
ALGEBRA HOMEWORK SET III SOLUTIONS

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by
yourself. Please contact me by email if you are puzzled by something, would like a
hint or believe that you have found a typo.

(1) Let p be prime and let G be a non-abelian group of order p3. Show that
Z(G) = [G, G] and this is a subgroup of order p.

Since G is a finite p-group, Z(G) is non-trivial. Also G/Z(G) can not
be cyclic, so Z(G) does not have order p2. It follows that Z(G) has order
p, and also incidentally that G/Z(G) ' C2

p .
Now since G is non-abelian [G, G] is non-trivial. Since G/Z(G) is abelian

we have [G, G] ≤ Z(G). So the only possibility is that [G, G] = Z(G).
(2) Prove that every group of order 15 is cyclic

The Sylow subgroups of order 3 and 5 are unique hence normal. Call
them P and Q. Then [P,Q] ⊆ P ∩Q = {e}, hence G ' P ×Q and is thus
cyclic of order 15.

(3) Prove there is no simple group of order pq for distinct primes p, q.
Let p < q and let m be the number of Sylow q-subgroups. Then m

divides p and is congruent to 1 mod q. So m = 1.
(4) Repeat the previous exercise for groups of order p2q.

Let mp,mq be the numbers of Sylow p and q subgroups. mp divides q,
so either mp = 1 and we are done or mp = q.

Assume that mp = q, so that in particular q ≡ 1 mod p and q > p. mq

divides p2. If mq = 1 we are done, if mq = p then p ≡ q mod 1 and p > q,
but this is impossible. So mq = p2. But if there are p2 many q-subgroups,
since they have pairwise trivial intersection that gives 1 + p2(q − 1) many
elements of order 1 or q. This leaves only p2 − 1 elements which can be of
p-power order, so there is only one Sylow p-subgroup and hence mp = 1
after all.

(5) Let G be a simple group of order 60. Determine the numbers of Sylow
p-subgroups for p = 2, 3, 5 (if you can’t determine the exact values give as
much information as you can).

np is the number of Sylow p-subgroups.
Easy bit: n2 = 3, 5, 15, n3 = 4, 10, 20, n5 = 6.
Harder bit 1: By an argument from the last HW solns there can’t be

any subgroups of small index (look at the action of G on the left cosets of
H by left multn, its kernel must be trivial). So we can eliminate n2 = 3
and n3 = 4.

Harder bit 2: There are 24 elements of order 5 (subgroups of order 5
have trivial intersection). If n3 = 20 there are (similarly) 40 elements of
order 3. Contradiction so n3 = 10.
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Seriously hard bit: argue that G must be A5 (ask me if you are interested
in how to do this). Then there are 5 Klein 4-groups so n2 = 5. Checking
our other answers: there are 20 3-cycles so indeed n3 = 10 and there are
24 5-cycles so indeed n5 = 6.

(6) Let F be a finite field with q elements and let GLn(F ) be the group of
invertible linear maps from Fn to Fn. What is the order of G?

We need to count non-singular matrices. Use the fact that a matrix is
non-singular iff each column is not in the span of the previous columns
(which must then be independent) to show that the order is

(qn − 1)(qn − q)(qn − q2) . . . (qn − qn−1).

(7) Prove or give a counterexample to the statement “if G is nilpotent, every
subgroup of G is also nilpotent”.

Let H ≤ G and let Gi be a normal series with [G, Gi+1] ⊆ Gi. Let
Hi = Gi ∩H and argue (this is easy) that Hi is a normal series in H and
[H,Hi+1] ⊆ Hi.

(8) Prove that there are (up to isomorphism) only two non-abelian groups of
order 8 and describe them.

From the first question such a group G has Z(G) = [G, G] a subgroup
of order 2, and also we have G/Z(G) ' C2

2 . Choose elements a, b, c so that
Z(G) = [G, G] = 〈a〉, and G/Z(G) = {Z(G), bZ(G), cZ(G), bcZ(G)}. It
follows that all elements are of form aibjck for 0 ≤ i, j, k < 2. We know
that a commutes with everything so we need to ask what are the products
bb, bc, cb, cc? Note that no element has order 8 (else the group is cyclic!)
so surely b4 = c4 = e.

Now [b, c] ∈ [G, G] = Z(G) and we can’t have bc = cb (since that would
easily make the group abelian). So bcb−1c−1 = a, that is abc = cb.

Finally (bZ(G))2 = Z(G) so that b2 ∈ Z(G), similarly c2 ∈ Z(G) and
(bc)2 ∈ Z(G). If b2 = c2 = e then (bc)2 = b(cb)c = b(abc)c = ab2c2 = a, so
at least one of b, c, bc has order 4. We assume WLOG it is b, so that b2 = a
and G is generated by b, c.

If c has order 2 then G is generated by b, c subject to relations b4 = c2 = e
and cbc = abc2 = ab = b−1. In this case we have the dihedral group of order
8.

Otherwise c has order 4. In this case G is generated by b, c subject to
relations b4 = c4 = e, b2 = c2, cb = b3c. This gives another group of order
8, the “quaternion group”.

Cultural note (which may make more sense to you later in life): the
quaternions are an associative R-algebra consisting of elements a+bi+cj +
dk where a, b, c, d ∈ R and i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
ki = −ki = j. The elements ±{1, i, j, k} form a quaternion group.

(9) Recall that if G is a group then G(n) is defined by the induction G(0) = G,
G(n+1) = [G(n), G(n)]. Compute this series of groups when G = S3, S4, S5.

Commutators are even so [Sn, Sn] ⊆ An. Conversely (ab)(ac)(ab)(ac) =
(abc) so easily [Sn, Sn] = An for n ≥ 3.

Easily for S3 it goes S3, A3, {e}, . . ..
For A4 we start S4, A4. Now A4 has a unique Sylow 2-subgroup V =

{e, (12)(34), (13)(24), (14)(23)}, A4/V is abelian so [A4, A4] ⊆ V . On the
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other hand (123)(124)(132)(142) = (12)(34) so easily equality holds. And
V is abelian so we get S4, A4, V, {e}, . . ..

(We will use these series later to solve the cubic and quartic equations)
Since A5 is nonabelian simple [A5, A5] must be A5. So we get S5, A5, A5, . . .


