
ALGEBRA HOMEWORK SET IV SOLUTIONS

JAMES CUMMINGS

(1) (a) (internal sum) Prove that if M1 and M2 are submodules of an R-
module M , then the submodule generated by M1 ∪M2 is

M1 + M2 = {m1 + m2 : mi ∈ Mi}.
Easy! Just check its a submodule, and note that any submodule which
contains M1 ∪M2 is closed under sums so contains it.

(b) (external direct sum) Prove that if M1 and M2 are R-modules and we
define operations on

M1 ⊕M2 = {(m1,m2) : mi ∈ MI}
by r(m1,m2) = (rm1, rm2), (m1,m2) + (n1, n2) = (m1 + n1,m2 + n2)
then the resulting structure is an R-module.
Routine.

(c) (internal direct sum) Prove that if M1,M2 ≤ M and M1 ∩ M2 = 0
then M1 + M2 ' M1 ⊕M2. What can you say about the structure of
M1 + M2 in general?
Define φ : (m1,m2) 7→ m1 + m2. Easily it’s a surjective HM (an
epimorphism). The kernel is the set of pairs with m1 + m2 = 0, but
then m1 = −m2 ∈ M1 ∩M2 = 0, so the kernel is trivial. In general
the same argument shows that M1 + M2 is isomorphic to the quotient
of M1 ⊕M2 by a submodule isomorphic to M1 ∩M2.

(2) Let M be an R-module and I an ideal of R. Prove that
(a) If we define IM to be the set of all finite sums

∑
i rimi with ri ∈

I,mi ∈ M then IM ≤ M .
Routine!

(b) M/IM has the structure of an R/I module if we define (r + I)(m +
IM) = rm + IM .
Routine, the main point is that this is well defined (in fact IM is
the smallest submodule that makes the quotient have an R/I-module
structure).

(3) Consider a sequence of R-modules Mi where the index i runs through some
interval of integers, together with R-module HMs αi : Mi → Mi+1. The
sequence is said to be exact at Mi if im(αi−1) = ker(αi).
(a) Show that 0 → M1 → M2 is exact at M1 iff α1 is injective.

α1 is injective iff the kernel of α1 is 0 iff the kernel of α1 is the image
of α0.

(b) Show that M1 → M2 → 0 is exact at M2 iff α1 is surjective.
α1 is surjective iff the image of α1 is M2 iff the image of α1 is the
kernel of α2.

(c) When is the sequence 0 → M1 → M2 → 0 exact at both of M1,M2?
By the above, this happens iff α1 : M1 ' M2.
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(d) Suppose that 0 → M1 → M2 → M3 → 0 is exact at all of M1,M2,M3.
What does this tell you about the relation between the modules Mi?
Let N ≤ M2 be the image of α1. Then N is the kernel of α2, and
is isomorphic to M1. Also M3 ' M2/N . So this sequence is a slick
description of the quotient construction in diagrammatic form.

(4) Recall that when R is an ID we defined the field of fractions by considering
the set X = {(r, s) : r ∈ R, s ∈ R \ {0}} and introducing an equivalence
relation (r1, s1) ' (r2, s2) iff r1s2 ' r2s1.
(a) Show by example that if R is not an ID then the binary relation defined

in this way may not be an equivalence relation.
Easy (look at the proof that it is an ER when R is an ID if you are
stuck)

(b) Let R be an arbitrary ring. A subset S ⊆ R is called multiplicatively
closed iff 1 ∈ S and S is closed under multiplication.
Prove that if we define a relation on R × S by (r1, s1) '∗ (r2, s2) iff
there is s3 ∈ S such that s3(r1s2−r2s1) = 0 then '∗ is an equivalence
relation.
Easy!
What is this in the case when R is an ID and S = R \ {0}?
It reduces to the old ER in this case.

(c) With the same assumptions as the last part, we write r/s for the '∗-
class of the pair (r, s) and RS−1 for the set of such classes. Prove that
if we attempt to define

r1/s1 × r2/s2 = (r1r2)/(s1s2), r1/s1 + r2/s2 = (r1s2 + r2s1)/(s1s2),

then we get well-defined operation which make RS−1 into a ring.
Routine and very very dull.

(d) Prove that the map r 7→ r/1 is a HM from R to RS−1, and that every
element of S is mapped to a unit in RS−1. When is the map injective?
When is it surjective?
The defn of the ring structure ensures that it’s a HM. We have explic-
itly added an inverse 1/s for each element s/1 in the image of S.
Now we analyse the kernel. r is in the kernel iff r/1 = 0/1 iff there is
s ∈ S such that sr = 0. So the map is injective iff S does not contain
zero divisors.
As for surjectivity, that amounts to the assertion that for all r ∈ R
and s ∈ S there is r1 ∈ R such that r1/1 = r/s, that is to say that for
some s1 ∈ S we have s1(r − sr1) = 0.

(5) Let R be a ring and let Spec(R) be the set of prime ideals of R. For each
ring element a, let Oa = {P ∈ Spec(R) : a /∈ P}. Say that a set X of prime
ideals is open if for every P ∈ X there exists a such that P ∈ Oa ⊆ X.
(a) Prove that Oa ∩Ob = Oab, O0 = ∅, O1 = Spec(R).

For a prime ideal P , ab ∈ P iff a ∈ P or b ∈ P . So ab /∈ P iff a /∈ P
and b /∈ P . Every prime ideal contains 0 and no prime ideal contains
1.

(b) Prove that the collection of open sets form a topology for Spec(R),
and describe it when R = Z.
The properties of the Oa listed above make this easy, in fact they form
a basis for this Zariski topology. Now the prime ideals of Z are (0) and
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(p) for p prime. When n is nonzero and composite we see that On is
the cofinite set of ideals (p) for p not dividing n together with the ideal
(0). So the open sets are ∅ and all cofinite sets of prime ideals which
contain (0).

(c) (Trickier) Prove that this topology is compact.
We need to show that any open cover has a finite subcover. Enough
to show that any cover by sets of form Oa has a finite subcover. So let
Oa for a ∈ X be a cover. This means that every prime ideal is in Oa

for some a ∈ X, that is no prime ideal contains X, that is no prime
ideal contains the ideal generated by X. But any proper ideal extends
to a maximal (hence prime) ideal so X generates R. Hence a finite
subset of X generates R, and from this we read off an open subcover.

(6) Let p be prime. Let Rn = Z/pnZ, and let πn : Rn+1 7→ Rn be the surjective
HM which maps a + pn+1Z to a + pnZ. Define a ring Zp as follows: the
elements are infinite sequences (r0, r1, . . .) such that ri ∈ Ri and πi(ri+1) =
ri for all i. Addition are multiplication are defined coordinatewise

Prove that
(a) Zp is uncountable.

Diagonalise a la Cantor.
(b) Zp is an ID which contains an isomorphic copy of Z.

Routine.
(c) The sequence (2, 2, 2, . . .) has a square root in Z7.

Build a square root by induction, starting either with r0 = 3 or r0 = 4.
At stage n suppose we have r2

n = 2 mod pn. Then we must choose rn+1 =
rn + xpn so that r2

n+1 = 2 mod pn+1. This is an easy problem in mod p
arithmetic.

Cultural note: this is the ring of p-adic integers and we just did an easy
example of Hensel’s Lemma.

(7) The R-module M is said to be Artinian iff there is no infinite strictly
decreasing sequence of submodules. R is Artinian iff it is Artinian as an
R-module, that is there is no infinite strictly decreasing sequence of ideals.
(a) Give an example of an infinite Artinian ring.

Any field.
(b) Prove that if R is a field, the classes of Artinian and Noetherian mod-

ules coincide.
Using basic facts about dimension, both classes coincide with the class
of finite dimensional R-modules.

(c) Give an example of a Noetherian module which is not Artinian.
Z is Noetherian but not Artinian.

(d) Give an example of a Artinian module which is not Noetherian.
We work with Z-modules, that is abelian groups. Consider the sub-
group of Q/Z consisting of elements of form a/2n for integers a, n
where n ≥ 0. Easily the subgroups generated by 1/2n form an infinite
strict increasing chain.
Let H be any subgroup, let h ∈ H and write h = a/2n for a odd. So
gcd(a, 2n) = 1, and by elementary number theory there are integers
C,D with Ca + D2n = 1, that is Ca/2n + D = 1/2n. So easily
H contains the subgroup generated by 1/2n. Therefore either H is
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generated by 1/2n for some n or it’s the whole group. It follows easily
that the group is Artinian as a Z-module.

Note: all Artinian rings are Noetherian, but it is not completely easy to
see this.


