
COMMUTATIVE ALGEBRA HW 18 SOLNS

JC

(1) Let G be a topological group, N a normal subgroup of G, and
πN : G → G/N the usual projection map g 7→ gN = Ng.
(a) Show that if U is open in G then UN = NU , UN is open

and πN [U ] = πN [UN ].
UN = NU because gN = Ng for all g ∈ U . NU =⋃

g∈N gU , the map h 7→ gh is a topological AM, so gU is
open for each g ∈ N and hence NU is open.
It follows easily that πN [U ] is open in G/N , since π−1

N [πN [U ]] =
UN .

(b) Give G/N the quotient topology, that is X is open in G
iff π−1

N [X] is open in G. Show that G/N is a topological
group.
We cut a corner by showing that (g, h) 7→ gh−1 is contin-
uous in G/N , this is easily seen to be equivalent to saying
that multiplication and inversion are continuous.
So let W be open in G/N with aN(bN)−1 ∈ W . We know
that W ∗ = π−1

N [W ] is open in G, and of course W ∗ is a
union of cosets of N so W ∗ = NW ∗ = W ∗N .
Now aN(bN)−1 = ab−1N = πN(ab−1) ∈ W so that ab−1 ∈
W ∗. So we may choose U 3 a and V 3 b open in G such
that UV −1 ⊆ W ∗. Then by the last remark π[U ] 3 aN
and π[V ] 3 bN are open in G/N , and now π[U ]π[V ]−1 ⊆
π[W ∗] = W as required.

(c) Show that G/N is T2 iff N is closed in G.
N = π−1

N [{e}], so N is closed in G iff {e} is closed in G/N
iff all singletons are closed in G/N iff G is T1 iff G is T2.
(Using arguments from class after first step!)

(2) (A and M 9.6) Let R be a Dedekind domain and I a nonzero
ideal of R. Show every ideal in R/I is principal. Conclude that
every ideal of R is generated by at most two elements.

This was a little tricky. Thanks to George Schaeffer for some
remarks which simplified my original rather barqoque solution
(which was heavy on localisation and Noetherian induction).

We make a series of claims with proofs:
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(a) Claim: Let S and T be rings in which every ideal is prin-
cipal. Then S × T is also such a ring.
Proof: Suppose K is an ideal of S × T and let (a, b) ∈ K,
then multiplying by (1, 0) and (0, 1) we see that (a, 0) and
(0, b) are in K. Since K is also closed under + we see
that (a, b) ∈ K iff both (a, 0) and (0, b) are in K. Clearly
I = {a : (a, 0) ∈ K} is an ideal of S so by hypothesis
I = (c)S for some c. Similarly J = {b : (0, b) ∈ K} = (d)T .
So now (a, b) ∈ K iff (a, 0) ∈ I and (0, b) ∈ J iff a ∈ (c)
and b ∈ (d) iff (a, b) ∈ ((c, d)).

(b) Claim: It will suffice to prove the claim when I = P n for
P a nonzero prime and n ≥ 1.
Proof: Since R is a DD, I is a product P e1

1 . . . P en
n for Pi

nonzero and prime. The ideals P
ej

j are comaximal in pairs
because their radicals Pj are distinct maximal ideals, so
that by the CRT R/I '

∏
j R/P

ej

j . Now use the previous
claim.

(c) Claim: the only ideals of R/P n are those corresponding to
P i for 0 ≤ i ≤ n (we abuse notation by writing as P i/P n

for these ideals).
Proof: let J ⊇ P n be an ideal of R and let Q be any prime
ideal appearing in the factorisation of J . Then P n ⊆ J ⊆
Q and so taking radicals P ⊆ Q, hence since P and Q are
maximal P = Q. So J must be a power of P .

(d) Claim: Each ideal P i/P n is principal.
Proof: WLOG we may suppose that 0 < i < n. By unique
factorisation the ideals Pi are distinct, in particular P i+1 (
P i and so we may choose a ∈ P i \ P i+1.
Now we ask what ideal does a+P n genarate in R/P n. It is
actually ((a) + P n)/P n and by the choice of a we see that
(a) + P n ⊆ P i, (a) + P n * P i+1 so that (a) + P n = P i, so
that a + P n generates P i/P n.

(3) Consider a commutative diagram

M1
//

γ

��

M2
//

β

��

M3
//

α

��

0

0 // N1
// N2

δ
// N3

where the top line is exact, δ is surjective and β is an isomor-
phism.
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Show that
(a) α is surjective.

This is easy. Choose for any z ∈ N3 some y ∈ N2 with
δy = z, then some x ∈ M2 with βx = y. If w is the image
of x in M3 then by commutativity αw = z.

(b) If γ is surjective and the bottom line is exact, then α is an
isomorphism.
We show ker(α) = 0. Let z ∈ ker(α), and choose y ∈ M2

such that y 7→ z, which is possible by exactness of the top
row. By commutativity βy ∈ ker(δ), so by exactness of the
bottom row we may choose x ∈ N1 so that x 7→ βy. Then
as γ is surjective we may choose w ∈ M1 with γw = x.
Since β is an IM it follows from commutativity that w 7→ y,
so by exactness of the top row that y 7→ 0 = z.

w //

γ

��

y //

β

��

z

α

��

x // βy
δ

// 0
Note: This may look like a weird problem. In fact it is a
weird problem. It will save us ten minutes in the middle
of an argument about completions next week.


