COMMUTATIVE ALGEBRA HW 16 SOLNS

JC

- (1) Let $\beta = i\sqrt{5}$ so that $\mathbb{Q}(\beta) = \{a + b\beta : a, b \in \mathbb{Q}\}$
 - Let $F = Q(\beta)$ and $R = \mathfrak{o}_F$, the ring of integers
 - (a) Show that $R = \mathbb{Z}[\beta]$ and $\mathbb{Z}[\beta] = \{m + n\beta : m, n \in \mathbb{Z}\}$. The second claim is easy as $\beta^2 = -5 \in \mathbb{Z}$. For the first one suppose that $a + b\beta$ is an algebraic integer. Then either b = 0 so a is a rational integer, or $b \neq 0$ so $a + b\beta \notin \mathbb{Q}$; in the latter case its minimal polynomial must be $x^2 - 2ax + (a^2 + 5b^2)$, by an old HW the coefficients must be rational integers, so by easy number theory a and b are rational integers.
 - (b) Show if we define N(a + bβ) = a² + 5b² for a, b ∈ Q then N(cd) = N(c)N(d) for all c, d ∈ F.
 Argt 1: brute force calculation. Argt 2: N(z) = |z|².
 Argt 3: N(z) is the determinant of the linear map a → za from F to F. Use the multiplicative property of the determinant.
 - (c) Use N to identify the units of R and to show that each of 2, 3, 1 + β, 1 β is irreducible in R. If m + nβ is a unit then m² + 5n² = 1 so m = 1, -1 and n = 0. There are no elements with N(z) = 2, 3 so easily each of the named elements is irreducible.
 - (d) Use the equation 2 × 3 = (1 + β)(1 β) to show that none of 2, 3, 1 + β, 1 β is prime in R.
 Easy! For example 2 divides the product on the RHS but not either factor.
 - (e) Factorise each of the ideals $(2)_R, (3)_R, (1 + \beta)_R, (1 \beta)_R$ into prime ideals of R.

I = (2). The quotient ring has 4 elements which (abusively) we write as $0, 1, \beta, 1 + \beta$. $\beta^2 = 1$ so β is not in a prime ideal. $1 + \beta$ generates the ideal $\{0, 1 + \beta\}$ which has quotient the two element field so is prime (in fact maximal, no surprise as R is a DD).

Back in *R* the only prime ideal containing (2) is thus $(2, 1 + \beta)$. So we expect (2) is some power of it. In fact $(2, 1 + \beta)^2 = (4, 2 + 2\beta, -4 + 2\beta) = (2)$.

I = (3). A little thought shows that in R/I we have $\beta(1 + \beta) = 1 + \beta$ so that $1 + \beta$ generates a prime ideal $\{0, 1 + \beta, 2 + 2\beta\}$. Similarly $\beta(1 + 2\beta) = 2 + \beta$ so $1 + 2\beta$ generates prime ideal $\{0, 1 + 2\beta, 2 + \beta\}$. Other elements will not work as $\beta^2 = 2^2 = (2\beta)^2 = 1$.

Back in *R* we get candidate factors $(3, 1 + \beta)$ and $(3, 1 + 2\beta) = (3, 1 - \beta)$. In fact we see $(3, 1 + \beta)(3, 1 - \beta) = (9, 3 + 3\beta, 3 - 3\beta, 6) = (3)$.

Similar calculations (or inspired guesswork or computer algebra or using the idea of the next question) gives us that $(2, 1+\beta)(3, 1+\beta) = (1+\beta)$ and $(2, 1+\beta)(3, 1-\beta) = (1-\beta)$. Of course it is helpful that $(2, 1+\beta) = (2, 1-\beta)$.

(f) Check your computation by verifying that the same prime ideals appear in the resulting prime factorisations of (2)(3) and $(1 + \beta)(1 - \beta)$.

Easy: both sides are $(2, 1 + \beta)^2 (3, 1 + \beta) (3, 1 - \beta)$.

(2) Consider the metric d on \mathbb{Z} in which the distance between distinct integers m and n is p^{-a} where a is the largest natural number such p^a divides m - n. We say that two Cauchy sequences (a_i) and (b_i) of integers are equivalent iff $d(a_i, b_i) \to 0$ as $i \to \infty$. This is an equivalence relation on Cauchy sequences. Show that every equivalence class contains exactly one sequence (a_i) such that $0 \le a_i < p^i$ and a_i is congruent to a_{i+1} modulo p^i for all i.

It is easy to see that no two such sequences are equivalent, for if they first differ at place *i* then the distance between subsequent terms is constant at p^{-i} .

So it suffices to show that every Cauchy sequence is equivalent to such a sequence. Let (a_i) be Cauchy. For each *n* there is *i* such that for $j \ge i \ d(a_i, a_j) \le p^{-n}$, that is a_i and a_j are congruent modulo p^n . So choose b_n to be the unique integer such that $0 \le b_n < p^n$ and a_i is congruent to $b_n \mod p^n$ for all large *i*.

Now for all large i we have that a_i and b_n are congruent mod p^n and also that a_i and b_{n+1} are congruent mod p^{n+1} . So b_n and b_{n+1} are congruent mod p^n .

Finally if we fix m then for all large enough i > m, a_i is congruent to $b_m \mod p^m$. But also b_m is congruent to $b_i \mod p^m$, so that $d(a_i, b_i) \le p^{-m}$.

 $\mathbf{2}$