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Introduction

In these notes, we develop the basic theory of iterated ultrapowers of models of set theory. The notes
are intended for a student who has taken one or two semesters of graduate-level set theory, but may have
little or no prior exposure to ultrapowers and iteration.

We shall develop the pure theory, which centers on the question of well-foundedness for the models
produced in various iteration processes. In addition, we consider two sorts of application:

(1) Large cardinal hypotheses yield regularity properties for definable sets of reals. Large cardinal
hypotheses yield that logical simple sentences are absolute between V and its generic extensions.

(2) Large cardinal hypotheses admit canonical inner models having wellorders of R which are simply
definable

Roughly, applications of type (1) involves using the large cardinal hypotheses to construct complicated
iterations. Applications of type (2) involves bounding the complexity of the iterations one can produce
under a given large cardinal hypothesis.

The notes are organized as follows. In lecture 1, we develop the basic theory of ultrapower Ult(M,U),
where M is a transitive model of ZFC and U is an ultrafilter over M . In lecture 2, we develop the pure theory
of iterations of such ultrapowers, and present some applications of type (1). Lecture 3 concerns applications
of type (2). In lecture 4 we develop the basic theory of ultrapower Ult(M,E), where M is as before, but E
is now a system of ultrafilters over M known as an “extender”. Lecture 5 concerns linear iteration of such
extender-ultrapowers, and its applications of type (1) and (2).

In lecture 6, we move from linear iteration to iteration trees, and develop the pure theory of this more
general iteration process. This theory is far from complete; indeed, it contains one of the most important
question in pure large cardinal theory, the Unique Branches Hypothesis (UBH) for countably closed iteration
tree on V . We shall discuss UBH, and its role.

In lecture 7, we present some applications of iteration trees in proofs of generic absoluteness and Lebesgue
measurability. Those involves Woodin’s “extender algebra”, and the corresponding “genericity iterations”.

Finally, we outline in lecture 8 how iteration trees contribute to the theory of canonical inner models
with Woodin cardinals.
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LECTURE 1

Measures and Embeddings

For this standard material, see for example [[2], Chapter 17].

Let M � ZFC− be transitive, and
j : M → N

be elementary. Let κ = crit(j) = least α such that j(α) ̸= α. We suppose κ ∈ wfp(N), the well-founded part
of N . (Here and later, we assume all well-founded parts have been transitivized. ) For A ⊂ κ, A ∈M , put

A ∈ Uj iff κ ∈ j(A).

Then

(1) Uj is a nonprincipal ultrafilter on P(κ)M ;
(2) Uj is M κ-complete: if ⟨Aα|α < β⟩ ∈M , and β < κ, and each Aα ∈ Uj , then

∩
α<β Aα ∈ Uj ;

(3) Uj is M normal: if f : κ→ κ and f ∈M , and f(α) ∈ α for Uj almost every α, then ∃β < κ(f(α) =
β) for Uj a.e. α;

(4) P(κ)M ⊆ P(κ)N . Moreover, P(κ)M = P(κ)N iff Uj is M -amenable: whenever f : κ → P(κ) and
f ∈M , then {α < κ | f(α) ∈ Uj} ∈M .

Remark. M = V is an interesting special case. Then Uj ∈M , so it is certainly amenable. κ is a measurable
cardinal in this case.

Exercise 1. Prove (1)-(4) above.

Definition 1.1. An M-ultrafilter on κ is an M -amenable nonprinciple ultrafilter on P(κ)M .
An M -normal, M -ultrafilter on κ is called an M-nuf on κ.

Conversely, suppose M � ZFC− is transitive, and U is a non-principal ultrafilter on P(κ)M . We can,
using functions in M , form an ultrapower:

f ∼ g iff {α | f(α) = g(α)} ∈ Uj

let [f ] = {g | g ∼ f}, then
[f ]∈̃[g] iff {α | f(α) ∈ g(α)} ∈ U.

We set
Ult(M,U) = ({[f ] | f ∈M} ,∈),

where once again, we assume the well-founded part is transitivized. We then have:

(1)  Loś Theorem: for any f0, · · · , fn and φ(v0, · · · , vn),

Ult(M,U) � φ[[f0], · · · , [fn]] iff for U a.e. α, M � φ[f0(α), · · · , fn(α)].

(2) iMU : M → Ult(M,U) is elementary, where

iMU (x) = [λα.x]

the equivalent class of constantly x function.
(3) If U is M -κ-complete, then κ = crit(iMU ), (In general, the critical point is the M -completeness of

U .)
(4) Letting id : κ→ κ be the identity function, then

[f ] = iMU (f)([id])

for any f . (Apply Los to see this.) Also for A ∈ P(κ)M :

A ∈ U iff [id] ∈ iMU (A).
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Measures and Embeddings

Thus Ult(M,U) =
{
iMU (f)([id]) | f ∈M

}
=Skolem closure of ran(iMU ) ∪ {[id]} inside Ult(M,U).

(5) If U is M-normal, then
[id] = κ.

Thus
[f ] = iMU (f)(κ),

and
A ∈ U iff κ ∈ iMU (a),

and

Ult(M,U) =
{
iMU (f)(κ) | f ∈M

}
= Skolem closure of ran(iMU ) ∪ {κ} in Ult(M,U).

From (4) above, we easily get
(6) Let U be an M -ultrafilter on κ, and ⟨fα | α < κ⟩ ∈M , where dom(fα) = κ for all α. Then

⟨[fα] | α < κ⟩ ∈ Ult(M,U).

Proof. ⟨[fα] | α < κ⟩ = ⟨iMU (fα)([id]) | α < κ⟩. But

⟨iMU (fα) | α < κ⟩ = iMU (⟨fα | α < κ⟩) ↾ κ ∈ Ult(M,U).

So Ult(M,U) can compute ⟨[fα] | α < κ⟩ from [id] and ⟨iMU (fα) | α < κ⟩. �
Exercise 2. Prove (1)-(5) above.

Part (5) says that U = UiMU
, that is, U is derived from its own ultrapower embedding. In general, Uj captures

only part of the information in j. The relationship is given by the following lemma.

Lemma 1.2. Let M � ZFC− be transitive, and j : M → N be elementary, with κ = crit(j) and κ ∈ wfp(N).
Then we have the commutative diagram

M
j //

i ((QQQQQQQQQQQQQQ N

Ult(M,Uj)

k

OO

where i = iMUj
, and k([f ]) = k(i(f)(κ)) =df j(f)(κ). Moreover,

(a) k ↾ P(κ)Ult = id and k ↾ (κ+)Ult = id,
(b) if P(κ)M = P(κ)N , then k ↾ P(P(κ))Ult = id and k ↾ (κ++)Ult = id.

Exercise 3. Prove Lemma 1.2.

So it follows that Ult(M,Uj) is isomorphic to HullN (ran(j) ∪ {κ}), via κ.
It is often important to take ultrapowers of models of less than full ZFC−. In this case, we only get

restricted forms of Los’ Theorem. For example:

Exercise 4. Let M be transitive, rudimentarily closed, and M � AC. (A paradigm case is M = Lλ, for
some limit λ.) Let U be an ultrafilter on P(κ)M . Then

(a) Ult(M,U) is well defined,
(b)  Loś’ Theorem holds for Σ0 formulae,
(c) iMU : M → Ult(M,U) is Σ1-elementary.

We turn now to the issue of the well-foundness of the ”target model” for our embeddings. We are
generally only able to use well-founded models, so this is a crucial issue. We want to stay in the realm of
well-founded models!

Note first that if j : M → N where N is well-founded, then Ult(M,Uj) is well-founded, since it embeds
into N .

A sufficient condition that Ult(M,U) be well-founded is given by

Definition 1.3. Let U be an ultrafilter on P(κ)M . Then U is ω1-complete iff whenever An ∈ U for all
n < ω, then

∩
n<ω An ̸= ∅.

2



Measures and Embeddings

(There is no requirement that ⟨An | n < ω⟩ ∈M , which is why we do not demand
∩

n<ω An ∈ U .)

Lemma 1.4. Let M be transitive, rudimentarily closed, and U be an ω-complete ultrafilter on P(κ)M . Then
Ult(M,U) is well-founded.

Proof. Suppose [fn+1]∈̃[fn] for all n. Set

α ∈ An ⇐⇒ fn+1(α) ∈ fn(α).

Then
∩

n<ω An = ∅.( Since any element α in this intersection will produce a infinite descending ∈-sequence
in M :

f0(α) ∋ f1(α) ∋ f2(α) ∋ · · · ∋ fn(α) ∋ · · · .
�

Corollary 1.5. Let M be an transitive, rudimentarily closed, and closed under ω-sequences. Let U be an
M -κ-complete ultrafilter on P(κ)M . Then Ult(M,U) is well-founded.

Proof. If ⟨An | n < ω⟩ is a counterexample to the well-foundedness, then ⟨An | n < ω⟩ ∈ M by the
closure of M under ω-sequences. This would then imply U is not M -κ-complete. �

Remark. Thus Ult(V,U) is well founded, and more generally, Ult(M,U) is well-founded when U ∈M , and
M � ZFC.

Exercise 5. Let U be an ultrafilter on P(κ)V . Then Ult(V,U) is well-founded iff U is ω-complete.

ω-completeness is only a sufficient condition for the well-foundedness of Ult(M,U). For if M is itself
countable, and U is an ultrafilter on P(κ)M which is non-principal, then U is not ω-complete. But now take
any transitive N � ZFC and ultrafilter W on P(κ)N such that Ult(N,W ) is well-founded. Let

π : H → Vθ.

where

π((M,U)) = (N,W )

and H is countable transitive. Then π restricts to π : Ult(M,U) → Ult(N,W ), so Ult(M,U) is well-founded.
But M is countable, so U is not ω-complete.

We conclude this section with a few more basic facts.

Proposition 1.6. Let U be an M -ultrafilter on κ, then

U ̸∈ Ult(M,U).

Proof. Let i = iMU , and note that Ult(M,U) � i(κ) is stronly inaccessible. If U ∈ Ult(M,U), then the
map

f 7→ [f ]U (f ∈ κκ)

is in Ult(M,U), and mps κκ onto i(κ), contrary to inaccessibility. �

Exercise 6. Let κ be strongly inaccessible. Show any stationary S ⊆ κ can be partitioned into κ-many
pairwise disjoint stationary sets.

[Hint: Otherwise, we get a stationary T ⊆ S such that if U is the club filter on T , then U is a V -ultrafilter
on κ. Now show U ∈ Ult(V,U). ]

Proposition 1.7. Let U be a V -nuf on κ, and i = iVM . Then

(a) 2κ < i(κ) < (2κ)+;
(b) if cof(α) ̸= κ, then i(α) = supβ<α i(β);
(c) if cof(α) ̸= κ and ∀β < α(βκ < α), then i(α) = α.

Proof. For (a), note 2κ ≤ (2κ)Ult(V,U) < i(κ), because P(κ) ⊆ Ult(V,U), and i(κ) is inaccessible there,
But f → [f ]U (f ∈ κκ) shows |i(κ)| ≤ 2κ.

For (b), if [f ] < i(α), then f(ν) < α for U a.e. ν. So [f ] < i(β).
(c) is also easy. �
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Measures and Embeddings

Exercise 7. Prove Rowbottom’s Theorem: Let U be a M -nuf on κ, where M � ZFC is transitive. (M
rudimentarily closed sufficient. ) Let f : [f ]n → γ, with γ < κ, and f ∈ M . Then there is an A ∈ U such
that f is constant on [A]n.

[Hint: The proof is by induction on n. You need to prove a little more than what is stated, to cope with
the possibility that U ∈M .]
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LECTURE 2

Iterated Ultrapowers

Let M � ZFC− be transitive, and suppose

M � E is a set of normal ultrafilters.

For any U ∈ E , we can form M1 = Ult(M,U), with iMU : M → M1 elementary. We can then take any

W ∈ iME (E) and form Ult(M1,W ) = M2, with iM1

W : M1 →M2 elementary. (That is, we can do so if M1 was
well-founded. It would make perfect sense for ill-founded M1, as well, but formally speaking, we have not
consider that case.) In this way, we produce

M = M0 →M1 →M2 → · · · →Mα →Mα+1 → · · ·

where we continue at limit steps by taking Mλ to be the direct limit of the Mα for α < λ.

Definition 2.1. Let M be transitive, and M � ZFC− + “E is a set of nufs”. A linear iteration of (M, E)
is a sequence I = ⟨Uα | α < β⟩ such that there are (unique) transitive Mα, α < β, and iαγ : Mα → Mγ for
α ≤ γ < β, with

(1) M0 = M ;
(2) Uα ∈ i0α(E) for α < β;
(3) if α+ 1 < β, then

Mα+1 = Ult(Mα, Uα),

iα,α+1 = iMα

Uα
, and

iξ,α+1 = iα,α+1 ◦ iξ,α for ξ < α.

(4) if λ < β is a limit,

Mλ = direct limit of Mα, α < λ, under iαγ ’s

iαλ = direct limit map, for α < λ.

If I is a linear iteration of (M, E), we write U I
α, M I

α, iIαγ for the associate ultrafilters , models, and
embeddings. There is a unique ”last model” associated to I:

M I
∞ = direct limit of M I

α, for α < lh(I), if lh(I) is a limit.

M I
∞ = Ult(M I

α, U
I
α),s if α+ 1 = lh(I).

We let IIα,∞ : M I
α →M I

∞ be the canonical embedding, for α < lh(I). Unlike the M I
α, M I

∞ may be ill-founded.

Definition 2.2. Let M � ZFC− + “E is a set of nufs”, M transitive. We say (M, E) is linearly iterable
iff for every linear iteration I of (M, E), M I

∞ is well-founded.

Just as it sufficed for well-foundedness of single ultrapower, ω-completeness suffices for linear iterability.

Theorem 2.3. Let M � ZFC−+“E is a set of nufs”, with M transitive. Suppose every U ∈ E is ω-complete
(in V ). Then (M, E) is linearly iterable.
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Iterated Ultrapowers

Remark. Suppose U is a nuf on κ, and set M0 = V , and Mn+1 = Ult(Mn, U) for all n. (By induction,
P(κ)Mn = P(κ), so this make sense.) Then the direct limit of Mn is ill-founded, as the picture shows:

| i0∞(κ)88pppppppppppppppp i1∞(κ)88pppppppppppppppp

88pppppppppppppppp i2∞(κ)

��
κ

77ooooooooooooooo
κ

77ooooooooooooooo
κ

77ooooooooooooooo
κ

M0 M1 M2 M3 · · · limnMn

The moral is that in a legitimate iteration, you can’t just pull the next ultrafilter out of your hat! It has to
come form the last model.

The proof of Theorem 2.3 will rely on some lemmas of independent interest. Let us call (M, E) s.t.
M � ZFC− + “E is a set of nufs”, and M transitive, a good pair. We say (M, E) is α-linearly iterable
iff whenever I is a linear iteration of (M, E) and lh(I) < α, then M I

∞ is well-founded.

Lemma 2.4. Let (M, E) be a good pair which is α-linearly iterable. Let π : N → M elementary, with
π(F) = E. Then (N,F) is α-linearly iterable.

Proof. Let I be an iteration of (N,F) with lh(I) < α. We can complete the diagram

M0
// M1

// Mξ // MJ
∞

N0
//

π0

OO

N1
//

π1

OO

Nξ //

πξ

OO

N I
∞

π∞

OO

Here M0 = M , N = N0, π0 = π, and Uξ = πξ(U I
ξ ) give us J .We get πξ+1 by setting

πξ+1([f ]UI
ξ
) = [πξ(f)]UJ

ξ
,

and πλ a limit because the diagram commutes. Since M∞ is well founded, and N I
∞ embeds into it, N I

∞ is
well-founded. �

Failures of iterability reflect into the countable:

Lemma 2.5. Let (M, E) be a good pair. Equivalent are:

(1) (M, E) is linearly iterabbble;
(2) whenever π : N →M with N countable and π(F) = E, then (N,F) is ω1-linearly iterable.

Proof. Lemma 2.4 gives (1)→(2). Now assume (1) fails, and let I be an iteration of (M, E) such that
M I

∞ is ill-founded. Let σ : H → Vθ with H countable transitive, θ large, and σ((N,F)) = (M, E), and
σ(J) = I. Then

H � J is an iteration of (N,F) with MJ
∞ ill-founded.

But the right hand side is absolute for well-founded models, so as lh(J) < ω1, (N,F) is not ω1-linearly
iterable. But setting π = σ ↾ N , this shows (2) fails. �

The following lemma is the beg to our proof of Theorem 2.3. It is due to Jensen.

Lemma 2.6. Let M � ZFC− + “U is a nuf on κ”, with M transitive. Equivalent are:

6
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(1) U is ω-complete;
(2) whenever π : N →M is elementary, with N countable and π(W ) = U , then there is a σ such that

M

N
iNW

//

π

OO

Ult(N,W )

σ

hhQQQQQQQQQQQQQQ

commutes.

Proof. (1)→ (2). Let π : N → M with π(W ) = U . Pick a “typical object” for ran(π), that is α such
that

α ∈
∩

A∈W

π(A).

This we can do because U is ω-complete. Now set

σ([f ]NM ) = π(f)(α).

�

Exercise 8. Show σ is well defined, elementary, and π = σ ◦ iNW .

Exercise 9. Prove (2) → (1).

The map σ in (2) of Lemma 2.6 is called “π-realization” of Ult(N,W ). The Lemma 2.6 says that if U
is ω-complete, then countable fragment of Ult(M,U) can be “realized” back in M .

Proof of Theorem 2.3. Let (M, E) be a good pair, and every U ∈ E be ω-complete. Suppose (M, E)
is not linearly iterable. Let, by Lemma 2.5, π : N →M with N countable, and π(F) = E , and I a countable
iteration of (N,F) such that M I

∞ is ill-founded. Repeatedly using Lemma 2.6,we get

M

N

π0

OO

// N1
//

π1

YY2222222222222

N2
//

π2

bbEEEEEEEEEEEEEEEEEE
· · · // M I

∞

π∞

iiRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR

(πλ for λ limit comes from the commutativity of the diagram.) Since M is well-founded, so is M I
∞, a

contradiction. �

Corollary 2.7 (ZFC). If E is a set of nufs, then (V, E) is linearly iterable.

Corollary 2.8. Let M � ZFC + “E is a family of nufs”, with M transitive, and ω1 ∈ M . Then (M, E) is
linearly iterable.

Proof Sketch. Working inside M , where Corollary 2.7 holds, construct a “universal” linear iteration
I = ⟨Uα | α < λ⟩ with (a) cof(λ) = ω, and (b) whenever W ∈ i0α(E), then iαβ(W ) = Uβ for cofinally many
β. This implies that every W ∈ i0∞(E) is ω-complete. Thus (M I

∞, i0∞(E)) is linearly iterable in V . Since
i0∞ : M →M I

∞, (M, E) is linearly iterable in V . �

Exercise 10. Prove that every W ∈ i∞(E) is ω-complete, granted (a) and (b).

Exercise 11. Where is M � ZFC (rather than just M � ZFC−) used in the proof of Corollary 2.8?
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Some Applications

A. Regularity properties of definable sets of reals.

Theorem 2.9 (Gaifman, Rowbottom). If there is a measurable cardinal, then for all reals x, ω
L[x]
1 is

countable.

Proof. Let U be a nuf on κ. Clearly, there is an M such that (M, {U}) is a good pair. By Theorem
2.3, (M, {U}) is iterable. Now let x ∈ R, and let π : N → M be elementary, with N countable transitive,
x ∈ N , and π(W ) = U . So (N, {W}) is a good pair, and iterable. Let

α = (ω
L[x]
1 )N .

It is enough to see α = ω
L[x]
1 . But let I be the unique linear iteration of N of length ω1, and i : N → N I

∞
the canonical embedding. Then

α = i(α) = (ωL
1 [x])N

I
∞ .

Since ω1 ⊆ N I
∞, this implies α = ω

L[x]
1 . �

Theorem 2.10 (Solovay). If there is a measurable cardinal, then all Σ1
2˜ sets of reals are Lebesgue measurable,

have the Baire Property, and have the Perfect Set Property.

Proof. See [[2], ]. The proof uses Theorem 2.9. �

Determinacy is the fundamental regularity property, and we have

Theorem 2.11 (Martin). If there is a measurable cardinal, then all Π1
1˜ games are determined.

A proof using iterated ultrapowers can be given, but we shall not go that far a field now.

B. Correctness and Generic Absolutness.

Theorem 2.12. Let (M, {U}) be a good pair which is linearly iterable; Then

(HCM ,∈) ≺Σ1 (HC,∈).

Proof. Here HC = {x | |TC(x)| < ω1} is the class of hereditarily countable sets. Σ1-over-HC is
equivalent to Σ1

3.
Let I be the unique iteration of M of length ω1. Then

HCM = HCMI
∞ ≺Σ1 HC,

using ω1 ⊂M I
∞ and Shoenfield absoluteness. �

Theorem 2.13 (Martin, Solovay). Let κ be measurable, and G be P-generic for some P with |P| < κ. Then

(HC,∈)V ≺Σ2 (HC,∈)V [G].

Proof. By Tarski-Vaught, it is enough to see that if x ∈ HCV , and

p
P

(HC,∈) � φ[x̌, τ ].

where φ is Π1, then for some y ∈ V , (HC,∈)V � φ[x, y]. But by Löwenheim-Skolem, we can get an iterable
good pair (N, {U}) such that N is countable, and ( for q, Q, σ the collapses of p, P, τ )

N � (q
Q

(HC,∈) � φ[x̌, σ]).

Let i : N → N I
∞ be an iteration map, with ω1 ⊆ N I

∞. We may assume N � “Vx exists”, and Q ∈ V N
α , where

α < κ. It follows that V N
α = V

NI
∞

α is countable, and hence there is in V a Q-generic g over N I
∞ such that

q ∈ g. Note here that i(⟨q,Q, σ⟩) = ⟨q,Q, σ⟩. Thus (HC,∈)N
I
∞[g] � φ[x̌, σg]. Since φ is Π1 and ω1 ⊆ N I

∞,
Shoenfield absoluteness implies (HC,∈)V � φ[x̌, σg]. So σg is the desired y. �

We conclude this section with exercises on two basic features of linear iteration.
What is the analog of Ult(M,U) =

{
iMU (f)(κ) | f ∈M

}
, for κ = crit(U)? We can generate M I

∞ from

ran(iI0,∞) together with all the critical points, as follows:

8
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Exercise 12. Let I = ⟨Uα | α < β⟩ be a linear iteration of M , with κα = crit(Uα), and set C =
{iα+1,∞(κα) | α < β}. (Note the “α+ 1” here! ) Then

M I
∞ =

{
i0,∞(f)(a) | a ∈ C<ω

}
.

Picture:

⊗

⊗

77nnnnnnnnnnnnnnnn ⊗ iα+1,∞(κα) ∈ C
xx

κα

77nnnnnnnnnnnnnnn κα

77nnnnnnnnnnnnnn

Mα
// Mα+1

// M I
∞

Notice that every γ ∈ C comes from a unique stage in I, in fact, γ = iα+1,∞(κα) for α least such that
γ ∈ ran(iα+1,∞). (Simply because κα ̸∈ ran(Iα,α+1). ) Ordinals in C “belonging to the same measure” are
indiscernible, in the following sense:

Exercise 13. Let I = ⟨Uα | α < β⟩ be a linear iteration of M , and κα = crit(Uα). For U ∈M , put

Cu = {iα+1,∞(κα) | Uα = i0α(U)} .
Let γ0 < · · · < γn−1 and δ0 < · · · < δn−1 with each γi, δi ∈ CU . Let t ∈ ran(iI0,∞). Then

M I
∞ � φ[γ0, · · · , γn−1, t] ⇐⇒M I

∞ � φ[δ0, · · · , δn−1, t]

for all wff φ(v0, · · · , vn−1).

[Hint: Let γi = iαi+1,∞(καi). Let J be the iteration of M of length n where you just hit U and its
images. Consider the diagram

M I
0

// M I
α0

// Mα0+1
// Mα1

// Mα1+1
// · · · // M I

∞

MJ
0

//

OO =={{{{{{{{
MJ

1
//

;;wwwwwwwww

55kkkkkkkkkkkkkkkkkkk
MJ

2
//

55kkkkkkkkkkkkkkkkkk · · · // MJ
n

66mmmmmmmmmmmmmmmm

Make sense of the diagram, and use it to show that if vi = crit(UJ
i ) for i < n, thenM I

∞ � φ[γ0, · · · , γn−1, i0∞(U)]
iff MJ

n � φ[ν0, · · · , νn−1, i0n(U)]. Since a similar equivalence for the δi’s, we’re done.]
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LECTURE 3

Canonical Inner Models and Comparison

?? Some of the main applications of iterated ultrapowers lie in inner model theory.
We begin with models constructed from coherent sequences of normal ultrafilters. ([3]) Roughly speaking,

a “coherent sequence” is one in which the nufs occur in order of strength, without leaving gaps. The strength
order is the “Mitchell order” ▹, where for U and W nufs,

U ▹W iff U ∈ Ult(V,W ).

Clearly, U ▹ W → crit(U) ≤ crit(W ), and crit(U) < crit(W ) → U ▹ W . Thus the interesting case is when
crit(U) = crit(W ). By Proposition 1.6, U ̸▹ U . In fact,

Lemma 3.1. ▹ is well-founded.

Proof. Let U ▹W and crit(U) = crit(W ) = κ. Then

iVU (κ) = i
Ult(V,W )
U (κ) < iVW (κ).

The first equality holds because V and Ult(V,W ) have the same f : κ → κ. The inequality holds because
iVW (κ) is inaccessible in Ult(V,W ).

So the map U 7→ iVU (κ) maps {U | crit(U) = κ} into the ordinals, witness ▹ is well-founded. �

The argument actually shows ▹↾ {U | crit(U) = κ} has rank < (2κ)κ

It is consistent that ▹ is not linear, in fact, there can be 2(2
κ) nufs on κ which are ▹-minimal. ([Kunen-

Pairs,??]) But in the canonical inner models, ▹ is linear.

Definition 3.2. A coherent sequence of nufs is a function U such that dom(U) ⊆ Ord × Ord, and

(1) (κ, β) ∈ dom(U) =⇒ U(κ, β) is a nuf on κ;
(2) (κ, β) ∈ dom(U) ∧ γ < β =⇒ (κ, γ) ∈ dom(U),
(3) Letting oU (κ) = sup {β | (κ, β) ∈ dom(U)}, and i : V → Ult(V,U(κ, β)), we have

oi(U)(κ) = β,

and

i(U)(κ, γ) = U(κ, γ), for all γ < β.

Remark. Let’s write U ↾ (κ, γ) for U ↾ {(α, τ) | α < κ or (α = κ ∧ τ < γ)}. Condition (3) can then be
expressed

iVU(κ,β)(U) ↾ (κ, β + 1) = U ↾ (κ, β).

Picture:
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Canonical Inner Models and Comparison

α oU (α)

κ •
γ

•
β oU (κ)

α

κ •
γ

•
β β = oUlt(κ)

V Ult(V,U(κ, β)
j

i(U)(α, γ) =

{
U(α, γ), if α < κ, or α = κ ∧ γ < β;

undefined, if α = κ ∧ γ ≥ β

For U a coherent segment of nufs, we set

L[U ] = L[A],

where
A = {(β, γ,X) | X ∈ U(β, γ)} .

This gives us that L[U ] = ZFC+ “V = L[U ]”, and U(α, β)∩L[U ] ∈ L[U ] for all (β, γ) in dom(U). It follows
that

L[U ] � U(β, γ) is a nuf on β

for all (β, γ) ∈ dom(U), where on the right we write “U(β, γ)” for “U(β, γ) ∩ L[U ]”, as we shall do when
context makes the meaning clear.

It is still open (almost 40 years after [3]) whether

L[U ] � U is a coherent sequence of nufs.

(Later developments reduced the importance of this question.) The problem is that ultrapowers computed
in L[U ] may diverge too much from those computed in V . However, [3] did show

Theorem 3.3. Suppose there is an elementary j : V → M with crit(j) = κ and Vκ+2 ⊆ M . Then there is
a coherent segment U of nufs such that

L[U ] � U is coherent ∧ ∃α(oU (α) = α++).

Proof Sketch. Let κ, j and M be as in the hypothesis. We define a “maximal coherent sequence
below o(α) = α++ as follows.

Suppose we have defined U ↾ (α, β), where α < κ, so that L[U ↾ (α, β)] � U ↾ (α, β) is coherent.
If o(α) = α++ holds in L[U ↾ (α, β)], we have the desired U , and we stop the construction. So suppose
o(α) < α++ in L[U ↾ (α, β)]. Now pick a nuf W on α such that

L[U ↾ (α, β)S⟨W ⟩] � U ↾ (α, β)S⟨W ⟩ is coherent.

and set
U(α, β) = W,

if there is such a W . (AC is used here.) If there is no such W , we set oU (α) = β, and go on to defining
U(α′, 0) for some α′ > α.

12



Canonical Inner Models and Comparison

This defines our U , with dom(U) ⊆ κ× κ. It is enough to see
Claim. The construction reaches some (α, β) ∈ κ× κ such that L[U ↾ (α, β)] � oU (α) = β = α++.

Proof. Suppose not. Now work in M , where j(U) is a maximal sequence below j(κ). Let β = oj(U)(κ),
and let

W = Uj = {A ⊆ κ | κ ∈ j(A)} .
It is enough to show

(∗) L[j(U) ↾ (κ, β)S⟨W ⟩] � j(U) ↾ (κ, β)S⟨W ⟩ is coherent,

for then j(U) is not maximal in M . Note here the crucial fact: W ∈ Vκ+2, so W ∈M ! This is where we use
the strength of j.

To prove (∗), we consider the diagram

L[j(U) ↾ (κ, β)]
j

//

i

''OOOOOOOOOOOOOOOOOOOOOOOOO
L[j(j(U) ↾ (κ, β))]

Ult(L[j(U) ↾ (κ, β)], Uj)

k

OO

�
Exercise 14.

(a) Give precise definitions of i and k;
(b) Show j(U) ↾ (j(κ), 0) = j(j(U)) ↾ (j(κ), 0);
(c) Show k ↾ (β + 1) = identity;
(d) Prove (∗).

This complete our sketch of the proof of Theorem 3.3. �

Thus, granted large cardinals in V , there are inner models L[U ] such that L[U ] � U is coherent., and
L[U ] � “There are many measurable cardinals”. We now show such models are canonical, for example, every
real number in such a model is ordinal definable in simple way.

Definition 3.4. A measures-premouse is a pair (M,U) such that

M � ZFC− + “U is a coherent sequence of nufs” + “V = L[U ].

A measures-mouse is a linearly iterable measures premouse.

Notice that a measures-premouse is a good pair, after we forget the order on U . So linear iterability
for it makes sense, and our earlier results apply. If I is an iteration of M = (M,U), then we write MI

α =
(M I

α, i
I
0α(U)) and MI

∞ = (M I
∞, i

I
0∞(U)).

Definition 3.5. Let M = (M,U) and N = (N,W) be measures-premouse. We say that M is an initial
segment of N, and write M E N, iff for all κ ∈M ,

(a) oU (κ) = oW(κ), and
(b) U(κ, β) = W(κ, β) ∩M for all β < oU (κ),

(c) OrdM ≤ OrdN

Remark. Let AU = {(β, γ,X) | X ∈ U(β, γ)}, and similiarly for AW . So M = Lα[AU ] for some α. Clauses

(a)-(c) say tht α ≤ OrdN, and

(Lα[AU ],∈, AU ) = (Lα[AW ],∈, AW ∩ Lα[AW ]).

The key to inner model theory at any level is a comparison process, a method by which two mice can
be simultaneously iterated so that an iteration of one is an initial segment of an iteration of the other. At
the level of measures-mice, linear iteration suffices for comparison, and we get

Lemma 3.6 (Comparison Lemma for Measures-Mice). Let M and N be measures-mice which are sets; Then
there are linear iteration I and J such that MI

∞ E NJ
∞ or NJ

∞ E MI
∞.
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Canonical Inner Models and Comparison

Remark. There is a version of Lemma 3.6 which holds for proper class M, N. Then I and J might be a
proper class.

Proof. We define initial segment Iν and Jν of I and J , by induction on ν. Set I0 = ∅ = J0. Let

MIν
∞ = (P,H)

and
NJν

∞ = (Q,L)

be the two last models, where at stage ν = 0 we set MI0 = M and NI0 = N. We may assume (P,H) ̸E (Q,L)
and (Q,L) ̸E (P,H), and otherwise we can set I = Iν and J = Jν , and our comparison has succeeded.

We now obtain Iν+1 and Jν+1 by iterating away the least disagreement between (P,H) and (Q,L).
Namely, let (κ, β) be lexicographically least such that either

(a) (κ, β) ∈ dom(H) △ dom(L),
or

(b) (κ, β) ∈ dom(H) ∩ dom(L), and H(κ, β) ∩ P ∩Q ̸= L(κ, β) ∩ P ∩Q.

If (b) holds, then we set

Iν+1 = IνS⟨H(κ, β)⟩,
Jν+1 = JνS⟨L(κ, β)⟩.

If (a) holds, and (κ, β) ∈ dom(H), we set

Iν+1 = IνS⟨H(κ, β)⟩,
Jν+1 = Jν .

If (a) holds, and (κ, β) ∈ dom(L), we set

Iν+1 = Iν ,

Jν+1 = JνS⟨L(κ, β)⟩.
This defines Iν+1 and Jν+1. For λ a limit, we let Iλ =

∪
ν<λ and Jλ =

∪
ν<λ Jν .

It is enough to show our process terminate. In fact

Claim. For some ν < max(|TC(M)|, |TC(N)|)+, MIν
∞ E NJν

∞ or NJν
∞ E MIν

∞.

proof of the claim. Let θ = max(|TC(M)|, |TC(N)|)+. It is easy to see θ = dom(Iθ) = dom(Jθ).
Let us write Mα, iαβ for the models and embeddings of Iθ, and Nα and jαβ for those of Jθ. Now let

π : S → Vγ ,

where γ >> θ, S is transitive, |S| < θ, everything relevant is in ran(π). We can arrange that for some α < θ,

π(α) = θ,

and
π ↾ α = id.

Moreover π ↾ TC(M) ∪ TC(N) ∪ {M,N} = id. It is easy to see then from the absoluteness of our process
that

π−1(Iθ) = Iα,

and
π−1(Jθ) = Jα.

Subclaim. π ↾Mα = iα,∞ and π ↾ Nα = jα,∞

proof of the subclaim. Note Mα = M Iα
∞ = π−(M Iθ

∞ ), and for all β < α, iαβ = π−1(iβ,∞). So if
x ∈Mα, let x = iβα(x̄) where β < α, and then

π(x) = π(iβα(x̄))

= π(iβα)(x̄)

= iβ∞(x̄)

= iα,∞(x)
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Canonical Inner Models and Comparison

The same proof shows that π ↾ Nα = jα,∞. �
So we have α = crit(π) = crit(iα,∞) = crit(jα,∞). Now notice the critical points used in Iθ are strictly

increasing, and therefore
α = crit(iα,α+1) < crit(iα+1,∞).

Similarly,
α = crit(jα,α+1) < crit(jα+1,∞).

This is the crucial use of coherence! By coherence, Mα+1 and Nα+1 agree on all measures with crit ≤ α,
and this agreement will never be disturbed later.

Exercise 15. Provide the details here.

So we had a diagreement of type (b) at α. Let U andW be the disagreeing ultrafilters, i.e. Iα+1 = IαS⟨U⟩
and Jα+1 = JαS⟨W ⟩. We must have a set A ⊆ α such that A ∈Mα ∩Nα and A ∈ U △W . Say A ∈ U and
A ̸∈W , then

α ∈ iα,α+1(A) = iMα

U (A),

and
α ̸∈ jα,α+1(A) = iNα

W (A).

So
α ∈ iα,∞(A),

and
α ̸∈ jα,∞(A),

because neither iα+1,∞ nor jα+1,∞ moves α. Since iα,∞(A) = π(A) = jα,∞(A), we have a contradiction.

This finish the proof of the Claim. �
This finish the proof of Lemma 3.6. �

It is easy to see that linear iterability is π1-definable in the language of set theory. So we get:

Theorem 3.7. Auusme V = L[U ], where U is a coherent sequence of nufs. Then CH holds and R admits
a ∆HC

2 well-order.

Proof. Let <U be “the” order of construction in L[U ]. (It’s unique up to how we order the formulae.
Fix one recursive ordering of formulae.) Then for x, y ∈ R
(∗) x <U y iff ∃(M,W) ∈ HC((M,W) is a measures-premouse ∧ (M,W) is ω1-iterable ∧M � x <W y.)

The (=⇒) direction comes from Löwenheim-Skolem: if x <U y, we have some α such that

(Lα[U ],∈,U) � ZFC− + x <U y,

and then we can take (M,U) to be the transitive collapse of a countable elementary submodel of (Lα[U ],∈,U).
For the (⇐=) direction of (∗), suppose (M,W) is as on the right hand side, but y ≤U x. Let (Lα[U ],∈,U) �
y ≤U x. Now bt Lemma 3.6, we can compare M = (M,W ) with N = (N,U). The comparison maps do not
move x and y, since they are reals. This is a contradiction.

The same proof shows that the order-type of <U↾ R is ω1, so CH holds. �
Exercise 16. (a) Provide the details of the proof that M and N cannot be compared.

(b) Provide the details of the proof that CH holds in L[U ].

Exercise 17. Assume V = L[U ], where U is a coherent sequence of nufs.

(a) Show that 2α = α+, except possibly when ∃κ(κ < α ∧ α+ ≤ oU (κ)).
(b) Show that if oU(κ) ≤ κ++ for all κ, then GCH holds.
(c) Show that oU (κ) ≤ κ++ for all κ.
(d) (Harder) Show that GCH holds. (The hard case is 2α = α+ when α = κ+ and oU (κ) = κ++.)

The proof of Theorem 2.13 also shows that every real in a measure-mouse is ordinal definable in a simply
way:

Exercise 18. Let x ∈ R∩M , where (M,U) is a measure-mouse. Show that x is ∆HC
2 ({α}), for some α < ω1.
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Canonical Inner Models and Comparison

As corollaries to Theorem 3.7 and its proof, we get limitations on the consequences of (many) measurable
cardinals we draw in Lecture 2. For example

Corollary 3.8. Suppose ∃j : V →M(crit(j) = κ∧Vκ+2 ⊆M). Then there is a model of ZFC+ ∃α(o(α) =
α++) in which not all ∆HC

2 sets are Lebesgue measurable.

Similarly, Martin-Solovay’s generic absoluteness result (Theorem 2.13) does not extend to ΣHC
3 , even

assuming many measurables. For let

φ = ∀x ∈ R∃M(M is a measures-mouse ∧ x ∈ M).

One can calculate that φ is Π3.

Exercise 19. Let L[U ] � U is coherent, then

(1) HCL[U ] � φ,

(2) whenever x is Cohen-generic /L[U ], HCL[U ][x] � ̸= φ,
(3) φ is Π3.

Finally, the correctness of models of the form L[U ], U is coherent, is limited. For suppose there is
j : V →M with Vcrit(j)+2 ⊆M . Then there is a Σ2 sentence ψ such that

HC � ψ,
but whenever M is a measures-mouse

HCM ̸� ψ.
Exercise 20. (For the student who knows more inner model theory.) Prove this.
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LECTURE 4

Extenders

Given j : M → N elementary, it may not be the case that N = HullN (ran(j) ∪ {κ}), for κ = crit(j).
That is we may not have N ∼= Ult(M,U). In order to capture j in general, we need a certain system of
ultrafilters, called an extender.

Definition 4.1. [X]n = {a ⊆ X | |a| = n}, and [x]<ω =
∪

n<ω[X]n. For a ⊆ Ord with |a| = n, we write

ai = ith element of a in its increasing enumeration.

Now suppose j : M → N with M � ZFC− transitive. Suppose λ ⊆ wfp(N), and λ ≤N j(κ). For
a ⊆ [λ]<ω and X ⊆ [κ]|a| with X ∈M , we put

X ∈ Ea iff a ∈ j(X).

Definition 4.2. Eλ
j = {(a,X) | X ∈ Ea} is the (κ, λ)-extender derived from j.

Remark. The restriction λ ≤ j(κ) is not really needed. Extenders satisfying it are called “short extender”,
but since we have no use here for “long” extenders, we have dropped the qualifier “short” in these lectures.

Clearly, E{κ} = Uj . By allowing typical objects beyond κ to generate measures, however, we may be
able to capture more of j.

As before, we have

(1) Ea is an ultrafilter on P([κ]|a|)M , and non-principal iff a ̸⊆ κ,
(2) Ea is M -κ-complete. We can form Ult(M,Ea), and we have

M
j //

i ((QQQQQQQQQQQQQQ N

Ult(M,Ea)

ka

OO

commutes, where ka([f ]) = j(f)(a). (So ka([id]) = a.) the range of ka is HullN (ran(j) ∩ a).

If a ⊆ b, there is a natural map
iab(x) = k−1

b (ka(x)).

Since [λ]<ω is directed under inclusion, and the maps commute (i.e. iac = ibc ◦ iab if a ⊆ b ⊆ c), we can set

Ult(M,E) = direct limit of Ult(M,Ea)’s under iab’s.

We can piece the ka’s together into
k : Ult(M,E) → N

given by k(ia,∞(x)) = ka(x), for ia,∞ : Ult(M,Ea) → Ult(M,E) the direct limit map. The following
commutative diagram summarizes things:

M
j //

iME **VVVVVVVVVVVVVVVVVVVVVV

iMEb

��7
77

77
77

77
77

77
77

77
N

Ult(M,E)

k

OO

Ult(M,Eb)

ib,∞

77ppppppppppp

Note ran(k) = HullN (ran(j) ∪ λ), so that k ↾ λ =identiy.
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Extenders

Properties of Eλ
j

For a ⊆ b and b ∈ [λ]<ω, and X ⊆ [κ]|a|, we think of X as a predicate of |a|-tuples, and let Xab be the
result of “adding dummy variables” corresponding to ordinals in b− a. That is, for

a = {bi1 , · · · , bin} with i1 < · · · < in,

we put

Xab =
{
u ∈ [κ]|b| | {ui1 , · · · , uin} ∈ X

}
.

Similarly, if f : [κ]|a| →M ,

fab(u) = f({ui1 , · · · , uin}), for u ∈ [κ]|b|.

We then have the following properties of E = Eλ
j , where j : M → N with crit(j) = κ and λ ≤N j(κ):

(1) Each Ea is an M -κ-complete ultrafilter on P([κ]|a|)M ,
(2) (Compatibility) If a ⊆ b, then ∀X ∈M

X ∈ Ea iff xab ∈ Eb,

(3) (M -normaity) If f ∈M with dom(f) = [κ]|a|, and

f(u) < ui, for Ea a.e. u,

then there is a ξ < ai such that letting ξ = (a ∪ {ξ})k,

fa,a∪{ξ}(u) = uk, for Ea∪{ξ} a.e. u,

If in addition P(κ)M = P(κ)N

(4) (M -amenability) If a ∈ [λ]<ω and a ⊆ P([κ]|a|) with a ∈M and M � |a| ≤ k, then Ea ∩ a ∈M .

Definition 4.3. Given M � ZFC−, transitive, and we call a system E = ⟨Ea | a ∈ [λ]<ω satisfying (1)-(4)
above a (κ, λ)-pre-extender over M (or just an M-pre-extender). We write κ = crit(E) and λ = lh(E).

Notice that in definition 4.3, we have thrown away j and N . In particular, if Q � ZFC− is transitive, and
P(κ)Q = P(κ)M , then E is an M -pre-extender iff E is a Q-pre-extender.

If E is a (κ, λ)-pre-extender over M , then we define Ult(M,E) as follows:

The elements are equivalence classes [a, f ]ME , where for f, g ∈M with domains [κ]|a| and [κ]|b|,

⟨a, f⟩ ∼ ⟨b, g⟩ iff for Ea∪b a.e. u, fa,a∪b(u) = gb,a∪b(u),

and
[a, f ]ME ∈̃[b, g]ME iff for Ea∪b a.e. u, fa,a∪b(u) ∈ gb,a∪b(u),

Then we set
Ult(M,E) = (

{
[a, f ]ME | a ∈ [λ]<ω ∧ f ∈M

}
, ∈̃).

Let also iME : M → Ult(M,E) be given by

iME (x) = [{0} , λu.x],

we have

(1)  Loś Theorem: given ⟨a0, f0⟩, · · · , ⟨an, fn⟩ and φ(v0, · · · , vn) and letting b =
∪

i≤n ai,

Ult(M,E) � φ[[a0, f0]ME , · · · , [an, fn]ME ] iff for Eb a.e. u M � φ[fa0,b
0 (u), · · · , fan,b

n (u)].

(2) iME is elementary,
(3) crit(iME ) = κ,

(4) letting id(u) = u for all u ∈ [κ]|a|,

[a, id]ME = a,

and
[a, f ]ME = iME (f)(a).

(5) X ∈ Ea iff a ∈ iME (X).

Exercise 21. Prove (1)-(5).
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Extenders

The Ult(M,E) is the Skolem-closure of ran(iME )∪λ inside Ult(M,E), and E is the (κ, λ)-pre-extender derived

from Ult(M,E). By amenability, P(κ)M = P(κ)Ult(M,E), the closure of Ult(M,E) under sequences is given
by:

Lemma 4.4. Let E be a (κ, λ)-pre-extender over M , and α ≤ κ. Suppose M is closed under α-sequences,
and αλ ⊆ Ult(M,E). Then Ult(M,E) is closed under α-sequences.

Proof. Let [aβ , fβ ] ∈ Ult(M,E) for all β < α. Let i = iME . Then

⟨i(fβ) | β < α⟩ = i(⟨fβ | β < α⟩) ↾ α ∈M

and ⟨aβ | β < α⟩ ∈M as λα ⊆M . Thus ⟨i(fβ)(aβ) | β < α⟩ ∈M . �
Exercise 22. Let κ be measurable. Show there is a (κ, λ)-extender over V such that Ult(V,E) is not closed
under ω-sequences.

We have λ ⊆ wfp(Ult(M,E)), essentially by normality. How to guarantee Ult(M,E) is fully well-
founded?

Definition 4.5. Let E be a (κ, λ)-pre-extender over M . We say E is ω-complete iff whenever Xi ∈ Ea for
all i < ω, then there is an f :

∪
i<ω ai → κ such that

f”ai ∈ Xi

for all i < ω.

One sometimes calls f a “fiber” for ⟨(ai, Xi) | i ∈ ω⟩.
Lemma 4.6. Let E be an ω-complete extender over M ; Then Ult(M,E) is well-founded.

Proof. Suppose [ai+1, gi+1] ∈ [ai, gi] for all i. By meeting the right measure one sets, we can find a
fiber f such that gi+1(f”ai+1) ∈ gi(f”ai) for all i. This is a contradiction. �
Exercise 23. Let E be an ω-complete pre-extender over M , and E ∈ M . Let π : N → M be elementary,
with N countable transitive, and π(F ) = E. Show thatthere is a σ such that

M

N

π

OO

iNF

// Ult(N,F )

σ

hhQQQQQQQQQQQQQQ

commutes. (That is, countable fragments of Ult(M,E) can be realized back in M .)

Exercise 24. (a) Let E be an pre-extender over V ; Then Ult(V,E) is well-founded iff E is ω-complete.
(b) There is a pre-extender over V such that Ult(V,E) is ill-founded.

Definition 4.7. E is a (κ, λ)-extender over M iff E is a (κ, λ)-pre-extender over M , and Ult(M,E) is
well-founded.

In contrast pre-extender-hood, there are M ,Q, and E such that E is a (κ, λ)-extender over M , and
P(κ)M = P(κ)Q, but E is not a (κ, λ)-extender over Q, because Ult(Q,E) is ill-founded. If j : M → N
where N is well-founded, then Ej is indeed an extender over M :

Lemma 4.8. Let j : M → N where M is transitive, and E be the (κ, λ)-extender derived from j, Then the
diagram

M
j //

iME ((QQQQQQQQQQQQQQ N

Ult(M,E)

k

OO

commutes, where k([a, f ]ME ) = j(f)(a). Moreover, k ↾ λ =identity.

Of course, we began this section by essentially proving Lemma 4.8. But there we had defined Ult(M,E)
in a slightly different way. You can think of Lemma 4.8 as saying that the two constructions give the same
Ult(M,E). We leave this proof as an informal exercise.

It follows that if N is well-founded, so is Ult(M,E).
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Computing Large Cardinal Strength

If U is a nuf on κ, then Vκ+2 ̸⊆ Ult(V,U). With extenders, more is possible.

Lemma 4.9. Let j : V → N , crit(j) = κ, and κ < λ ≤ j(κ). Suppose Vα ⊂ N , and |Vα|+ < λ Let E be the
(κ, λ)-extender derived from j, then Vα ⊆ Ult(V,E).

Proof. Let k : Ult(V,E) → N be the factor map, as in Lemma 4.8. Let β = |Vα|, so β < λ. Let
(β,R) ∼= (Vα,∈). Since β, α ∈ ran(k), we can pick R ∈ ran(k). But then k−1(R) = R, as k ↾ β = id. Since
R ∈ Ult(V,E), Vα ⊆ Ult(V,E). �

Definition 4.10. Let E be a V -extender; then strength(E) =largest α such that Vα ⊆ Ult(V,E).

Exercise 25. Let E be a V -extender; then E ̸∈ Ult(V,E), and therefore strength(E) ≤ lh(E).

Corollary 4.11. Let : V → N where N is transitive, κ = crit(j), κ < λ ≤ j(κ). Suppose λ is inaccessible,
and Vλ ⊆ N . Let E be the (κ, λ)-extender derived from j; then strength(E) = λ.

Definition 4.12. A V -extender E is nice iff strength(E) = lh(E), and strength(E) is strongly inaccessible.

In the sequel, we shall use extenders (and iteration trees built from them) to extend the results of Martin-
Solovay on correctness and generic absoluteness from Lecture 2. For these applications, nice extenders suffice.
On the other hand, one can certainly not skip over the non-nice extenders in the bottom-up analysis of inner
model theory.

We conclude this lecture with some simple lemmas on capturing large cardinal properties via extenders.
Definition 4.13.

(a) κ is β-strong iff ∃j : V →M (M transitive ∧crit(j) = κ ∧ Vβ ⊆M).
(b) κ is superstrong iff ∃j : V → N (M transitive ∧crit(j) = κ ∧ Vj(κ) ⊆M).

(c) κ is λ-supercompact iff ∃j : V →M (M transitive ∧crit(j) = κ ∧λ M ⊆M).

Proposition 4.14. If κ is 2κ-supercompact, then κ is a limit of superstrong cardinals.

Proof. Let j : V →M , crit(j) = κ, and 2κM ⊆M . So j ↾ Vκ+1 ∈M . Let E be the (κ, j(κ)) extender
derived from j. We then have E ∈M .

Exercise 26. M � κ is superstrong, as witnessed by E.

The exercise easily yields the proposition. �

Exercise 27. Let κ be superstrong. Show ∃α < κ∀β < κ(α is β-strong).

Definition 4.15. Let κ < δ and A ⊆ Vδ; then κ is A-reflecting in δ iff

∀β < δ∃j : V →M(crit(j) = κ ∧ Vβ ⊆M ∧ j(A) ∩ Vβ = A ∩ Vβ).

Definition 4.16. δ is Woodin iff ∀A ⊆ Vδ∃κ < δ(κ is A-reflecting in δ).

Proposition 4.17. Suppose δ is Woodin; Then δ is strongly inaccessible, and there are arbitrarily large
κ < δ such that ∀β < δ(κ is β-strong).
The least Woodin cardinal is not Mahlo.

We leave the easy proof to the reader.
The following notations is quite useful.

Definition 4.18. Let E be a (κ, λ)-pre-extender, and X ⊆ λ; then E ↾ X = {(a, Y ) | a ∈ [X]<ω ∧ Y ∈ Ea}

Mostly we use this when X = η ≤ λ. If κ < η ≤ λ, then E ↾ η is itself a (κ, λ)-pre-extender.

Remark. We don’t have to say “pre-extender over M”, because pre-extender hood only depends on P(κ)M ,
which is determined by E itself. (P(κ)M = E{κ} ∪

{
κ−A | A ∈ E{κ}

}
.)

Lemma 4.19. Let κ be superstrong; then κ is a Woodin limit of Woodin cardinals.

Proof. Let j : V →M witness κ is superstrong. We show first κ is Woodin. So let A ⊆ Vκ.
Claim. M � ∃α < j(κ)(α is j(A)-reflecting in j(κ)).
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proof of the claim. Take α = κ. Let κ < β < j(κ). We may assume β is inaccessible in M . Let
E = Ej ↾ β, so that E ∈M . We have

A ∩ Vκ = j(A) ∩ Vκ,
so

j(A) ∩ VM
j(κ) = j(j(A)) ∩ VM

j(κ),

so
j(A) ∩ VM

β = iME (j(A)) ∩ VM
β .

(To see the last line, note that
iME (j(A)) ∩ VM

β = iME (A) ∩ VM
β ,

because β < iME (κ), and iME (A) ∩ VM
β = j(A) ∩ VM

β , because E = Ej ↾ β. )
This gives the claim. �
Pulling the claim back to V , we get V � ∃α < κ(α is A-reflecting in κ). Since A was arbitrary, κ is

Woodin. But now it easily follows that
M � κ is Woodin.

so
V � κ is a limit of Woodins.

�
We have then the following consistency strength hierarchy on those properties. (Note that κ measurable

iff κ is κ+ 1-strong.)

κ is measurable.

κ is κ+ 2 strong.

...

κ is β strong for all β.

κ is Woodin.

κ is superstrong.

κ is 2κ-supercompact.
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LECTURE 5

Linear Iteration via Extenders

Everything works much as it did wiht linear iteration via nufs, so we shall go quickly here.

Definition 5.1. An extender pair is an (M, E) such that M is transitive, and M � ZFC− + E is a set of
V -extenders.

A linear iteration of (M, E) is a sequence ⟨Eα | α < β⟩ determining Mα’s and jαγ : Mα →Mγ , as before.
Eα ∈ i0α(E), and Mα+1 = Ult(Mα, Eα). direct limits are taken at limit stages. M I

∞ is the “last model”
associated to the iteration I. (M, E) is α-linearly iterable iff M I

∞ is well-founded, for all I with lh(I) < α.
The following facts are proved just as they were for linear iterations of nuf-pairs.

(1) Let (M, E) be an extender pair, π : N → M elementary, π(F) = E . Then if (M, E) is α-linearly
iterable, so is (N,F). (cf Lemma 2.4)

(2) Let (M, E) be an extender pair. Then (M,F) is ω1-linearly iterable. (cf. Lemma 2.5)
(3) Let (M, E) be an extender pair such that every E ∈ E is ω-complete. Then (M, E) is linearly

iterable. (cf. Theorem 2.3, and Exercise 23?.)
(4) Let (M, E) be an extender pair such that M � ZFC and ω1 ∈M . Then (M, E) is linearly iterable.

(cf. Corollary 2.8)

Applications

In Lecture 2, we showed that if there is a linearly iterable nuf pair (M, {U}) with “one measurable
cardinal”, then

(i) Π1
1˜ determinacy holds.

(ii) Σ1
2˜ sets are Lebesgue Measurable, etc.

(iii) M is Σ1
2˜ correct.

(iv) M is Σ1
3 correct in M [G], when G is M -generic for P ∈ VM

κ , with κ = crit(U), and M � ZFC.

We showed that you can’t add I to any of the subscripts in (i)-(iv), in Lecture ??. This is true nomatter
how many measures your nuf pair (M, E) is assumed to have. It remains true if we replace (M, E) with an
extender pair.

The basic reason is that linear iterability is ΠHC
1 = Π1

2. Thus for any sentence φ, the statement

ψ = “There is a countable, linearly iterable extender-pair (M, E) such that (M, E) � φ.
(Think of φ as saying “There are extenders witnessing superstrongness”, if you like.) If there are linearly
iterable (M, E) � φ, then they cannot al be Σ1

3 correct. For let (M, E) � φ with Ord ∩M minimal; then
M ̸� ψ.

This is not to say that the existence of linearly iterable extender pairs (M, E) with “many extenders in
E” does not lead to strengthening of (i)-(iv) above. You just can’t go all the way to Π1

2˜ in (i), or to Σ1
3˜ in (ii)

or (iii), or to Σ1
4 in (iv). Instead, one needs to replace Π1

1˜ in (i) by some level Γ of ∆1
2˜ , and Σ1

2˜ in (ii) and (iii)

by a corresponding level 	 Γ of ∆1
3˜ . (At the moment, we don’t see how to extend (iv).) Such strengthenings

of (i)-(iv) were developed by D.A.Martin, his students, and others in the 1970’s and early 1980’s. (See for
example ??)

Canonical Extender Models

If E and F are V -extenders, then again

E ▹ F iff E ∈ Ult(V, F ).
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Linear Iteration via Extenders

A coherent sequence of extenders will again be a sequence linearly ordered by ▹, without leaving gaps. Here
we face the complication that there certaninly E with η < lh(E) such that E is equivalent to E ↾ η. in that
Ult(V,E) = Ult(V,E ↾ η)

Exercise 28. If crit(E) < γ and γ + 2 = lh(E), then Ult(V,E ↾ (γ + 1) = Ult(V,E).

So we can put the “same” extender on our sequence with different lengths. Some indexing convention is
needed. Here is one from [4].

Definition 5.2. A coherent sequence of non-overlapping extenders is a function E with domain of
the form

{
(κ, β) | β < oE(κ)

}
such that

(1) If oE(κ) > 0, then ∀λ < κ(oE(λ) < κ), and if β < oE(κ), then
(2) E(κ, β) is a (κ, κ+ 1 + β) extender over V ,
(3) iE(κ,β)(E) ↾ (κ+ 1, 0) = E ↾ (κ, β).

The “non-overlapping” part is clause (1). It guarantees that E is simple enough that iterability suffices
for canonicity (e.g., for comparison). On the other hand, it prevents L[E ] from satisfying more than “There
is a strong cardinal”. If we want a theory of canonical inner models with for example, Woodin cardinals,
then drop clause (1) above, but at the same time we must generalize the notion of linear iterability.

Moving to extenders yields one simplification: the functions witnessing coherence are now trivial, as if
γ < β, then γ = [{γ} , id]E(κ,β). So we get

Proposition 5.3. If E is a coherent sequence of non-overlapping extenders, then

L[E ] � E is a coherent sequence of non-overlapping extenders.

Remark. L[E ] = L[A], where A = {(κ, β, a, x) | (a, x) ∈ E(κ, β)} .

Also, it becomes a little easier to show that large cardinal properties go down to L[E ]. For example,

Theorem 5.4. Suppose there is a strong cardinal; then there is a proper class E such that

L[E ] � E is a coherent sequence of non-overlapping extenders,

and
L[E ] � E there is a strong cardinal.

proof sketch. Construct a maximal non-overlapping coherent sequence, defining E(κ, β) by induction
on the lexicographic order on the (κ, β)’s. �
Exercise 29. Give a real proof of Theorem 5.4.

Definition 5.5. An extenders-premouse is a pair (M, E) such that M is transitive and

M � ZFC−E is a coherent sequence of non-overlapping extenders.

An extenders-mouse is a linearly iterable extenders-premouse.

The initial segment relation M E N on extenders-premice is defined just as before. We get as before:

Theorem 5.6 (Comparison Lemma). Let M and N be set size extender-mice. Then there are linear itera-
tions I and J of M and N such that

MI
∞ E NJ

∞ or NJ
∞ E MI

∞.

Corollary 5.7. Suppose V = L[E ], where E is a coherent sequence of non-overlapping extenders. Then CH
holds, and R admits a ∆HC

2 well order.

We get other corollary parallel to those in Lecture ?? as well. For example,

Corollary 5.8. Con(ZFC+“There is a strong cardinal.”)=⇒ Con(ZFC+“There is a strong cardinal”+“R
admits a ∆HC

2 well order.”)

The Comparison Lemma, Theorem 5.6, is proved just as Lemma 3.6, the Comparison Lemma for
measures-mice, was proved. I and J are constructed by iteration away the least disagreement.

24



LECTURE 6

Iteration Trees of Length ω

Suppose

M0 � E0 is an extender and λ = strength(E0).

Set

M1 = Ult(M0, E),

and suppose

M1 � E1 is an extender, and crit(E1) < λ.

If we were iterating in linear fashion as before, our next model would be M2 = Ult(M1, E1). But there is

another possibility. Since VM0

λ = VM1

λ and crit(E1) < λ, E1 is a pre-extender over M0, and we could set

M2 = Ult(M0, E1),

and continue iterating from there. (Assuming that M2 is well-founded!) For example, one can show that for

λ1 = strength(E1)M1 , we have that VM1

λ1
= VM2

λ1
. (This is done below.) So if

M2 � E2 is an extender

and crit(E2) < lambda1, then we could set

M3 = Ult(M1, E2),

and if M3 were well-founded, continue from there. Our picture so far is

M1

M2

M3

M0

If we could find extenders with the right pattern of strengths and critical points, with all the relevant
ultrapowers well-founded, we might be able to generate an “alternating chain”:

M1

M2

M3

M0

M4

M5

M6

· · · · · ·

· · · · · ·

where

Mn+1 = Ult(Mn−1, En)

with

Mn � En is an extender.

It turns out that if M0 = V , and ∃δ(δ is woodin), then there are indeed such alternating chains, and in fact,
many other interesting and useful “iteration tree”.

In this section, we shall restrict ourselves to models of full ZFC. Whenever we speak of Ult(M,E), we
assume that M is transitive and M � ZFC, enen if this not explicitly stated.
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Iteration Trees of Length ω

Definition 6.1. For M,N transitive models of ZFC,

M ∼
α
N iff VM

α = V N
α .

The following helps prepare agreement-of-models in an iteration tree.

Lemma 6.2. Let M and N be transitive models of ZFC, and M ∼
κ+1

N . Suppose

M � E is an extender

and crit(E) = κ. Then

(1) E is a pre-extender over N ,
(2) Ult(, E) ∼

iE(κ)+1
Ult(N,E), and

(3) iME ↾ VM
κ+1 = iNE ↾ V N

κ+1.

Proof. Sketch of proof Let f : [κ]|a| → VM
κ+1 = V N

κ+1. Then f ∈M iff f ∈ N . This implies that the two

ultrapowers agree on their common image of VM
κ+1 = V N

κ+1. �

Exercise 30. Think through the details.

In order to simplify some points we shall for now only consider iteration trees formed using extenders
which are nice in the model they are taken from. (Recall that E is nice iff lh(E) = strength(E) is strongly
inaccessible.) From Lemma 4.4, we get at once

Lemma 6.3. Suppose M � E is a nice (κ, λ)-extender, and M ∼
κ+1

N . LEt α ≤ κ, and suppose both M

and N are closed under α-sequences, then Ult(N,E) is closed under α-sequences.

In the situation of Lemma 6.3, if α ≥ ω, then we can conclude that Ult(N,E) is well-founded.

Definition 6.4. Let α ≤ ω. T is a tree order on α iff

(1) (α, T ) is a partial order,
(2) (nTm) =⇒ n < m, for all m,n < α,
(3) {n | nTm} is linearly ordered by T , for all m < α, and
(4) 0 Tn for all n such that 0 < n < α.

We write pdT (n+ 1)=largest m such that mT (n+ 1).

Definition 6.5. Let α ≤ ω. A nice iteration tree of length α on M is a pair T = ⟨T, ⟨(Mn, En) | n < α⟩⟩
such that for all n,m < α

(1) T is a tree order on α,
(2) M0 = M ,
(3) Mn � En is a nice extender,
(4) n < m =⇒ lh(En) < lh(Em),
(5) if n+ 1 < α, then Mn+1 = Ult(Mk, En), where k = least i such that Mi

∼
crit(En)+1

Mn, moreover

pdT (n+ 1) = k in this case.

Notation. For T as above, we set lh(T ) = α. If T is an iteration tree, we write MT
n and ET

n for the models
an extenders of T . Note that if T is the associated tree order, then there are canonical embeddings

iTnm : MT
n →MT

m (for nTm)

between the models earlier on a given branch and thise later. (Here ik,m : Mk → Ult(Mk, Em−1) is the
canonical ultrapower embedding if k = pdT (m), and ik,m = ipdT (m),m ◦ ik,pdT (m) otherwise.)

The following lemma records the agreement between models in a nice iteration tree.

Lemma 6.6. Let ⟨T, ⟨(Mn, En) | n < α⟩⟩ be a nice iteration tree. Let k ≤ n; then

(a) Mk
∼

lh(Ek)
Mn, but

(b) it is not the case that Mk
∼

lh(Ek)+1
Mn, if k < n.

Moreover, for any n, pdT (n+ 1) is the least i such that crit(En) < lh(Ei).
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Iteration Trees of Length ω

Proof. We prove (a). Fix k. The proof is by induction on n. The case n = k is clear. Not let
λ = lh(Ek). We have

Mn
∼

λ
Mk

by induction, and
Mn

∼
ien (κ)+1

Mn+1

by Lemma 6.2, where κ = crit(En). But

lh(Ek) ≤ lh(En) ≤ iEn(κ),

by clause (4) of Definition 6.5, and the fact that we use only short extenders. Thus Mn+1
∼

λ
Mk, completing

the induction step.

The rest is an exercise. �

Exercise 31. Complete the proof of Lemma 6.6.

Remark. Our nice iteration trees are fairly special in several ways. It isn’t necessary to use only nice
extenders. It isn’t necessary that the strengths of the extenders be increasing, as in clause (4) of Definition
6.5. It isn’t necessary that pdT (n + 1) be the least i such that Mi

∼
crit(En)+1

Mn, it need only be some

such i. A more general notion of iteration tree is needed in many contexts. The present restrictions make
several points cleaner. In particular, 6.6 has the simple statement above.

Here is a diagram illustrating Lemma 6.6. In the diagram, crit(Ei) = κi and strengthMi(Ei) = λi.

E0

κ0

λ0

E1

κ1

λ1

E2

κ2

λ2

E3

κ3

λ3

λ0

λ1

λ2

M0 M1 M2 M3 M4 · · · · · ·

Another picture of the same iteration tree:

M2 M4

M1

=={{{{{{{{

aaCCCCCCCC
M3

M0

=={{{{{{{{

aaCCCCCCCC

As the first picture shows, the process of determing and iteration tree is linear: Mn+1 is determined by
⟨(Mi, Ei) | ileqn⟩, and then we are free to choose En+1 in order to continue. As the second picture shows,
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the embeddings between models may fall into a non-linear structure.

If T has length n+ 1, then we set

MT
∞ = Ult(Mk, E

T
n ), where k = the least i such that crit(ET

n ) < lh(ET
i ),

and we call MT
∞ be the last model of T . Nothing forces it to be well-dounded, but if we are to continue

from T , it had better be! In this connection, we have immediately from Lemma 6.3:

Lemma 6.7. Let T be a nice iteration tree of lenght≤ ω, and η < inf
{

crit(ET
i ) | i+ 1 < lh(T )

}
. Suppose

MT
0 is closed under η-sequences. Then

(a) ∀n < lh(T )(MT
n is closed under η-sequences), and

(b) if lh(T ) < ω, then MT
∞ is closed under η-sequences,

(c) if lh(T ) < ω, then MT
∞ is well-founded.

Exercise 32. Prove Lemma ??. (It is easy.)

How do we continue an iteration tree of length ω?

Definition 6.8. Let T = ⟨T, ⟨Mn, En | n < ω⟩⟩ be an iteration tree, and let b be a branch of T . Then

MT
b = dir lim

k∈b
MT

k

under the iTk,l for k, l ∈ b. We say b is well-founded iff MT
b is well-founded.

What we would like, in order to continue from T , is a confinal-in-ω well-founded barnch of T . If MT
0 = V ,

then we can find such a branch:

Theorem 6.9. Let T be a nice iteration tree on V , with lh(T ) = ω. Then there is a confinal-in-ω well-
founded barnch of T .

Remark. (1) So for example, the tree

M1

V = M0

M2 M3 M4 · · · · · ·

is impossible. In other words, the Mitchell order ▹ on nice extenders is well-founded. (In fact, it is
well-founded on arbitrary short extenders.)

(2) More generally, if T = ⟨T, · · ·⟩ is a nice iteration tree on V of length ω, then T has an infinite branch.
Andretta ([1]) has shown that this is the only restriction on T , provide there is a Woodin cardinal. That
is, if there is a Woodin cardinal, and T is a tree order on ω having an infinite branch, then there is a nice
iteration treeon V whose tree order is T .

By Theorem 6.9, if

M1

M2

M3

V = M0

M4

· · ·

· · ·

MT
odd

MT
even

is a nice alternating chain on V , then either MT
odd or MT

even is well-founded. It is open whether one of
the two must be ill-founded! More generally, we have
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Iteration Trees of Length ω

Big Open Problem. Is there a nice iteration tree on V of length ω having distinct cofinal well-founded
branches?

A negative answer would mean that every such iteration tree can be continued in a unique way. This
would have many useful consequences, as we shall see below.

proo of theorem 6.9. Let T = ⟨T, ⟨Mn, En | n < ω⟩⟩ be a counterexample. The first step is to
localize the bad-ness of T in countably many ordinals. (Compare Lemma 2.5.) This is done in the

Claim. There are ordinals αn, for n < ω, such that for all n,m

nTm =⇒ iTnm(αn) > αm.

proof of the claim. First pick η such that whenever b is a cofinal barnch of T , then iTb (η) is in the
ill-founded part of MT

b . (Here iTb : MT
0 →MT

b is the direct limit map.)
For n < ω, let

Bn = {b | b is a confinal branch of T and n ∈ b} .
Let

X = {(n, f) | f : Bn → η} .
For (n, f), (m, g) ∈ X, we let

(n, f) < (m, g) iff mTn and ∀b ∈ Bn(f(b) < g(b)).

It is easy to see that < is a well-founded realtion on X.
Now if Bn = ∅, so that T is well-founded below n, we put

αn = |n|T = rank of T below n.

Then if Bn = ∅ and nTm, we have Bm = ∅, and since αn < ω1,

inm(αn) = αn > αm,

as desired.
So we may assume B0 ̸= ∅, otherwise we’re done. For each b ∈ B0, pick αb

n for n < ω such that

inm(αb
n) > αb

m

whenever nTm and n,m ∈ b. We may assume αb
0 = η for all b. Now for n such that Bn ̸= ∅, set

αn = ω1 + |(n, h)|i0,n(<)

where h(b) = αb
n for all b ∈ Bn. Note at this point that h ∈ Mn, since Mn is 2ℵ0 -closed. Then we have , if

nTm and Bm ̸= ∅:

in,m(αn) = ω1 + |(n, inm(λb ∈ Bn.α
b
n))|i0m(<)

= ω1 + |(n, λb ∈ Bn.inm(αb
n))|i0m(<)

> ω1 + |(m,λb ∈ Bm.α
b
m)|i0m(<)

= ω1 + αm.

This yields the claim. �
Ordinal s ⟨αn | n ∈ ω⟩ as in the claim are said to witness that T is continuously ill-founde.
To simplify the rest of the proof a bit, we shll assume there are arbitrarily large ξ such that Vξ � ZFC.

We leave is as an exercise to dispense with this assumption.
Let ⟨αn | n < ω⟩ witness that T is continuously ill-founded. Let η0 > α0 be such that Vη0 � ZFC, and

T ∈ Vη. Now let N0 be countable and transitive, and

π0 : N0 → Vη0

elementry, with T ∈ ran(π0), and ⟨αn | n < ω⟩ ∈ ran(π0). Let

π(Fn) = En,

and
π(βn) = αn
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Iteration Trees of Length ω

for all n. Note π(T ) = T , and U = ⟨T, ⟨Nk, Fk | k < ω⟩⟩ is an iteration tree on N0, where

Nk+1 = Ult(Ni, Ek), for i = pdT (k + 1).

Moreover, ⟨βn | n < ω⟩ witness that U is continuously ill-founded.
We now define (Pm,∈, ηm) and πm by induction on m so that

(1) πm : Nm → V Pm
ηm

,

(2) Pm � ZFC, Pm is closed under ω-sequences and
{
α | ηm < α < OrdPm ∧ V Pm

α � ZFC
}

has order-

type ≥ πm(θm),
(3) for all k ≤ m

(a) Pk
∼

T Pm, where T = supπk”lh(Fk),

(b) πk ↾ V Nk

lh(Fk)
= πm ↾ V Nk

lh(Fk)
and

(4) Pm ∈ Pm−1, if m > 0.

If we do this, clause (4) yields the desired contradiction.

m = 0: We have π0 and η0 already. Let P0 = Vτ , where Vτ � ZFC and {α | η0 < α < τ ∧ Vα � ZFC} has
order type at least π0(θ0).

m = n+1: Let E = πn(Fn). Let E = πn(Fn). Let κ = pdT (n+1), and τ = supπk”lh(Fk). crit(Fn) < lh(Fk),
so crit(E) < τ . Also, Pm ∼τ Pk. Hence we may set

Q = Ult(Pk, E).

We have that Q is closed under ω-sequences, and hence well-founded. Let j : Pk → Q be the canonical
embedding. Set

γ = j(ηk),

we can now find σ such that the diagram

V Pk
ηk

j // V Q
γ

Nk

πk

OO

iUk,n+1

// Ult(Nk, Fn)

σ

OO

= Nn+1

commutes. Namely, we set
σ([a, f ]Nk

Fn
) = [πn(a), πk(f)]Pk

E .

Exercise 33. Prove that σ is well-defined, elementary, and that the diagram commutes.

Exercise 34. Show that σ ↾ Vlh(Fn)
Nn+1 = πn ↾ V Nn

lh(Fn)
.

Together, these exercise are called the Shift Lemma. The key to proving them is that πn and πk agree
on V Nk

lh(Fk)
, by induction.

We could now set Pn+1 = Q and ηn+1 = γ and πn+1 = σ, and satisfy (1)-(3). In order to satisfy (4) as
well, we replace Q by a Skolem hull of itself. Notice that Q has

j(πk(θk)) = σ(ik,n+1(θk)) > σ(θn+1)

many α > γ such that V Q
α � ZFC, in order type. Note also σ ∈ Q, as Q is ω-closed. Let

µ = σ(θm+1)th ordinal α > γ such that V Q
α � ZFC.

Put
Pn+1 = transitive collapse of HullV

Q
µ ({σ} ∪ V Q

supσ”lh(Fn)
),

and
πn+1 = image of σ under the collapse,

ηn+1 = image of γ under the collapse.
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Iteration Trees of Length ω

Notice that Pn+1 ∈ V Q
lh(E) = V Pn

lh(E), as supσ”lh(Fn) < lh(E), because lh(E) is inaccessible in Q. This gives

(4). We leave (1)-(3) to the reader.

Theorem 6.9 �
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LECTURE 7

Iteration Trees of Transfinite Length

It is often important to continue iterating into the transfinite. The way we continue a tree T of limit
length λ, i.e.: pick a branch b which has been visited cofinally often below λ, and such that MT

b is wellfounded.
Set MT

λ = MT
b , and continue. To be more precise:

Definition 7.1. Let γ ∈ Ord. We call T a tree order on γ iff

(1) T is a strict partial order of γ,
(2) ∀β < γ (T wellorders {α | αTβ}),
(3) ∀α, β (αTβ =⇒ α < β),
(4) ∀α (0 < α =⇒ 0Tα),
(5) ∀α (α is a successor ordinal iff α is a T -successor), and
(6) ∀λ < γ (λ is a limit ordinal =⇒ {α | αTλ} is ∈-cofinal in λ).

Definition 7.2. Let γ ∈ Ord. A nice iteration tree of length γ on M is a system

T = ⟨T, ⟨(Mα, Eα) | α < γ⟩, ⟨iαβ | αTβ⟩⟩
such that

(1) T is a tree order on γ,
(2) M0 = M ,
(3) Mα |= Eα is a nice extender,
(4) α < β =⇒ lh(Eα) < lh(Eβ),
(5) if α+ 1 < γ, then Mα+1 = Ult(Mξ, Eα), where ξ is least such that

Mξ
∼

crit(Eα)+1
Mα.

(6) if λ < γ is a limit ordinal, then

Mλ = dir lim
αTλ

Mα,

iαλ = canonical embedding, for αTλ.

Is it always possible to continue a nice iteration tree on V ? At successor steps, yes.

Theorem 7.3. Let M |= ZFC be transitive and closed under ω-sequences. Let T be a nice iteration tree on
M of length α+ 1, and let ξ ≤ α be such that MT

ξ
∼

crit(ET
α )+1

MT
α . Then Ult(MT

ξ , E
T
α ) is well-founded.

Proof. We need the following exercise:

Exercise 35. Let T be a nice iteration tree and α < lh(T ). Show

MT
α = {iT0α(f)(a) | f ∈ MT

0 ∧ a ∈ [ν]<ω}
where ν = sup{lh(ET

ξ ) | (ξ + 1)Tα or ξ + 1 = α}.

The exercise generalizes the fact that

Ult(M,E) = {iME (f)(a) | f ∈M ∧ a ∈ [lh(E)]<ω}.
It says that MT

α is Skolem-generated by ran(iT0α) together with ordinals below the sup of the lengths of
extenders used on the branch 0-to-α.

Now let ξ, α be as in the theorem, and set N = Ult(MT
ξ , E

T
α ). Let i : M → N be the canonical

embedding. (i = π ◦ iT0ξ, where π : MT
ξ → N .) Let λ = lh(ET

α ). The proof of Exercise 35 easily yields

N = {i(f)(a) | a ∈ [λ]<ω ∧ f ∈M}.
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Note here that although N may be illfounded, i(κ) ∈ wfp(N), where κ = crit(ET
α ). This is because

V N
i(κ)+1 = V

Ult(MT
α ,ET

α )

i(κ)+1 , and V
Ult(MT

α ,ET
α )

i(κ)+1 can be computed in MT
α , which thinks ET

α is an extender.

Now pick ⟨fk | k < ω⟩ such that there are ak ∈ [λ]<ω with i(fk+1)(ak+1) ∈N i(fk)(ak) for all k. Note
⟨fk | k ∈ ω⟩ ∈M ! Thus

i(⟨fk | k ∈ ω⟩) = ⟨i(fk) | k ∈ ω⟩ ∈ N.

Now pick γ such that

N |= γ ∈ Ord ∧ λ < γ ∧ ⟨i(fk) | k ∈ ω⟩ ∈ Vγ .

Working in N , we have H,π such that

N |= N is transitive, |H| = λ, and π : H → Vγ

with π ↾ λ = id and ⟨i(fk) | k ∈ ω⟩ ∈ ran(π).

Now (ran(π),∈N ) is illfounded in V , hence (H,∈N ) is illfounded in V . But H ∈ V N
i(κ) ⊆ wfp(N), a

contradiction. �

Insofar as continuing nice trees on V at limit steps goes, the main result is the following

Theorem 7.4. Let T be a nice iteration tree on V of countable limit length λ. Suppose that for all limit
η < λ, {α | αTη} is the unique cofinal wellfounded branch of T ↾ η. Then T has a cofinal, wellfounded
branch.

Remark. In other words, if T has made the only choice it could make at limit η < λ, then there is a choice
for it to make at λ.

We shall sketch the proof of Theorem 7.4 in an appendix to this lecture. It is much like the proof of
Theorem ??.

This leads us to one of the biggest open problems in the subject.

Definition 7.5. Nice-UBH is the statement: Every nice iteratioin tree on V of limit length has at most
one cofinal, wellfounded branch.

Definition 7.6. Generic-nice-UBH is the statement: V [G] |= nice-UBH,whenever G is set generic over
V .

Whether nice-UBH, or better generic-nice-UBH, are true are very important questions. Of course, the
more useful answer would be “yes”. The reason is that we would then get, via Theorem 7.4, an iteration
strategy for V . We now explain that concept more precisely.

Let M |= ZFC be transitive, and θ ∈ Ord. The (nice) iteration game of length θ on M is played as
follows: there are two players, I and II. They cooperate to produce an iteration tree T on M. At successor
rounds α + 1, player I extends T by picking a nice ET

α from MT
α , and setting MT

α+1 = Ult(MT
ξ , E

T
α ) for ξ

least such that crit(ET
α ) < lh(ET

ξ ). (If the ultrapower is illfounded, the game ends, and I has won.) At limit

rounds λ < θ, II extends T by picking b cofinal in λ such that MT
b is wellfounded. If II fails to do this, I

wins.
If after θ rounds, I has not yet won, then II wins.
We call this game Gnice(M, θ). A winning strategy for II in Gnice(M, θ) is called a θ-iteration strategy

for M . We say M is θ-iterable (for nice trees) iff there is a θ-iteration strategy for M . We have

Theorem 7.7. If nice-UBH holds, then V is ω1-iterable for nice trees.

Proof. Player II’s strategy in Gnice(V, ω1) is: at round λ, pick the unique cofinal wellfounded branch
of T ↾ λ. �

ω1 + 1-iterability is much more useful than ω1-iterability. We have

Theorem 7.8. If generic-nice-UBH holds, then V is κ-iterable for nice trees, where κ is the least measurable
cardinal.

Exercise 36. Prove Theorem 7.8. [You need to know something about preservation of large cardinals under
small forcing to do this one, so it’s really only for the more advanced students.]
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The main result known in the direction of proving UBH is the following. For T a nice tree, set

δ(T ) = sup{lh(ET
α ) | α < lh(T )},

M(T ) =
∪

α<lh(T )

V
MT

α

lh(ET
α )
.

So Ord ∩M(T ) = δ(T ), and M(T ) = V
MT

b

δ(T ) for any cofinal branch b of T such that δ(T ) ∈MT
b .

Theorem 7.9. Let T be a nice iteration tree of limit length, δ = δ(T ), and suppose b and c are distinct
cofinal branches of T such that δ ∈MT

b ∩MT
c . Let A ⊆ δ and A ∈MT

b ∩MT
c . Then

(M(T ),∈, A) |= “ ∃κ (κ is A-reflecting in Ord)”.

Remark. Another way this is often stated is: δ(T ) is Woodin with respect to all A ∈ MT
b ∩MT

c , with
respect to extenders in M(T ).

Proof of Theorem 7.9. (Sketch). Let us consider the special case T is an alternating chain, and b
is its even branch and c is its odd branch. Note that the extenders of T overlap in the following “zipper”
pattern

E0

E2

E4

E1

E3
extenders used in b extenders used in c

δ

En = ET
n

That is, letting κn = crit(En) and λn = lh(En): κn < κn+1 < λn for all n. Now let A ⊆ δ and A ∈MT
b ∩MT

c .
Pick m large enough that A ∈ ran(im,b) ∩ ran(im+1,c).

Claim. For any n ≥ m, iEn(A ∩ κn) ∩ λn = A ∩ λn.

(That is, iEn shifts A to itself below the next critical points. It doesn’t matter whether we write i
M(T )
En

or i
MT

n−1

En
here, since the ultrapowers are the same below the image of κn.)

Proof of Claim. Suppose e.g. n + 1 ∈ b. Let A = im,b(Ā). Then im,n−1(Ā) ∩ κn = A ∩ κn, because
crit(in+1,b) = κn. So in−1,b(A ∩ κn) agrees with A below in−1,b(A ∩ κn). But in−1,b(A ∩ κn) agrees with
iEn(A ∩ κn) below λn, because crit(in+1,b) ≥ λn. Consider

iEn�κn+1 ◦ · · · ◦ iEm+1�κm+2 ◦ · · · iEm�κm+1 = j.

Note Ei ↾ κi+1 ∈ M(T ), because κi+1 < lh(Ei)! It is routine to show that j witnesses κm is A-reflecting to
β in M(T ). �
Exercise 37. (1) Complete the proof of this.

(2) Complete the proof of Theorem 7.9 as follows: let b and c be distinct cofinal branches of T . Find
⟨αn | n ∈ ω⟩ cofinal in λ such that

α2n + 1 ∈ b, ”uadα2n+1 + 1 ∈ c

and
crit(Eαk

) < crit(Eαk+1
) < lh(Eαk

)

for all k. I.e. we have the zipper pattern embedded in the two branches. Now argue as above. �
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Remark. For more detail, see [?].

Remark. So if T has distinct cofinal branches, then lh(T ) has cofinality ω. This is also easy to see from
the fact that every branch of an iteration tree is closed below its sup (as a set of ordinals).

Corollary 7.10. Suppose nice-UBH fails. Then there is a proper class model with a Woodin cardinal.

Proof. Let T be nice on V , and have distinct cofinal wellfounded branches b and c. Then L(M(T )) ⊆
MT

b ∩MT
c . So by Theorem 7.9,

L(M(T )) |= δ(T ) is Woodin. �
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