
ALGEBRA HOMEWORK SET I SOLUTIONS

JAMES CUMMINGS

(1) Let G be a group and let H,K ≤ G. The double cosets of H and K are the
subsets of G of the form HaK where a ∈ G. Prove that the double cosets
form a partition of G. Is it true in general that all the double cosets have
the same cardinality? (Either prove it or give a counterexample)

It is easy to check that the binary relation in which a is related to b iff
b = hak for h ∈ H, k ∈ K is an equivalence relation.

For a slick analysis we can think of H × K acting on G by the action
where (h, k) applied to g gives hgk−1. The stabiliser of g is the set of (h, k)
such that hgk−1 = g, that is hg = gk or gkg−1 = h.

So for fixed g, every h ∈ H ∩Kg is the first entry of a unique element
(h, hg−1

) of the stabiliser of g. Hence the order of the stabiliser is |H ∩Kg|.
Now it is easy to find an example where double cosets have different sizes.

In S3 let H = 〈(12)〉, K = 〈(13)〉. They are distinct conjugate subgroups,
in particular H(23) = K.

Then HeK = HK = {e, (12), (13), (12)(13) = (132)}. The other double
coset here is H(23)K = {(23), (123)}.

(2) Let G be a group and let H,K ≤ G. Prove that if h1, h2 ∈ H then h1K =
h2K ⇐⇒ h1(H ∩ K) = h2(H ∩ K). Use this to prove that if H,K are
both finite then the set of products HK has cardinality |H|× |K|/|H ∩K|.

Since h−1
1 h2 ∈ H,

h1K = h2K ⇐⇒ h−1
1 h2 ∈ K ⇐⇒ h−1

1 h2 ∈ H∩K ⇐⇒ h1(H∩K) = h2(H∩K).

HK is the union of cosets of form hK for h ∈ H, and by the calculation
above there are exactly [H : H ∩K] such cosets, each of which has size |K|.

(3) Recall from class that for any group G
(a) An automorphism (AM) of G is an isomorphism from G to G.
(b) For any g ∈ G, the map h 7→ hg is an AM of G, where as usual

hg = ghg−1.
(c) N C G iff Ng = N for all g ∈ G.

A subgroup H of G is said to be characteristic iff α(H) = H for every
AM H of G (so that clearly any characteristic ssubgroup is normal). In
this case we write “H char G”.
(a) Prove that Z(G) is a characteristic subgroup of G.

This is routine. Any subgroup defined in terms of the group operation
will be characteristic for similar reasons.

(b) Give an example of a group G and a normal subgroup of G which is not
characteristic. Hint: every subgroup of an abelian group is normal.
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Let G = C2
2 where C2 is cyclic of order 2. Let N = C2 × {e}. Then

N C G but N is not fixed by the AM (a, b) 7→ (b, a).

(c) Let G be a group. Prove that if A char B and B char G then A char G,
and that if A char B and B C G then A C G.

Let A char B and B char G. If γ ∈ Aut(G) then since B char G we
have that the restriction γ � B ∈ Aut(B), so in particular since
A char B we have γ(A) = A.
Now let A char B and BCG. Let g ∈ G. Since BCG we have Bg = G,
which means that the restriction of the AM “conjugate by g” to B is
in Aut(B). Since A char B we have Ag = A.

(d) Give an example of a group G and subgroups B C G and A C B such
that A is not normal in G.

Let G = D4, the dihedral group of order 8 which can be represented
as the symmetries of a square. Let s be rotation through π/2 and let
t be reflection in a line joining opposite vertices. Then let A = {e, t}
and B = {e, t, s2, ts2}.
Note: By the following question we see A C B C G without doing any
work. Geometrically s2 is rotation through π and s2t is the other
reflection in a line joining opposite vertices. A is not normal in G
because sts−1 = ts2.
Note: we knew we needed A C B with A not characteristic in B, so
it’s not surprising that the counterexample has this form.

(4) Let G be a group and let H ≤ G with [G : H] = 2.
(a) Prove that H C G, and that if h ∈ H then the G-conjugacy class of h

is a subset of H.

There are just two cosets of H, namely H and G \H. If g ∈ H then
gH = H = Hg, otherwise gH = G \H = Hg. So H C G. The other
claim is immediate.

(b) Prove that if h ∈ H then either the G-conjugacy class of h equals the
H-conjugacy class of h or the G-conjugacy class of h is the union of
two disjoint H-conjugacy classes.

We do a more general analysis from which the required result follows
easily.
Let G and H ≤ G be arbitrary, and let G act on some set X. Let
x ∈ X and let OG

x , OH
x be its orbits under the actions of G and H. If

OG
x = OH

x then for every g ∈ G there is h ∈ H with gx = hx, so that
h−1g ∈ Gx and g ∈ HGx; arguing along these lines we see easily that
OG

x = OH
x if and only if G = HGx.

Now specialise to the case where [G : H] = 2 but the action is still
arbitrary. Since H C G, HGx ≤ G and so easily G = HGx if and only
if Gx * H. If on the other hand Gx ≤ H then (letting Hx be the
stabiliser of x in the H-action) we have Hx = Gx ∩H = Gx. In this
case the G-orbit of x is in bijection with the left cosets of Gx in G,
and under this bijection the points of the H-orbit correspond to the
left cosets of Gx in H.
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To finish we specialise even more, to the case where X = H and G is
acting on H by conjugation. We see that the stabiliser of h is CG(h),
and that the conjugacy class splits into two if and only if CG(h) ≤ H.

(5) Show that if G is a group such that a2 = e for all a ∈ G, then G is abelian.
(Trickier) Produce an example of a non-abelian group G such that a3 = e
for all a ∈ G.

(ab)2 = abab = e, so multiplying from the left by a and the right by b
we see ba = ab.

(Tricky bit) If G is finite then easily G must be a 3-group. All groups of
order p and p2 for p prime are abelian, so the smallest order that can work
is order 27.

Looking at one of the useful online lists of groups of small order, you will
find that there are two non-abelian groups of order 27. We check that one
of the them works (and will see later how you could guess that this would
be the right group and construct it for yourself).

The group is generated by elements x, y, z such that

x3 = y3 = z3 = e, xy = yx, xz = zx, zy = xyz.

Every element can easily be written in the form xiyjzk for unique i, j, k ∈
{0, 1, 2}. It is also easy to check that zayb = xabybza (move all the z’s
rightwards and all the x’s which are generated leftwards).

Since x commutes with everything (xiyjzk)3 = x3i(yjzk)3. Finally

yjzkyj(zkyj)zk = xjkyjzky2jz2k = x3jky3jz3k = e,

and we are done.

(6) Prove that if G/Z(G) is cyclic then G is abelian (so in fact Z(G) = G).
Give an example of a non-abelian group such that G/Z(G) is abelian.

Let G/Z(G) be generated by a coset aZ(G), so that every element of G
has form amz for z ∈ Z(G). Then amzanz′ = am+nzz′ = anz′amz, so that
G is abelian and in fact Z(G) = G.

Now let G be the dihedral group of order 8, that is the symmetries of
the square. The centre Z(G) consists of e and the rotation through π, and
G/Z(G) has order 4.

(7) Find Z(G) when G is the group of non-singular n× n real matrices under
matrix multiplication (and n ≥ 2).

(This is the quickest way I know. Brute force also works!)
Note that the set of matrices which commute with a fixed matrix A

is closed under addition and scalar multiplication. So A ∈ Z(G) iff A
commutes with all matrices in the span of G (considering the set of matrices
to be a real vector space of dimension n2 in the obvious way).

Now for all i, j let Di,j be the matrix with a 1 in the (i, j) position and
zeroes elsewhere. Then routinely In + Di,j ∈ G. It follows that all the Di,j

are in the span of G (so in fact all matrices are in the span).
It is now easy to check that A ∈ Z(G) iff A = λIn for some real λ.


