ALGEBRA FINAL

JAMES CUMMINGS (JCUMMING@ANDREW.CMU.EDU)

Attempt *exactly three questions* from each of the sections "Groups", "Rings and modules" and "Fields". You may not collaborate but may use any printed or online source (please give a reference or link), This final is due at 23:59:59 on Sun Dec 18.

GROUPS

- G1 Prove that the group of invertible upper triangular 2×2 matrices with real entries is solvable. Is it nilpotent?
- G2 Let G be a finite group, let $H \triangleleft G$ and let P be a Sylow psubgroup of H. Prove that $G = HN_G(P)$. Hint: given a group element q, what can you say about P^{q} ?
- G3 Let G be a finite group, let p be prime and let $H \leq G$ be a *p*-subgroup (that is a subgroup whose order is a power of p). Prove that

$$[G:H] \equiv [N_G(H):H] \mod p.$$

- G4 Let the finite group G act on the finite set X. Denote the stabiliser of $x \in X$ by G_x , the orbit of x by O_x , and the set $\{x \in X : g \cdot x = x\} \text{ by } Fix(g).$ (a) Prove that $\sum_{g \in G} |Fix(g)| = \sum_{x \in X} |G_x|.$

 - (b) Prove that the number of orbits is

$$\frac{\sum_{g \in G} |Fix(g)|}{|G|}.$$

- G5 Show that in a group of order 48, the intersection of two distinct Sylow 2-subgroups has order 8. Classify all the groups of order 75.
- G6 Let G be a finite group, p a prime dividing the order of G and P a Sylow p-subgroup of G. Let x and y be elements of Z(P)which are conjugate in G. Show that x and y are conjugate in $N_G(P)$.

RINGS AND MODULES

- R1 Let k be a field and let R be the PID k[x], so that every R-module may be regarded as a vector space over k; prove that if M is a cyclic R-module then either $dim_k(M)$ is finite or $M \simeq R$ as an R-module.
- R2 Let R be a ring and let M be an R-module. Define M[x] to be the set of polynomials with coefficients in M, and make M[x]into an R[x]-module in the obvious way. Prove that if M is a Noetherian R-module then M[x] is a Noetherian R[x]-module.
- R3 Let N be an R-module. A submodule $M \leq N$ is maximal iff M < N and there are no strictly intermediate modules.

Fill in the details of the following sketchy proof that if N is a nonzero fg R-module then it has a maximal submodule.

- (a) If $I \neq R$ is an ideal of R, then R/I (considered as an R-module) has a maximal submodule.
- (b) If N is a nonzero cyclic R-module, then N has a maximal submodule.
- (c) If $n_1, \ldots n_k$ is a generating set of minimal size k for the nonzero fg R-module N, and $N' = Rn_2 + \ldots Rn_k$, then N' < N and N/N' is cyclic.
- (d) Every fg nonzero *R*-module has a maximal submodule.
- R4 Let R be a ring and let Spec(R) be the set of prime ideals of R. For each ring element a, let $O_a = \{P \in Spec(R) : a \notin P\}$. Say that a set X of prime ideals is *open* if for every $P \in X$ there exists a such that $P \in O_a \subseteq X$.
 - (a) Prove that $O_a \cap O_b = O_{ab}$, $O_0 = \emptyset$, $O_1 = Spec(R)$.
 - (b) Prove that the collection of open sets form a topology for Spec(R), and describe it when $R = \mathbb{Z}$.
 - (c) Prove that for any R this topology is compact.
- R5 Let p be prime. Let $R_n = \mathbb{Z}/p^n\mathbb{Z}$, and let $\pi_n : R_{n+1} \mapsto R_n$ be the surjective HM which maps $a + p^{n+1}\mathbb{Z}$ to $a + p^n\mathbb{Z}$. Define a ring \mathbb{Z}_p as follows: the elements are infinite sequences (r_0, r_1, \ldots) such that $r_i \in R_i$ and $\pi_i(r_{i+1}) = r_i$ for all i. Addition are multiplication are defined coordinatewise

Prove that

- (a) \mathbb{Z}_p is uncountable.
- (b) \mathbb{Z}_p is an ID which contains an isomorphic copy of \mathbb{Z} .
- (c) The sequence (2, 2, 2, ...) has a square root in \mathbb{Z}_7 .
- R6 Let R be a ring. The formal power series ring R[[x]] consists of infinite expressions $a_0 + a_1x + a_2x^2 + \ldots$ with the natural operations. Prove that if R is Noetherian then R[[x]] is Noetherian.

ALGEBRA FINAL

Fields

- F1 Let F be the unique subfield of \mathbb{C} which is a splitting field for $x^4 2$ over \mathbb{Q} . Find $[F : \mathbb{Q}]$. Describe the Galois group of F over \mathbb{Q} . Find all the fields which are intermediate between \mathbb{Q} and F, and identify the intermediate fields which are Gakois extensions of \mathbb{Q} .
- F2 Let p be an odd prime and let $\zeta = e^{2\pi i/p}$, $\alpha = \zeta + \zeta^{-1}$. Show that $\mathbb{Q}(\alpha)$ is a Galois extension of \mathbb{Q} and find its degree over \mathbb{Q} . For p = 7 find the minimal polynomial of α over \mathbb{Q} .
- F3 Let F be a subfield of \mathbb{C} with $[F : \mathbb{Q}]$ finite. Prove that F contains only finitely many roots of unity (recall that a root of unity is a complex number ζ such that $\zeta^n = 1$ for some n > 0).
- F4 An ordered field is a field F together with a set $P \subseteq F$ of elements such that (defining $-P = \{-a : a \in P\}$)
 - (a) P is closed under + and \times
 - (b) $P \cap -P = \{0\}.$
 - (c) $P \cup -P = F$.

Intuitively, you can think of P as the set of field elements which have been designated as non-negative.

- Prove that
- (a) There is a unique set $P \subseteq \mathbb{R}$ such that (\mathbb{R}, P) is an ordered field.
- (b) There is no set $P \subseteq \mathbb{C}$ such that (\mathbb{C}, P) is an ordered field.
- (c) There are at least two sets $P \subseteq \mathbb{Q}(\sqrt{2})$ such that $(\mathbb{Q}(\sqrt{2}), P)$ is an ordered field.
- (d) If (F, P) is an ordered field then F has characteristic zero and -1 is not a sum of squares in F.
- F5 Let $\mathbb{Q} \subseteq F \subseteq \mathbb{C}$ be such that $[F : \mathbb{Q}] < \infty$ and F is a Galois extension of \mathbb{Q} . Prove that either $F = F \cap \mathbb{R}$ or $[F : F \cap \mathbb{R}] = 2$. What if we drop the assumption that F is a Galois extension of \mathbb{Q} ?
- F6 Let $\alpha = \sqrt[3]{2}$ and let $\gamma = i\sqrt{\alpha 1}$.
 - (a) Prove that $E = \mathbb{Q}(\gamma)$ is a radical extension of \mathbb{Q} .
 - (b) Find the least subfield F of \mathbb{C} such that F contains E and F is a Galois extension of \mathbb{Q} .