ALGEBRA HOMEWORK SET I

JAMES CUMMINGS

You may collaborate on this homework set, but must write up your solutions by yourself. Please contact me by email if you are puzzled by something, would like a hint or believe that you have found a typo.

- (1) Let G be a group and let $H, K \leq G$. The double cosets of H and K are the subsets of G of the form HaK where $a \in G$. Prove that the double cosets form a partition of G. Is it true in general that all the double cosets have the same cardinality? (Either prove it or give a counterexample)
- (2) Let G be a group and let $H, K \leq G$. Prove that if $h_1, h_2 \in H$ then $h_1K = h_2K \iff h_1(H \cap K) = h_2(H \cap K)$. Use this to prove that if H, K are both finite then the set of products HK has cardinality $|H| \times |K|/|H \cap K|$.
- (3) Recall from class that for any group G
 - (a) An automorphism (AM) of G is an isomorphism from G to G.
 - (b) For any $g \in G$, the map $h \mapsto h^g$ is an AM of G, where as usual $h^g = ghg^{-1}$.
 - (c) $N \triangleleft G$ iff $N^g = N$ for all $g \in G$.

A subgroup H of G is said to be *characteristic* iff $\alpha(H) = H$ for every AM H of G (so that clearly any characteristic ssubgroup is normal). In this case we write "H char G".

- (a) Prove that Z(G) is a characteristic subgroup of G.
- (b) Give an example of a group G and a normal subgroup of G which is not characteristic. Hint: every subgroup of an abelian group is normal.
- (c) Let G be a group. Prove that if $A \operatorname{char} B$ and $B \operatorname{char} G$ then $A \operatorname{char} G$, and that if $A \operatorname{char} B$ and $B \triangleleft G$ then $A \triangleleft G$.
- (d) Give an example of a group G and subgroups $B \triangleleft G$ and $A \triangleleft B$ such that A is not normal in G.
- (4) Let G be a group and let $H \leq G$ with [G:H] = 2.
 - (a) Prove that $H \triangleleft G$, and that if $h \in H$ then the G-conjugacy class of g is a subset of H.
 - (b) Prove that if $h \in H$ then *either* the *G*-conjugacy class of *h* equals the *H*-conjugacy class of *h* or the *G*-conjugacy class of *h* is the union of two disjoint *H*-conjugacy classes.
- (5) Show that if G is a group such that $a^2 = e$ for all $a \in G$, then G is abelian. (Trickier) Produce an example of a non-abelian group G such that $a^3 = e$ for all $a \in G$.
- (6) Prove that if G/Z(G) is cyclic then G is abelian (so in fact Z(G) = G). Give an example of a non-abelian group such that G/Z(G) is abelian.
- (7) Find Z(G) when G is the group of non-singular $n \times n$ real matrices under matrix multiplication (and $n \geq 2$).

1