ALGEBRA HOMEWORK SET IV

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

NB: This is due a week from Monday, that is to say on Monday Feb 25.

We write 0 for the zero module $\{0\}$, and $M \leq N$ when M is a submodule of N.

(1) (a) (internal sum) Prove that if M_1 and M_2 are submodules of an R-module M, then the submodule generated by $M_1 \cup M_2$ is

$$M_1 + M_2 = \{m_1 + m_2 : m_i \in M_i\}.$$

(b) (external direct sum) Prove that if M_1 and M_2 are R-modules and we define operations on

$$M_1 \oplus M_2 = \{(m_1, m_2) : m_i \in M_I\}$$

by $r(m_1, m_2) = (rm_1, rm_2), (m_1, m_2) + (n_1, n_2) = (m_1 + n_1, m_2 + n_2)$ then the resulting structure is an R-module.

- (c) (internal direct sum) Prove that if $M_1, M_2 \leq M$ and $M_1 \cap M_2 = 0$ then $M_1 + M_2 \simeq M_1 \oplus M_2$. What can you say about the structure of $M_1 + M_2$ in general?
- (2) Let M be an R-module and I an ideal of R. Prove that
 - (a) If we define IM to be the set of all finite sums $\sum_i r_i m_i$ with $r_i \in I, m_i \in M$ then $IM \leq M$.
 - (b) M/IM has the structure of an R/I module if we define (r+I)(m+IM) = rm + IM.
- (3) Consider a sequence of R-modules M_i where the index i runs through some interval of integers, together with R-module HMs $\alpha_i: M_i \to M_{i+1}$. The sequence is said to be exact at M_i if $im(\alpha_{i-1}) = ker(\alpha_i)$.
 - (a) Show that $0 \to M_1 \to M_2$ is exact at M_1 iff α_1 is injective.
 - (b) Show that $M_1 \to M_2 \to 0$ is exact at M_2 iff α_1 is surjective.
 - (c) When is the sequence $0 \to M_1 \to M_2 \to 0$ exact at both of M_1, M_2 ?
 - (d) Suppose that $0 \to M_1 \to M_2 \to M_3 \to 0$ is exact at all of M_1, M_2, M_3 . What does this tell you about the relation between the modules M_i ?
- (4) Recall that when R is an ID we defined the *field of fractions* by considering the set $X = \{(r, s) : r \in R, s \in R \setminus \{0\}\}$ and introducing an equivalence relation $(r_1, s_1) \simeq (r_2, s_2)$ iff $r_1 s_2 \simeq r_2 s_1$.
 - (a) Show by example that if R is not an ID then the binary relation defined in this way may not be an equivalence relation.
 - (b) Let R be an arbitrary ring. A subset $S \subseteq R$ is called multiplicatively closed iff $1 \in S$ and S is closed under multiplication. Prove that if we define a relation on $R \times S$ by $(r_1, s_1) \simeq^* (r_2, s_2)$ iff there is $s_3 \in S$ such that $s_3(r_1s_2 - r_2s_1) = 0$ then \simeq^* is an equivalence relation. What is this in the case when R is an ID and $S = R \setminus \{0\}$?

1

- (c) With the same assumptions as the last part, we write r/s for the \simeq^* -class of the pair (r,s) and RS^{-1} for the set of such classes. Prove that if we attempt to define
- $r_1/s_1 \times r_2/s_2 = (r_1r_2)/(s_1s_2), r_1/s_1 + r_2/s_2 = (r_1s_2 + r_2s_1)/(s_1s_2),$
 - then we get well-defined operation which make RS^{-1} into a ring.
 - (d) Prove that the map $r \mapsto r/1$ is a HM from R to RS^{-1} , and that every element of S is mapped to a unit in RS^{-1} . When is the map injective? When is it surjective?
- (5) Let R be a ring and let Spec(R) be the set of prime ideals of R. For each ring element a, let $O_a = \{P \in Spec(R) : a \notin P\}$. Say that a set X of prime ideals is open if for every $P \in X$ there exists a such that $P \in O_a \subseteq X$.
 - (a) Prove that $O_a \cap O_b = O_{ab}$, $O_0 = \emptyset$, $O_1 = Spec(R)$.
 - (b) Prove that the collection of open sets form a topology for Spec(R), and describe it when $R = \mathbb{Z}$.
 - (c) (Trickier) Prove that this topology is compact.
- (6) Let p be prime. Let $R_n = \mathbb{Z}/p^n\mathbb{Z}$, and let $\pi_n : R_{n+1} \mapsto R_n$ be the surjective HM which maps $a + p^{n+1}\mathbb{Z}$ to $a + p^n\mathbb{Z}$. Define a ring \mathbb{Z}_p as follows: the elements are infinite sequences (r_0, r_1, \ldots) such that $r_i \in R_i$ and $\pi_i(r_{i+1}) = r_i$ for all i. Addition are multiplication are defined coordinatewise Prove that
 - (a) \mathbb{Z}_p is uncountable.
 - (b) \mathbb{Z}_p is an ID which contains an isomorphic copy of \mathbb{Z} .
 - (c) The sequence (2, 2, 2, ...) has a square root in \mathbb{Z}_7 .
- (7) The *R*-module *M* is said to be *Artinian* iff there is no infinite strictly decreasing sequence of submodules. *R* is *Artinian* iff it is Artinian as an *R*-module, that is there is no infinite strictly decreasing sequence of ideals.
 - (a) Give an example of an infinite Artinian ring.
 - (b) Prove that if R is a field, the classes of Artinian and Noetherian modules coincide.
 - (c) Give an example of a Noetherian module which is not Artinian.
 - (d) Give an example of a Artinian module which is not Noetherian. Note: all Artinian rings are Noetherian, but it is not completely easy to see this.