Algebra Homework Set 3 James Cummings (jcumming@andrew.cmu.edu) February 13, 2004

- 1. Let p and q be distinct primes. Prove that if G has order pq then it has either a normal subgroup of order p or one of order q. Conclude that G is solvable.
- 2. Find the derived subgroup of the dihedral group with 2n elements.
- 3. Let G be a nonabelian group of order p^3 where p is prime. Show that
 - (a) The centre of G has order p.
 - (b) The derived subgroup of G equals the centre of G.
 - (c) G/Z(G) is isomorphic to $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.
- 4. Let G be a simple group of order 168. What can you say about the Sylow subgroups of G and their normalisers?
- 5. Let F be a finite field with q elements (we see later that such fields exist exactly when $q = p^n$ for p prime and n > 0, and for each q there is exactly one such field up to isomorphism).
 - (a) Let $GL_2(F)$ be the group of 2×2 matrices with entries in Fand non-zero determinant, with the group operation being matrix

multiplication. Find the order of $GL_2(F)$. Hint: a matrix is in the group when its columns are non-zero and linearly independent.

- (b) Let $SL_2(F)$ be the subgroup of matrices with determinant 1. Find the order of $SL_2(F)$.
- (c) Prove that SL₂(F) is generated by the set of coordinate transvections, that is to say the matrices with ones on the diagonal and a single nonzero entry off the diagonal (actually you don't need F finite for this bit).
- 6. Let G have order pq^2 where p and q are distinct primes. Prove that G is not simple.
- 7. * Let F be the field with 5 elements, and let $PSL_2(F)$ be the quotient of $SL_2(F)$ by the normal subgroup $\{I, -I\}$. Prove that $PSL_2(F)$ is isomorphic to A_5 .
- Let G be a nonabelian group of order 8. Fill in the following outline of a (rather laborious) analysis of G.
 - (a) G has an element of order 4, which we call a.
 - (b) $Z(G) = \{e, a^2\}.$
 - (c) If $H = \langle a \rangle$ then $H \lhd G$.
 - (d) Fix $b \notin H$. Every element can be written in a unique way as $a^i b^j$ where $0 \le i < 4$ and $0 \le j < 2$. Hint: coset decomposition.
 - (e) $ab \neq ba$.
 - (f) $a^b = a^3 = a^{-1}$.

- (g) b has order 2 or order 4.
- (h) Both possibilities can occur.
- Let G be finite, let {p₁,...p_n} be the primes dividing the order of G and for each i let P_i be some Sylow p_i-subgroup. Prove that G is generated by ∪_i P_i.