
COMMUTATIVE ALGEBRA HW 16 SOLNS

JC

(1) Let β = i
√

5 so that Q(β) = {a + bβ : a, b ∈ Q}
Let F = Q(β) and R = oF , the ring of integers

(a) Show that R = Z[β] and Z[β] = {m + nβ : m,n ∈ Z}.
The second claim is easy as β2 = −5 ∈ Z. For the first one
suppose that a + bβ is an algebraic integer. Then either
b = 0 so a is a rational integer, or b 6= 0 so a + bβ /∈ Q; in
the latter case its minimal polynomial must be x2− 2ax +
(a2 + 5b2), by an old HW the coefficients must be rational
integers, so by easy number theory a and b are rational
integers.

(b) Show if we define N(a + bβ) = a2 + 5b2 for a, b ∈ Q then
N(cd) = N(c)N(d) for all c, d ∈ F .
Argt 1: brute force calculation. Argt 2: N(z) = |z|2.
Argt 3: N(z) is the determinant of the linear map a 7→
za from F to F . Use the multiplicative property of the
determinant.

(c) Use N to identify the units of R and to show that each of
2, 3, 1 + β, 1− β is irreducible in R.
If m + nβ is a unit then m2 + 5n2 = 1 so m = 1,−1 and
n = 0. There are no elements with N(z) = 2, 3 so easily
each of the named elements is irreducible.

(d) Use the equation 2× 3 = (1 + β)(1− β) to show that none
of 2, 3, 1 + β, 1− β is prime in R.
Easy! For example 2 divides the product on the RHS but
not either factor.

(e) Factorise each of the ideals (2)R, (3)R, (1 + β)R, (1 − β)R

into prime ideals of R.
I = (2). The quotient ring has 4 elements which (abu-
sively) we write as 0, 1, β, 1 + β. β2 = 1 so β is not in a
prime ideal. 1 + β generates the ideal {0, 1 + β} which has
quotient the two element field so is prime (in fact maximal,
no surprise as R is a DD).
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Back in R the only prime ideal containing (2) is thus (2, 1+
β). So we expect (2) is some power of it. In fact (2, 1 +
β)2 = (4, 2 + 2β,−4 + 2β) = (2).
I = (3). A little thought shows that in R/I we have β(1+
β) = 1 + β so that 1 + β generates a prime ideal {0, 1 +
β, 2+2β}. Similarly β(1+2β) = 2+β so 1+2β generates
prime ideal {0, 1+2β, 2+β}. Other elements will not work
as β2 = 22 = (2β)2 = 1.
Back in R we get candidate factors (3, 1 + β) and (3, 1 +
2β) = (3, 1 − β). In fact we see (3, 1 + β)(3, 1 − β) =
(9, 3 + 3β, 3− 3β, 6) = (3).
Similar calculations (or inspired guesswork or computer al-
gebra or using the idea of the next question) gives us that
(2, 1+β)(3, 1+β) = (1+β) and (2, 1+β)(3, 1−β) = (1−β).
Of course it is helpful that (2, 1 + β) = (2, 1− β).

(f) Check your computation by verifying that the same prime
ideals appear in the resulting prime factorisations of (2)(3)
and (1 + β)(1− β).
Easy: both sides are (2, 1 + β)2(3, 1 + β)(3, 1− β).

(2) Consider the metric d on Z in which the distance between dis-
tinct integers m and n is p−a where a is the largest natural
number such pa divides m − n. We say that two Cauchy se-
quences (ai) and (bi) of integers are equivalent iff d(ai, bi) → 0
as i →∞. This is an equivalence relation on Cauchy sequences.
Show that every equivalence class contains exactly one sequence
(ai) such that 0 ≤ ai < pi and ai is congruent to ai+1 modulo
pi for all i.

It is easy to see that no two such sequences are equivalent,
for if they first differ at place i then the distance between sub-
sequent terms is constant at p−i.

So it suffices to show that every Cauchy sequence is equivalent
to such a sequence. Let (ai) be Cauchy. For each n there is
i such that for j ≥ i d(ai, aj) ≤ p−n, that is ai and aj are
congruent modulo pn. So choose bn to be the unique integer
such that 0 ≤ bn < pn and ai is congruent to bn mod pn for all
large i.

Now for all large i we have that ai and bn are congruent mod
pn and also that ai and bn+1 are congruent mod pn+1. So bn and
bn+1 are congruent mod pn.

Finally if we fix m then for all large enough i > m, ai is
congruent to bm mod pm. But also bm is congruent to bi mod
pm, so that d(ai, bi) ≤ p−m.


