0) ⊆ cl(B \ {a}), contardiction as
B is independent.

(5) Show that if B is a basis, then for any element x of X there is
a finite subset C of B such that x is in cl(C), but x is not in
cl(C ′) for any proper subset C ′ of C.

Proof: By Axiom 3 there is finite C ⊆ B with x ∈ cl(C).
Choose such a C with |C| minimal.

Show further that if c is in C, then the set obtained from B
by replacing c by x is also a basis.

Proof: Let B1 = B \ {c} and B2 = B1 ∪ {x}.
We observe that by construction x ∈ cl(C) but x /∈ cl(C \

{c}), so by Axiom 4 we have c ∈ cl(C \ {c} ∪ {x}), so a fortiori
we have c ∈ cl(B1 ∪ {x}). It follows from this that x /∈ cl(B1),
because if x ∈ cl(B1) then c ∈ cl(B1), contradicting the inde-
pendence of B.

Since B1 is independent, it follows from the Lemma above
that B2 = B1 ∪ {x} is independent. We claim it is also a basis.
To see this note that c ∈ cl(B2), and also B1 ⊆ B2 ⊆ cl(B2), so
that B ⊆ cl(B2) and hence X = cl(B) ⊆ cl(B2) ⊆ X.

(6) Show if {x1, . . . xn} is an independent set and B is a basis then
B has at least n elements.

Start by noting that {b} is independent iff b is in some basis
iff b /∈ cl(∅),

We show by induction on n that there exist y1, . . . yn distinct
elements of B such that B \ {y1, . . . yn}∪ {x1, . . . xn}. The case
n = 1 is handled by the previous item.

Induction step: Let m = n + 1, so that by induction we
find distinct y1, . . . yn in B such that B′ = B \ {y1, . . . yn} ∪
{x1, . . . xn} is a basis. Notice that it’s not ruled out that some
of the yi for 1 ≤ i ≤ n are in B′ but this is only possible if they
are among {x1, . . . xn}.

Choose a finite C ⊆ B′ with xm ∈ cl(C) and |C| min-
imal. Now since {x1, . . . xn, xm} is independent we see that
xm /∈ cl({x1, . . . xn}), and so C * {x1, . . . xn}. Choose c ∈
C \ {x1, . . . xn} and let ym = c, this clearly works.

(7) Show that if a basis of size n exists, all bases have size n.
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Let B be a basis of size n and let B′ be an arbitrary basis.
Since B′ is independent it must have size at most n, otherwise
it would contain an independent set of size n + 1 contradicting
the previous item. But sinec B is independent and B′ is a basis
B′ has size at least n.

Note: The phrasing may sound contorted but notice that a
priori B′ might be infinite.


