Algebra Homework Set 6 James Cummings (jcumming@andrew.cmu.edu) April 3, 2004

1. Let F be the subfield of \mathbb{C} generated over \mathbb{Q} by the roots of $x^4 - 2$. Show that F is a Galois extension of \mathbb{Q} and that the Galois group is dihedral of order 8. Find all the subgroups of the Galois group and all the intermediate fields. Which intermediate fields are Galois extensions of \mathbb{Q} ?

(You may want to remind yourself about Eisenstein's criterion)

2. Let *E* be a field. As usual E[x] is the ring of polynomials and E(x) is the field of fractions of E[x]. Show that every element σ of $G = \Gamma(E(x)/E)$ is determined by $\sigma(x)$, and that the possible values of $\sigma(x)$ are exactly the elements of form

$$\frac{ax+b}{cx+d}$$

where $ad - bc \neq 0$.

- 3. Let G be as in the last question with $E = \mathbb{Q}$, and let H be the subgroup generated by $x \mapsto x+1$ and $x \mapsto -1/x$. Find |H| and find f such that $Fix(H) = \mathbb{Q}(f)$
- 4. Compute $\Gamma(\mathbb{R}/\mathbb{Q})$.

5. (Optional) Repeat the work of problem 1 for the polynomial $x^5 - 2$.