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Let k be an algebraically closed field. We define the affine n-space An(k) to be
the set of all n-tuples from k.

Note: You may wonder why we do not use the more familiar notation kn in
this context. The answer is that kn suggests the usual n-D VS whose group of
symmetries is all invertible linear maps; in the current context we want to think of
the symmetries of An(k) as being all the invertible affine maps. Recall that if V is
a VS an affine map from V to V is a map of form v 7→ Tv + w where T : V → V
is linear and w ∈ V .

Let A = k[x1, . . . xn], then for any set P ⊆ A we define

V (P ) = {~a ∈ An(k) : ∀f ∈ P f(~a) = 0

Clearly if I = (P )A then V (I) = V (P ). Sets of the form V (I) are called (affine)
varieties.

Notational warning: some writers (notably Hartshorne) reserve the word “vari-
ety” for the objects that we will call “irreducible varieties”, and dub the sets of the
form V (I) the “algebraic sets”.

The ring A is Noetherian so we may find a finite set B ⊆ I such that I = (B)A.
Then V (I) = V (B), and we showed that every variety is the set of common zeroes
of a finite set of polynomials.

For X ⊆ An(k) we define

I(X) = {f ∈ A : ∀~a ∈ X f(~a) = 0}
Clearly I(X) is an ideal.

The following facts are immediate: for all X, Y ⊆ An and P,Q ⊆ A

(1) X ⊆ Y → I(Y ) ⊆ I(X), P ⊆ Q → V (Q) ⊆ V (P ).
(2) X ⊆ V (I(X)), P ⊆ I(V (P )).
(3) I(X) = I(V (I(X))), V (P ) = V (I(V (P ))).

We are really interested in using the V and I operators to set up a correspondence
between ideals and varieties. From the equations above if V is a variety then
V = V (I(V )). However not every ideal is the ideal of a variety, in fact we have
from the Nullstellensatz that for an ideal J

I(V (J)) =
√

J.

Now notice that
√√

J =
√

J . It follows that the ideals of form I(V ) are precisely
the radical ideals, that is to say the ideals J such that J =

√
J . Note that

V (J) = V (I(V (J))) = V (
√

J),

so we might as well just have used the radical ideals to define varieties. The maps I
and V set up an inclusion-reversing bijection between the varieties and the radical
ideals of A.
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Recall that if {Iα} is a family of ideals in some ring R then
∑

α Iα is the ideal of all
finite sums

∑n
i=1 ai where ai ∈ Iαi

for some αi. This is the least ideal containing
each Iα. It is routine to check that if the Iα are ideals in A then V (

∑
α Iα) =⋂

α V (Iα). A similarly trivial argument shows that I(
⋃

α Xα) =
⋂

α I(Xα).
As for unions of varieties recall that if I and J are ideals of a ring R then IJ is

the ideal generated by all products ab with a ∈ I, b ∈ J . Clearly IJ ⊆ I ∩ J ⊆ I so
V (I) ⊆ V (I ∩ J) ⊆ V (IJ). Hence V (I)∪ V (J) ⊆ V (I ∩ J) ⊆ V (IJ). On the other
hand if ~a /∈ V (I) ∪ V (J) we may choose f ∈ I and g ∈ J with f(~a), g(~a) 6= 0 and
then fg(~a) 6= 0 so that ~a /∈ V (IJ). In conclusion V (I)∪V (J) = V (I ∩J) = V (IJ).

Zariski topology: We just saw the the class of varieties is closed under arbitrary
intersections and finite unions. It follows (why?) that for any variety V the set
of varieties W such that W ⊆ V can be seen as the set of closed sets of a certain
topology on V , the Zariski topology.

Note: For any topological space X and any subset Y ⊆ X we may form the
subspace topology on Y as follows: the open subsets of Y are all sets of form O∩Y
where O is open in X, or equivalently the closed subsets of Y are all sets of form
F ∩ Y for F closed in X. In general a subset of Y which is closed in the subspace
topology on Y need not be closed in the topology on X, but if Y is closed in the
topology on X then a subset of Y is closed in the topology on Y iff it is closed in
the topology on X.

Easy exercise: Convince yourself the Zariski topology on V can be obtained by
starting with the Zariski topology on An(k) and then inducing the subset topology
on V as above.

Note: Recall that a topological space is irreducible iff it is nonempty and is
not the union of two properly smaller closed sets. We say that a closed set in a
topological set is irreducible iff it is nonempty and is not the union of two properly
smaller closed sets. It is not hard to see (check it!) that if Y is a closed subset of
X then Y is an irreducible subset of X iff it is an irreducible space in the subspace
topology.

Coordinate ring: Each polynomial f ∈ A induces a function (f̄ say) from An(k)
to k. Let V be a variety. Then f 7→ f̄ � V is a surjective ring HM from A to the
ring of “polynomial functions” from V to k. The kernel is exactly I(V ) so by the
first IM theorem the ring of polynomial functions on V is IMIc to the quotient ring
A/I(V ). We call the ring A/I(V ) the coordinate ring of the variety V and denote
it by A(V ).

Cultural note: Actually the usual map k ↪→ A makes A into a k-algebra, the
map which takes each element in k to the corresponding constant function on V
is also a HM which makes the ring of polynomial functions on V a k-algebra, and
f 7→ f̄ � V is a HM of k-algebras in the natural sense. So A/I(V ) and the ring of
polynomial functions on V are isomorphic as k-algebras.

Irreducible varieties: since prime ideals are radical it is natural to ask which
varieties answer to the prime ideals. We will prove that V is irreducible iff I(V ) is
prime.

Note: by the discussion above V is an irreducible subset of An(k) iff it is ire-
ducible when considered as a topological space in its own right!

Suppose first that I is prime and let V = V (I) (so I = I(V )). We know V (I) 6= ∅
by the Nullstellensatz. Suppose that V (I) = V (J) ∪ V (K) for some radical J and
K. Then I = I(V (I)) = IV (J) ∩ IV (K) = J ∩K, so I ⊆ J and I ⊆ K. We claim



COMMUTATIVE ALGEBRA HANDOUT 4: AFFINE ALGEBRAIC GEOMETRY OVER AN ALGEBRAICALLY CLOSED FIELD3

that I = J or I = K; for otherwise we may choose a ∈ J \ I and b ∈ K \ I and
then ab ∈ J ∩K \ I.

Now suppose that I is radical and not prime. If I = A then V (I) = ∅. Otherwise
there are a, b /∈ I such that ab ∈ I. Let J =

√
I + (a) and K =

√
I + (b) so that

J and K are radical. Now I ( J , so by the bijection between radical ideals and
varieties V (J) ( V (I) and similarly V (K) ( V (I). We claim that JK ⊆ I; to see
this let x ∈ J and y ∈ K, choose n so large that xn ∈ I +(a) and yn ∈ I +(b), then
(xy)n ∈ I +(ab) = I so that xy ∈

√
I = I. But now V (I) ⊆ V (JK) = V (J)∪V (K)

so that V (I) = V (J) ∪ V (K) and fails to be irreducible.
Cultural note: If V is irreducible then the coordinate ring A(V ) = A/I(V ) is

an ID so it has a field of fractions. We may think of the elements of this field as
quotients f/g of polynomial functions on V where g is not identically zero on V ; it
is quite possible that g vanishes at some points of V so that f/g may not have a
well-defined value at all points of V .

Decomposition of a variety: We will show that any variety is a finite union of
irreducible varieties in an essentially unique way. To be a bit more precise we look
at irredundant unions in which none of the irreducible varieties is a proper subset
of another one.

Existence: The key point is that (by the correspondence between varieties and
ideals and the Noetherian-ness of polynomial rings) every decreasing sequence of
varieties must stabilise; so just as in the case of ideals we may argue that every
nonempty set of varieties has a minimal element. Let X be the set of varieties which
are not finite unions of irreducible varieties, then if X is nonempty we may choose a
minimal W ∈ X. W is not irreducible so W = W1 ∪W2 where the Wi are varieties
properly contained in W , then by the minimality of W they are finite unions of
irreducible varieties. Contradiction! To obtain an irredundant union just take any
finite union which uses the minimal possible number of irreducible varieties.

Uniqueness: Let V = W1 ∪ . . .Wm = W ′
1 ∪ . . .W ′

n be irredundant unions of
irreducible varieties. Now for each i we have Wi = (Wi ∩ W ′

1) ∪ . . . (Wi ∩ W ′
n) so

as Wi is irreducible we must have Wi = Wi ∩ W ′
j for some j, that is Wi ⊆ W ′

j .
Symetrically there exists k such that W ′

j ⊆ Wk, so that Wi ⊆ W ′
j ⊆ Wk. The union

of the Wi is irredundant so Wi = Wk and hence Wi = W ′
j . Now easily m = n and

{W1, . . . Wm} = {W ′
1, . . . W

′
n}.


