ALGEBRA HOMEWORK SET III SOLUTIONS

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by
yourself. Please contact me by email if you are puzzled by something, would like a
hint or believe that you have found a typo.

(1)

Let p be prime and let G be a non-abelian group of order p3. Show that
Z(G) = [G,G] and this is a subgroup of order p.

Since G is a finite p-group, Z(G) is non-trivial. Also G/Z(G) can not
be cyclic, so Z(G) does not have order p?. It follows that Z(G) has order
p, and also incidentally that G/Z(G) ~ C2.

Now since G is non-abelian [G, G] is non-trivial. Since G/Z(G) is abelian
we have [G,G] < Z(G). So the only possibility is that [G, G] = Z(G).
Prove that every group of order 15 is cyclic

The Sylow subgroups of order 3 and 5 are unique hence normal. Call
them P and Q. Then [P,Q] C PN Q = {e}, hence G ~ P x Q and is thus
cyclic of order 15.

Prove there is no simple group of order pq for distinct primes p, g.

Let p < ¢ and let m be the number of Sylow g-subgroups. Then m
divides p and is congruent to 1 mod ¢q. So m = 1.

Repeat the previous exercise for groups of order p?q.

Let mp, my be the numbers of Sylow p and ¢ subgroups. m,, divides g,
so either m, = 1 and we are done or m, = q.

Assume that m, = ¢, so that in particular ¢ =1 mod p and ¢ > p. m,
divides p?. If my = 1 we are done, if my = p then p=¢ mod 1 and p > ¢,
but this is impossible. So mq = p?. But if there are p? many g-subgroups,
since they have pairwise trivial intersection that gives 1 + p?(¢ — 1) many
elements of order 1 or ¢. This leaves only p? — 1 elements which can be of
p-power order, so there is only one Sylow p-subgroup and hence m, =1
after all.

Let G be a simple group of order 60. Determine the numbers of Sylow
p-subgroups for p = 2,3, 5 (if you can’t determine the exact values give as
much information as you can).

nyp is the number of Sylow p-subgroups.

Easy bit: no = 3,5,15, ng = 4,10, 20, n5 = 6.

Harder bit 1: By an argument from the last HW solns there can’t be
any subgroups of small index (look at the action of G on the left cosets of
H by left multn, its kernel must be trivial). So we can eliminate no = 3
and n3 = 4.

Harder bit 2: There are 24 elements of order 5 (subgroups of order 5
have trivial intersection). If ng = 20 there are (similarly) 40 elements of
order 3. Contradiction so ng = 10.
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Seriously hard bit: argue that G must be As (ask me if you are interested
in how to do this). Then there are 5 Klein 4-groups so ny = 5. Checking
our other answers: there are 20 3-cycles so indeed n3 = 10 and there are
24 5-cycles so indeed ns = 6.

Let F be a finite field with ¢ elements and let GL,(F) be the group of
invertible linear maps from F™ to F™. What is the order of G?

We need to count non-singular matrices. Use the fact that a matrix is
non-singular iff each column is not in the span of the previous columns
(which must then be independent) to show that the order is

(@ = D" —a)(q" —¢*)...(¢" —q" ).

Prove or give a counterexample to the statement “if GG is nilpotent, every
subgroup of G is also nilpotent”.

Let H < G and let G; be a normal series with [G,G; 1] € G;. Let
H; = G, N H and argue (this is easy) that H; is a normal series in H and
[H,H;11] C H;.

Prove that there are (up to isomorphism) only two non-abelian groups of
order 8 and describe them.

From the first question such a group G has Z(G) = [G, G| a subgroup
of order 2, and also we have G/Z(G) ~ C3. Choose elements a, b, ¢ so that
Z(G) = [G,G] = {a), and G/Z(G) = {Z(G),bZ(G),cZ(Q),bcZ(G)}. Tt
follows that all elements are of form a’b/cF for 0 < 4,j,k < 2. We know
that a commutes with everything so we need to ask what are the products
bb, be, ¢b, cc? Note that no element has order 8 (else the group is cyclic!)
so surely b* = ¢* =e.

Now [b, ] € [G,G] = Z(G) and we can’t have bc = ¢b (since that would
easily make the group abelian). So bcb~'c™! = a, that is abc = cb.

Finally (bZ(G))? = Z(G) so that b € Z(G), similarly ¢? € Z(G) and
(be)? € Z(G). If b? = ¢* = e then (be)? = b(cb)e = b(abe)c = ab*c? = a, so
at least one of b, ¢, b has order 4. We assume WLOG it is b, so that b> = a
and G is generated by b, c.

If ¢ has order 2 then G is generated by b, ¢ subject to relations b* = ¢ = ¢
and cbc = abc® = ab = b~!. In this case we have the dihedral group of order
8.

Otherwise ¢ has order 4. In this case G is generated by b, c subject to
relations b* = ¢* = e, b2 = 2, ¢b = b3c. This gives another group of order
8, the “quaternion group”.

Cultural note (which may make more sense to you later in life): the
quaternions are an associative R-algebra consisting of elements a + bi+cj +
dk where a,b,c,d € Rand i = j2 =k = —1,ij = —ji =k, jk = —kj =i,
ki = —ki = j. The elements £{1,4, j, k} form a quaternion group.

Recall that if G is a group then G(™) is defined by the induction G(®) = G,
G+ = [ G(M]. Compute this series of groups when G = Ss, Sy, Ss.

Commutators are even so [S,, S,] C A,. Conversely (ab)(ac)(ab)(ac) =
(abe) so easily [Sy, Sp] = A, for n > 3.

Easily for S5 it goes S, As, {e},. ...

For A4 we start S4, Ay. Now A4 has a unique Sylow 2-subgroup V =
{e,(12)(34), (13)(24), (14)(23)}, A4/V is abelian so [A4, A4] C V. On the
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other hand (123)(124)(132)(142) = (12)(34) so easily equality holds. And
V is abelian so we get Sy, A4, V, {e},.. ..
(We will use these series later to solve the cubic and quartic equations)
Since Aj is nonabelian simple [A5, A5] must be A5. So we get S, As, As, ...



