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ALGEBRA HOMEWORK SET IV SOLUTIONS

JAMES CUMMINGS

(internal sum) Prove that if M; and M, are submodules of an R-
module M, then the submodule generated by M; U My is

M1+M2:{m1+m2:mi€Mi}.

Easy! Just check its a submodule, and note that any submodule which
contains M; U Ms is closed under sums so contains it.

(external direct sum) Prove that if M7 and M, are R-modules and we
define operations on

My & My = {(m1,mz) : m; € My}

by r(my,mz2) = (rmy,rms), (my,mz2) + (n1,n2) = (M1 + n1, ma + n2)
then the resulting structure is an R-module.

Routine.

(internal direct sum) Prove that if My, My < M and M1 N My = 0
then My + My ~ My & M>. What can you say about the structure of
My + M5 in general?

Define ¢ : (my,ma2) — my + mg. Easily it’s a surjective HM (an
epimorphism). The kernel is the set of pairs with m; + my = 0, but
then m; = —mg € My N My = 0, so the kernel is trivial. In general
the same argument shows that M; + My is isomorphic to the quotient
of My & M> by a submodule isomorphic to M; N Ms.

(2) Let M be an R-module and I an ideal of R. Prove that

(a)

(b)

If we define IM to be the set of all finite sums ) rym; with r; €
I,m; € M then IM < M.

Routinel!

M/IM has the structure of an R/I module if we define (r + I)(m +
IM)=rm+IM.

Routine, the main point is that this is well defined (in fact IM is
the smallest submodule that makes the quotient have an R/I-module
structure).

(3) Consider a sequence of R-modules M; where the index i runs through some
interval of integers, together with R-module HMs «; : M; — M; 1. The
sequence is said to be ezact at M; if im(a;—1) = ker(a).

(a)

(b)

()

Show that 0 — M; — Ms is exact at M iff oy is injective.
a1 is injective iff the kernel of ay is 0 iff the kernel of a; is the image
of ayp.
Show that M; — My — 0 is exact at My iff «; is surjective.
aq is surjective iff the image of aq is My iff the image of a7 is the
kernel of as.
When is the sequence 0 — M; — My — 0 exact at both of My, M>?
By the above, this happens iff oy : My ~ M.
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Suppose that 0 — My — My — M3 — 0 is exact at all of My, My, M3.
What does this tell you about the relation between the modules M;?
Let N < M, be the image of a;. Then N is the kernel of as, and
is isomorphic to My. Also M3 ~ My/N. So this sequence is a slick
description of the quotient construction in diagrammatic form.

(4) Recall that when R is an ID we defined the field of fractions by considering
the set X = {(r,s) : € R,s € R\ {0}} and introducing an equivalence
relation (r1,s1) ~ (1o, s2) iff r1s9 ~ ros;.

(a)

(b)

()

Show by example that if R is not an ID then the binary relation defined
in this way may not be an equivalence relation.

Easy (look at the proof that it is an ER when R is an ID if you are
stuck)

Let R be an arbitrary ring. A subset S C R is called multiplicatively
closed iff 1 € S and S is closed under multiplication.

Prove that if we define a relation on R x S by (r1,s1) ~* (ra, sq) iff
there is s3 € S such that s3(r189 —r2s1) = 0 then ~* is an equivalence
relation.

Easy!

What is this in the case when R is an ID and S = R\ {0}?

It reduces to the old ER in this case.

With the same assumptions as the last part, we write r/s for the ~*-
class of the pair (r, s) and RS~! for the set of such classes. Prove that
if we attempt to define

r1/81 X ro/sa = (r172)/(8182),71/81 + r2/s2 = (r182 + 1251)/(5152),

(d)

then we get well-defined operation which make RS~! into a ring.
Routine and very very dull.

Prove that the map 7 + 7/1 is a HM from R to RS™!, and that every
element of S is mapped to a unit in RS~'. When is the map injective?
When is it surjective?

The defn of the ring structure ensures that it’s a HM. We have explic-
itly added an inverse 1/s for each element s/1 in the image of S.
Now we analyse the kernel. r is in the kernel iff /1 = 0/1 iff there is
s € S such that sr = 0. So the map is injective iff S does not contain
zero divisors.

As for surjectivity, that amounts to the assertion that for all » € R
and s € S there is 71 € R such that r1/1 = r/s, that is to say that for
some s; € S we have s1(r — sr1) = 0.

(5) Let R be a ring and let Spec(R) be the set of prime ideals of R. For each
ring element a, let O, = {P € Spec(R) : a ¢ P}. Say that a set X of prime
ideals is open if for every P € X there exists a such that P € O, C X.

(a)

(b)

Prove that O, N Oy = Oy, Og = 0, O1 = Spec(R).

For a prime ideal P, ab€ Piffac Porbe P. Soab¢ Piff a ¢ P
and b ¢ P. Every prime ideal contains 0 and no prime ideal contains
1.

Prove that the collection of open sets form a topology for Spec(R),
and describe it when R = Z.

The properties of the O, listed above make this easy, in fact they form
a basis for this Zariski topology. Now the prime ideals of Z are (0) and
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(p) for p prime. When n is nonzero and composite we see that O, is
the cofinite set of ideals (p) for p not dividing n together with the ideal
(0). So the open sets are () and all cofinite sets of prime ideals which
contain (0).
(¢) (Trickier) Prove that this topology is compact.

We need to show that any open cover has a finite subcover. Enough
to show that any cover by sets of form O, has a finite subcover. So let
O, for a € X be a cover. This means that every prime ideal is in O,
for some a € X, that is no prime ideal contains X, that is no prime
ideal contains the ideal generated by X. But any proper ideal extends
to a maximal (hence prime) ideal so X generates R. Hence a finite
subset of X generates R, and from this we read off an open subcover.

Let p be prime. Let R,, = Z/p™Z, and let 7w, : R,+1 — R, be the surjective

HM which maps a + p"™'Z to a + p"Z. Define a ring Z, as follows: the

elements are infinite sequences (rg,71,...) such that r; € R; and m;(r;41) =

r; for all 7. Addition are multiplication are defined coordinatewise

Prove that

(a) Z, is uncountable.
Diagonalise a la Cantor.

(b) Z, is an ID which contains an isomorphic copy of Z.
Routine.

(¢) The sequence (2,2,2,...) has a square root in Zy.

Build a square root by induction, starting either with ro = 3 or ro = 4.
At stage n suppose we have 72 = 2 mod p™. Then we must choose 7,1 =
7 + xp” so that r%H =2 mod p"T!. This is an easy problem in mod p
arithmetic.

Cultural note: this is the ring of p-adic integers and we just did an easy
example of Hensel’s Lemma.

The R-module M is said to be Artinian iff there is no infinite strictly

decreasing sequence of submodules. R is Artinian iff it is Artinian as an

R-module, that is there is no infinite strictly decreasing sequence of ideals.

(a) Give an example of an infinite Artinian ring.
Any field.

(b) Prove that if R is a field, the classes of Artinian and Noetherian mod-
ules coincide.
Using basic facts about dimension, both classes coincide with the class
of finite dimensional R-modules.

(¢) Give an example of a Noetherian module which is not Artinian.

Z is Noetherian but not Artinian.

(d) Give an example of a Artinian module which is not Noetherian.
We work with Z-modules, that is abelian groups. Consider the sub-
group of Q/7Z consisting of elements of form a/2™ for integers a,n
where n > 0. Easily the subgroups generated by 1/2" form an infinite
strict increasing chain.
Let H be any subgroup, let h € H and write h = a/2" for a odd. So
gcd(a,2™) = 1, and by elementary number theory there are integers
C,D with Ca + D2" = 1, that is Ca/2™ + D = 1/2". So easily
H contains the subgroup generated by 1/2". Therefore either H is
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generated by 1/2™ for some n or it’s the whole group. It follows easily
that the group is Artinian as a Z-module.
Note: all Artinian rings are Noetherian, but it is not completely easy to
see this.



