ALGEBRA HOMEWORK SET II

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

NOTE: This is one is shorter because it's late. Apologies for the delay.

 C_n denotes a cyclic group of order n.

- (1) Use Sylow's theorem to show that there is no simple group of any of the following orders: 20, 26, 34, 48.
- (2) Describe the automorphism group $Aut(C_5)$. Find all the HMs from G to $Aut(C_5)$ for
 - (a) $G = C_4$.
 - (b) $G = C_2 \times C_2$.
- (3) Suppose that G = HN where $H \leq G$, $N \triangleleft G$ and $H \cap N = \{e\}$.
 - (a) Show that every element of G can be written as hn for unique elements $h \in H$ and $n \in N$.
 - (b) Express $h_1 n_1 h_2 n_2$ where $h_i \in H$, $n_i \in N$ in the form hn with $h \in H$, $n \in N$.
- (4) Suppose that H, N are groups and $\psi : H \to Aut(N)$ is a HM. Define a binary operation * on the set of ordered pairs $H \times N$ as follows:

$$(h_1, n_1) * (h_2, n_2) = (h_1 \times_H h_2, \psi(h_2^{-1})(n_1) \times_N n_2).$$

1

Prove that this binary operation makes $H \times N$ into a group.

(5) Explain the relationship between the previous two questions. Use Sylow's theorem and the ideas of the previous two questions to classify groups of order 20 up to isomorphism.

Hint: there may be unexpected IMs among the groups that you construct, be careful.