Ultrafilter Space Methods in Infinite Ramsey Theory

Sławomir Solecki

University of Illinois at Urbana-Champaign

November 2014

Outline of Topics

- Λ-semigroups and colorings—a review
- New ones from old ones—tensor products
- 3 An application—Furstenberg–Katznelson Theorem for located words
- A sketch of an application—Hales–Jewett for left-variable words
- Some questions

Λ-semigroups and colorings—a review

A partial semigroup is a set S with a binary operation from a *subset* of $S \times S$ to S such that, for $x, y, z \in S$, if one of the products (xy)z, x(yz) is defined, then both are and are equal.

 Λ a set, S a partial semigroup, and X a set Λ -partial semigroup over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

Assume we have a Λ -partial semigroup over S and based on X.

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in *S*.

Assume we additionally have a point based Λ -semigroup \mathcal{A} over (A, \wedge) .

A coloring of S is A-tame on (x_n) if the color of elements of the form (1) with the additional condition $\lambda_k(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in \Lambda(\bullet)$, for all $k \leq l$, depends only on

$$\lambda_0(\bullet) \wedge \lambda_1(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in A.$$

 \mathcal{A} and \mathcal{B} are Λ -semigroups with \mathcal{A} being over A and based on X and \mathcal{B} being over B and based on Y.

A **homomorphism from** \mathcal{A} **to** \mathcal{B} is a pair of functions f, g such that $f: X \to Y, g: A \to B, g$ is a homomorphism of semigroups, and, for each $x \in X$ and $\lambda \in \Lambda$, we have

$$\lambda(f(x)) = g(\lambda(x)).$$

Theorem

Fix a finite set Λ . Let S be a Λ -partial semigroup over S, and let A be a point based Λ -semigroup. Let $(f,g): A \to \gamma S$ be a homomorphism.

Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence (x_n) of elements of D on which the coloring is A-tame.

The goal:

produce homomorphisms from point based $\Lambda\text{-semigroups }\mathcal{A}$ to $\gamma\mathcal{S}$ of interest.

New ones from old ones—tensor products

Fix a partial semigroup S.

 $\Lambda_0,\,\Lambda_1$ finite sets

 S_i , for i = 0, 1, Λ_i -partial semigroups over S with S_i is based on X_i

Put

$$\Lambda_0 \star \Lambda_1 = \Lambda_0 \cup \Lambda_1 \cup (\Lambda_0 \times \Lambda_1).$$

Define

$$\mathcal{S}_0\otimes\mathcal{S}_1$$

to be a $\Lambda_0 \star \Lambda_1$ -partial semigroup over S based on $X_0 \times X_1$ as follows: with

$$\lambda_0, \, \lambda_1, \, (\lambda_0, \lambda_1) \in \Lambda_0 \star \Lambda_1$$

associate partial functions $X_0 \times X_1 \to S$ by letting

$$\lambda_0(x_0, x_1) = \lambda_0(x_0),$$

 $\lambda_1(x_0, x_1) = \lambda_1(x_1),$
 $(\lambda_0, \lambda_1)(x_0, x_1) = \lambda_0(x_0)\lambda_1(x_1).$

 $\mathcal{S}_0 \otimes \mathcal{S}_1$ is a $\Lambda_0 \star \Lambda_1\text{-partial semigroup}.$

Proposition (S.)

Fix semigroups A and B. For i=0,1, let \mathcal{A}_i and \mathcal{B}_i be Λ_i -semigroups over A and B, respectively. Let

$$(f_0,g)\colon \mathcal{A}_0 o \mathcal{B}_0$$
 and $(f_1,g)\colon \mathcal{A}_1 o \mathcal{B}_1$

be homomorphisms. Then

$$(f_0 \times f_1, g) \colon \mathcal{A}_0 \otimes \mathcal{A}_1 \to \mathcal{B}_0 \otimes \mathcal{B}_1$$

is a homomorphism.

Let S_i , i = 0, 1, be Λ_i -partial semigroups over S based on X_i . Consider

$$\gamma \mathcal{S}_0 \otimes \gamma \mathcal{S}_1$$
 and $\gamma (\mathcal{S}_0 \otimes \mathcal{S}_1)$.

Both are $\Lambda_0 \star \Lambda_1$ -semigroups over γS .

The first one is based on $\gamma X_0 \times \gamma X_1$, the second one on $\gamma (X_0 \times X_1)$.

There is a natural map $\gamma X_0 \times \gamma X_1 \to \gamma (X_0 \times X_1)$ given by

$$(\mathcal{U}, \mathcal{V}) \to \mathcal{U} \times \mathcal{V},$$

where, for $C \subseteq X_0 \times X_1$,

$$C \in \mathcal{U} \times \mathcal{V} \iff \{x_0 \in X_0 \colon \{x_1 \in X_1 \colon (x_0, x_1) \in C\} \in \mathcal{V}\} \in \mathcal{U}.$$

Proposition (S.)

Let S be a partial semigroup. Let S_i , i=0,1, be Λ_i -partial semigroups over S. Then

$$(f, \mathrm{id}_{\gamma S}) \colon \gamma S_0 \otimes \gamma S_1 \to \gamma (S_0 \otimes S_1),$$

where $f(\mathcal{U}, \mathcal{V}) = \mathcal{U} \times \mathcal{V}$, is a homomorphism.

An application—Furstenberg–Katznelson Theorem for located words

A bit more of general theory

 \mathcal{A} a point based Λ -semigroup over a semigroup \mathcal{A}

Fix a natural number r.

Associate with each $\vec{\lambda} \in \Lambda_{< r}$ an element $\vec{\lambda}(\bullet)$ of A by letting

$$\vec{\lambda}(\bullet) = \lambda_0(\bullet) \wedge \cdots \wedge \lambda_m(\bullet),$$

where m < r is the length of $\vec{\lambda}$.

This way we get a finite set $\Lambda_{\leq r}(\bullet) \subseteq A$.

S a Λ -partial semigroup over a partial semigroup S (x_n) a basic sequence in S

A coloring of S is r-A-tame on (x_n) if the color of elements of the form

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}),$$

for $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$, with the additional condition

$$\lambda_k(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in \Lambda_{< r}(\bullet)$$
 for all $k \leq l$

depends only on

$$\lambda_0(\bullet) \wedge \lambda_1(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in A.$$

The following corollary is an apparent generalization of the theorem.

Corollary

Fix a finite set Λ and a natural number r. Let $\mathcal S$ be a Λ -partial semigroup, $\mathcal A$ a point based Λ -semigroup, and $(f,g)\colon \mathcal A\to\gamma\mathcal S$ a homomorphism. Then for each $D\in f(\bullet)$ and each finite coloring of $\mathcal S$, there exists a basic sequences (x_n) of elements of D on which the coloring is r-A-tame.

The corollary follows from the theorem and the two propositions.

Proof.

We have a homomorphism (f,g) from A to S.

There is a homomorphism $\mathcal{A}^{\otimes r} \to (\gamma \mathcal{S})^{\otimes r}$ equal to (f^r, g) by the first proposition.

Note that $D \times X^{r-1} \in f^r(\bullet)$.

Since, by the second proposition, there is a homomorphism $(\gamma S)^{\otimes r} \to \gamma (S^{\otimes r})$, we have a homomorphism

$$\mathcal{A}^{\otimes r} \to \gamma(\mathcal{S}^{\otimes r}),$$

and we are done by the theorem.

Katznelson-Furstenberg for located words

Recall the statement:

Fix a set F of finitely many types. Color, with finitely many colors, all words from $\mathbb N$ to M+N. There exists a sequence of variable words (x_n) from $\mathbb N$ to M with $x_n < x_{n+1}$ and such that the color of words of the form

$$x_{n_0}[i_0] + x_{n_1}[i_1] + \cdots + x_{n_l}[i_l],$$

with $n_0 < n_1 < \cdots < n_l$, depends only on the type of the sequence obtained from (i_0, \ldots, i_l) by deleting all entries less than M, provided this type belongs to F.

The type of (j_0, \ldots, j_k) is the sequence obtained from (j_0, \ldots, j_k) by shortening each run of identical numbers to a single number.

Monoid ∧:

L, Γ finite disjoint sets, e an element not in $L \cup \Gamma$.

$$\Lambda = L \cup \Gamma \cup \{e\},\$$

with

$$\lambda_0 \cdot \lambda_1 = \begin{cases} \lambda_0, & \text{if } \lambda_1 = e; \\ \lambda_1, & \text{if } \lambda_1 \in L \cup \Gamma, \end{cases}$$

is a monoid with the identity element e.

Semigroup *A*:

 Γ disjoint from $\{0,1\}$

Let

Α

be freely generated by $\Gamma \cup \{0,1\}$ subject to the relations

$$a \wedge a = a$$
 and $a \wedge 1 = 1 \wedge a = a$.

Point based Λ -semigroup \mathcal{A} over \mathcal{A} :

Assignment to elements of Λ of functions $\{\bullet\} \to A$: For $\lambda \in \Lambda$, let $\lambda(\bullet) \in A$ be

$$\lambda(\bullet) = \begin{cases} 0, & \text{if } \lambda = e; \\ 1, & \text{if } \lambda \in L; \\ \lambda, & \text{if } \lambda \in \Gamma. \end{cases}$$

This defines a point based Λ -semigroup over A called A.

Proposition

U a compact semigroup, $V \subseteq U$ a compact subsemigroup, $H \subseteq V$ a compact two-sided ideal in V. Assume Λ acts on U by continuous endomorphisms so that V is L-invariant.

Then there exists a homomorphism (f,g): $A \to U_{\Lambda}$ with $f(\bullet) \in H$.

Partial semigroup:

 $S = (L \cup \Gamma)$ -words and variable $(L \cup \Gamma)$ -words

T = L-words and variable L-words

D = variable L-words

Note: $D \subseteq T \subseteq S$, D a two-sided ideal in T, T a subsemigroup of S

Action of Λ on S:

$$\lambda(x) = \begin{cases} x, & \text{if } x \text{ is a } (L \cup \Gamma)\text{-word or } \lambda = e; \\ x[\lambda], & \text{if } x \text{ is a variable } (L \cup \Gamma)\text{-word and } \lambda \in L \cup \Gamma. \end{cases}$$

Then $H = \gamma D$ is a compact two-sided ideal in $V = \gamma T$, which is a subsemigroup of $U = \gamma S$.

Note that V is L-invariant.

So by the last theorem and the corollary:

given r > 0, there is a basic sequence (x_n) in D such that the color of

$$\lambda_0(x_{n_0}) + \cdots + \lambda_I(x_{n_I}) = x_{n_0}[\lambda_0] + \cdots + x_{n_I}[\lambda_I]$$

depends only on

$$\lambda_0(\bullet) \wedge \cdots \wedge \lambda_I(\bullet) \in A$$

as long as

$$\lambda_0(\bullet) \wedge \cdots \wedge \lambda_I(\bullet) \in \Lambda_{< r}(\bullet).$$

Each finite set of types is included in $\Lambda_{< r}(\bullet)$ for some r.

A sketch of an application— the Hales–Jewett theorem for left-variable words

Monoid ∧:

 $\Lambda = L \cup \{e\}$ with $e \notin L$, with multiplication

$$\lambda_0 \cdot \lambda_1 = \begin{cases} \lambda_0, & \text{if } \lambda_1 = e; \\ \lambda_1, & \text{if } \lambda_1 \in L, \end{cases}$$

is a monoid with the identity element e.

Semigroup *A*:

$$A = \{0, 1\}$$
 with $i \land j = \min(i, j)$.

Assignment $\Lambda \rightarrow A$:

For $\lambda \in \Lambda$, let $\lambda(\bullet) \in A$ be

$$\lambda(\bullet) = \begin{cases} 0, & \text{if } \lambda = e; \\ 1, & \text{if } \lambda \neq e. \end{cases}$$

Proposition (S.)

U a compact semigroup, H a compact two-sided ideal in U, $G \subseteq H$ a right ideal. Assume Λ acts on U by continuous endomorphisms. Then there exist

$$u \in H$$
, a homomorphism $g: A \rightarrow U$, and $v \in G$

such that

$$\lambda(u) = g(\lambda(\bullet))$$
 and $uv = u$.

Some questions

 Λ a monoid

 Λ the semigroup generated freely by Λ subject to the relations

$$e \wedge \lambda = \lambda \wedge e = e$$
.

U a compact semigroup on which Λ acts by continuous endomorphisms H a compact two sided ideal in U

Question. For what Λ , does there exist

 $u \in H$ and a homomorphism $g: \widehat{\Lambda} \to U$

such that for each $\lambda \in \Lambda$

$$\lambda(u) = g(\lambda)$$
?

The question amounts to asking for what Λ there exists a homomorphism

$$(f,g)\colon \mathcal{A}\to U_{\Lambda} \ \ \text{with} \ f(ullet)\in H,$$

where \mathcal{A} is the point based Λ -semigroup over $\widehat{\Lambda}$ given by $\lambda(\bullet) = \lambda \in \widehat{\Lambda}$.

Fix M > 0. Let E be the monoid with composition of all non-decreasing functions $s: M \to M$ such that

$$s(0) = 0$$
 and $s(i+1) \le s(i) + 1$, for all $i < M - 1$.

Question. Does the question above have positive answer for $\Lambda = E$?

 ${\it E}$ as above acting on a compact semigroup ${\it U}$ with a compact two-sided ideal ${\it H}$

$$A = M$$
 with $i \wedge j = \min(i, j)$

For $s \in E$, let

$$s(\bullet) = M - (1 + \max s) \in A.$$

Question. Do there exist

 $u \in H$ and a homomorphism $g: A \to U$

such that

$$s(u) = g(s(\bullet))$$
?

A positive answer to this question implies the generalized Gowers' theorem.