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1. More topology

1.1. Bases and subbases. A basis for a topology τ is a family B of open sets of
τ such that any open set of τ is a union of sets in B. It should be clear that if X
is a set and B is a family of subsets of X such that the union of B is X and the
intersection of any two members of B is a union of members of B, then B is a basis
for a unique topology τ on X; the open sets of τ are precisely the sets which are
unions of sets in B. This gives a convenient way of defining a topology.

Example: In a metric space the open balls form a basis.
Example: In Spec(R) the sets Oa = {P : a /∈ P} form a basis.
More generally given any family S of subsets we may look at the least topology

containing S. Exercise: which sets are in this topology? If τ is the least topol-
ogy containing S we say that S is a subbasis for τ ; note that any basis for τ is
automatically a subbasis for τ .

1.2. More on continuity. By definition if we are given topological spaces X and
Y , then a function f : X → Y is continuous iff for every open V ⊆ Y , f−1[V ] is
open in X. Here are some alternative formulations (the proofs that these properties
are equivalent to continuity are left as an exercise). We assume that we have fixed
a basis B for the topology on X and a basis C for the topology pn Y .

(1) f is continuous iff for every closed F ⊆ Y , f−1[F ] is closed in X.
(2) f is continuous iff for every V ∈ C, f−1[V ] is open in X.
(3) f is continuous iff for every x ∈ X and every open set V ⊆ Y with f(x) ∈ V ,

there is an open set U ⊆ X such that x ∈ U and f [U ] ⊆ V .
(4) f is continuous iff for every x ∈ X and every V ∈ C with f(x) ∈ V , there

is U ∈ B such that x ∈ U and f [U ] ⊆ V .

1.3. Separation axioms. Let X be a topological space. We consider various
axioms saying that points can be separated by open sets.

Axiom T0: For all a, b ∈ X with a 6= b EITHER there is an open set U such that
a ∈ U and b /∈ U OR there is an open set V such that b ∈ V and a /∈ V .

Axiom T1; For all a, b ∈ X with a 6= b there is an open set U such that a ∈ U
and b /∈ U .

Axiom T2: For all a, b ∈ X with a 6= b there are open sets U and V such that
a ∈ U , b ∈ V and U ∩ V = ∅.

Remarks:

(1) T2 spaces are usually called Hausdorff spaces.
(2) The T1 axiom says that for every point b, {b} is closed.
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In most areas of mathematics the spaces that arise are T2, for example any metric
space is T2. However Spec(R) is only T0 in general; if P and Q are prime ideals
with P ( Q then we can choose a ∈ Q \ P so that P ∈ Oa and Q /∈ Oa, but every
open set which contains Q also contains P .

1.4. Closure and interior. Let X be a topological space and Y ⊆ X. Then the
union of all the open sets contained in Y is open and is called the interior of Y ,
written int(Y ). Dually the intersection of all the closed sets containing Y is closed
and is called the closure of Y , written cl(Y ).

If A ⊆ X we write Ac for X \ A. Naive set theory gives that int(A)c = cl(Ac)
and dually cl(A)c = int(Ac).

Y is dense in X iff the closure of Y is X. Since cl(Y ) = int(Y c)c this amounts
to saying that int(Y c) is empty, or to put it another way every nonempty open set
meets Y .

1.5. Product and quotient topology. Let X and Y be topological spaces. We
define the product topology on X × Y as the topology with basis the sets U × V
with U open in X and V open in Y . So a set is open in the product topology iff it
is a union of such “open rectangles”.

Remarks
(1) If we give R and R2 the usual metrics, then the topology we get on R2

really is obtained by forming the product of two copies of the topology on
R. To put it another way every open ball is a union of open rectangles.

(2) Suppose that τ is any topology on X×Y which makes the projection maps
(x, y) 7→ x and (x, y) 7→ y continuous. Then U × Y and X × V are in τ for
every open U in X and open V in Y , hence (U × Y ) ∩ (X × V ) = U × V
is in τ . Put more concisely: the product topology is the smallest topology
which makes the projectiosn continuous.

(3) The product topology on X×Y with the projection maps really is a product
in the category of topological spaces and continuous maps.

Let X be a topological space, Y a set and π : X → Y a function. Then the
quotient topology on Y is the set of A ⊆ Y such that π−1[A] is open in X. Routinely
this is a topology, and is in fact the largest topology on Y which makes π continuous.

1.6. Compactness. Let X be a topological space and Y a subset of X. An open
covering of Y is a collection O of open subsets of X such that Y ⊆

⋃
O. If O is

an open covering of Y then a subcovering of O is a subset of O which is also an
open covering of Y . The set Y is compact iff every open covering of Y has a finite
subcovering.

Remark: We say that a space X is compact iff X is a compact subset of X. It is
easy to see that Y is a compact subset of X iff Y becomes a compact space when
equipped with the subspace topology.

Example: The famous Heine-Borel theorem says that [0, 1] is a compact subset
of R.

Remark: Let B be a basis for the topology on X. Then it is easy to see that X
is a compact space iff every open covering O ⊆ B has a finite subcovering.

Remark: Older books (including A and M) sometimes reserve the word “com-
pact” for spaces which are T2 and use the word “quasicompact” for the property
that every open cover has a finite subcover.
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Remark: It is easy to see that a closed subset of a compact space is compact.
Naive set theory gives us an equivalent version of compactness in terms of closed

sets. We say that a family F of subsets of X has the finite interesction property
(fip) iff for every finite f ⊆ F , the intersection of f is nonempty. Compactness
can be reformulated thus: for every family F of closed sets, if F has the finite
interesction property then the inetresction of F nonempty.

1.7. Spectra and varieties as topological spaces. We show that Spec(R) is
compact. As we pointed out above it’s enough to show that every covering by basic
open sets has a finite subcover. So suppose that Spec(R) is the union of Oa for
a ∈ A. This means that for every prime ideal P there is a ∈ A with a /∈ P . So if I
is the ideal generated by A then we must have I = R (for otherwise I ⊆ P with P
prime and hence a ∈ P for all a ∈ A). So 1 ∈ I, so 1 ∈ (a1, . . . ak)R = R for some
finite set of ai ∈ A. But now arguing as above we have Spec(R) =

⋃
i Oai

.
Similarly if k is an algebraically closed field and V ⊆ An(k) is a variety then

V is compact in the Zariski topology. We leave this as an exercise (Hints: if
I = I(V ) then by the Nullstellensatz the points of V correspond to the maximal
ideals containing I. Use this to verify the version of compactness that involves
families of closed sets with the fip.)

1.8. Irreducible sets and Noetherian topological spaces. (This is just an
axiomatic version of something we did in the special case of varieties in an earlier
handout)

Recall that a closed set is irreducible iff it is nonempty and is not the union of
two proper closed subsets. Recall also that a closed subset Y of X is irreducible iff
it is an irreducible space when equipped with the subspace topology.

Definition: a space is Noetherian iff every decreasing sequence of closed sub-
sets stabilises (equivalently iff every nonempty family of closed sets has a minimal
element).

In the algebraic geometry handout we actually proved (think about it) that any
closed set in a Noetherian space can be written uniquely as an irredundant finite
union of irreducible closed sets.

The following facts are easy:
(1) A nonempty space X is irreducible iff every nonempty open set is dense,

that is to say every two nonempty open sets intersect.
(2) Any nonempty open subset of an irreducible space is itself irreducible in

the subspace topology.


