Ultrafilter Space Methods in Infinite Ramsey Theory

Sławomir Solecki

University of Illinois at Urbana-Champaign

November 2014

Outline of Topics

- T. J. Carlson, Some unifying principles in Ramsey theory, 1988.
- S. Todorcevic, Introduction to Ramsey Spaces, 2010.
- S. Solecki, Abstract approach to finite Ramsey theory and a self-dual Ramsey theorem, 2013.
- M. Gromov, A number of questions, 2014.

Examples

Words

Fix $M \in \mathbb{N}$, M > 0.

A word w (often called **located word**) is a function from \mathbb{N} to M with finitely many non-zero values.

The **domain of** w is the finite set $\{n \in \mathbb{N} : w(n) > 0\}$.

For words, v, w, we write

v < w

if each element of the domain of v precedes each element of the domain of w.

By convention

v + w

is defined precisely when v < w and is then equal to pointwise addition of v and w.

A variable word x (often called located variable word) is a finite non-empty set $d_x \subseteq \mathbb{N}$ and a function $f_x \colon \mathbb{N} \setminus d_x \to M$ with finitely many non-zero values

For $i \in \mathbb{N}$,

x[i]

is the word that is the union of f_x and the function constantly equal to i on d_x .

For variable words x, y, we write

if all elements of domain $(f_x) \cup d_x$ precede all elements of domain $(f_y) \cup d_y$.

Furstenberg-Katznelson theorem for located words

For a sequence of natural numbers (i_0, \ldots, i_l) , the **type of** (i_0, \ldots, i_l) is the sequence obtained from (i_0, \ldots, i_l) by shortening each run of identical numbers to a single number.

Katznelson-Furstenberg, S.(for located words):

Fix a set F of finitely many types. Color, with finitely many colors, all words from \mathbb{N} to M + N. There exists a sequence of variable words (x_n) from \mathbb{N} to M with $x_n < x_{n+1}$ and such that the color of words of the form

$$x_{n_0}[i_0] + x_{n_1}[i_1] + \cdots + x_{n_l}[i_l],$$

with $n_0 < n_1 < \cdots < n_l$, depends only on the type of the sequence obtained from (i_0, \ldots, i_l) by deleting all entries less than M, provided this type belongs to F.

For example:

one color if $i_p \leq i_q$, for $M \leq i_p$, i_q and $p \leq q$, another color if $i_p \geq i_q$, for $M \leq i_p$, i_q and $p \leq q$.

Hales–Jewett Theorem for left variable words

A variable word x is **left-variable** if the minimal element of d_x is smaller than the minimal element of the domain of f_x .

Carlson–Simpson, Todorcevic:

Color, with finitely many colors, all words from \mathbb{N} to M. There exist a word w and a sequence of left-variable words (x_n) from \mathbb{N} to M with $w < x_n < x_{n+1}$ such that the color of words of the form

$$w + x_{n_0}[i_0] + x_{n_1}[i_1] + \cdots + x_{n_l}[i_l],$$

with

$$n_0 < n_1 < \cdots < n_l$$
 and $i_0, \ldots, i_l < M$,

is fixed.

Gowers' theorem

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by

$$T(n) = egin{cases} n-1, & ext{if } n>0; \\ 0, & ext{if } n=0. \end{cases}$$

Extend T to words by applying it pointwise.

For a sequence of natural numbers (i_0, \ldots, i_l) , the **type of** (i_0, \ldots, i_l) is the number

 $\min(i_0,\ldots,i_l).$

Gowers:

Color, with finitely many colors, all words from \mathbb{N} to M. There exists a sequence of words (x_n) from \mathbb{N} to M with

 $x_n < x_{n+1}$ and $\max x_n = M - 1$

and such that the color of words of the form

$$T^{i_0}(x_{n_0}) + T^{i_1}(x_{n_1}) + \cdots + T^{i_l}(x_{n_l}),$$

with $n_0 < n_1 < \cdots < n_l$, depends only on the type of (i_0, \ldots, i_l) .

A strengthening of Gowers' theoremnot a theorem

Let *E* be the set of all non-decreasing functions $s: M \to M$ such that

$$s(0) = 0$$
 and $s(i+1) \le s(i) + 1$, for all $i < M - 1$.

Note that $T \in E$.

E acts on words pointwise.

For a sequence (s_0, \ldots, s_l) of elements of E, define the **type of** (s_0, \ldots, s_l) to be

 $\max(s_0[M],\ldots,s_l[M]).$

Statement:

Color, with finitely many colors, all words from \mathbb{N} to M. There exists a sequence of words (x_n) from \mathbb{N} to M with

$$x_n < x_{n+1}$$
 and $\max x_n = M - 1$

and such that the color of words of the form

$$s_0(x_{n_0}) + s_1(x_{n_1}) + \cdots + s_l(x_{n_l}),$$

with

$$n_0 < n_1 < \cdots < n_l$$
 and $s_0, \ldots, s_l \in E$,

depends only on the type of (s_0, \ldots, s_l) .

The statement is **not** known to be true, but the finite version is true. This is a recent result of Bartošova and Kwiatkowska using some ideas of Tyros.

Structures

∧-semigroups

A **partial semigroup** is a set *S* with a binary operation from a *subset* of $S \times S$ to *S* such that, for $x, y, z \in S$, if one of the products (xy)z, x(yz) is defined, then both are and are equal.

S, T partial semigroups h: $S \rightarrow T$ is a **homomorphism** if, for $s_1, s_2 \in S$, whenever s_1s_2 is defined, so is $h(s_1)h(s_2)$ and

$$h(s_1)h(s_2) = h(s_1s_2).$$

A **semigroup** is a partial semigroup with total multiplication.

Λ a set, S a partial semigroup, and X a set

A Λ -partial semigroup over S based on X is an assignment to each $\lambda \in \Lambda$ of a function from a subset of X to S such that for $s_0, \ldots, s_k \in S$ and $\lambda_0, \ldots, \lambda_k \in \Lambda$ there exists $x \in X$ with $s_0\lambda_0(x), \ldots, s_k\lambda_k(x)$ defined.

A Λ -semigroup over A based on X is a Λ -partial semigroup over A based on X such that A a semigroup and the domain each $\lambda \in \Lambda$ is equal to X.

A Λ -semigroup is **point based** if X consist of one point, usually denoted by \bullet .

 \mathcal{A} and \mathcal{B} are Λ -semigroups with \mathcal{A} being over A and based on X and \mathcal{B} being over B and based on Y.

A homomorphism from A to B is a pair of functions f, g such that $f: X \to Y, g: A \to B, g$ is a homomorphism of semigroups, and, for each $x \in X$ and $\lambda \in \Lambda$, we have

 $\lambda(f(x)) = g(\lambda(x)).$

Colorings and Λ -semigroups

Assume we have a Λ -partial semigroup over S and based on X.

A sequence (x_n) of elements of X is **basic** if for all $n_0 < \cdots < n_l$ and $\lambda_0, \ldots, \lambda_l \in \Lambda$

$$\lambda_0(x_{n_0})\lambda_1(x_{n_1})\cdots\lambda_l(x_{n_l}) \tag{1}$$

is defined in S.

Assume we additionally have a point based Λ -semigroup \mathcal{A} over (\mathcal{A}, \wedge) .

A coloring of S is A-tame on (x_n) if the color of elements of the form (1) with the additional condition $\lambda_k(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in \Lambda(\bullet)$ for all $k \leq l$ depends only on

$$\lambda_0(\bullet) \wedge \lambda_1(\bullet) \wedge \cdots \wedge \lambda_l(\bullet) \in A.$$

A ∧-semigroup from a ∧-partial semigroup following Bergelson, Blass, Hindman

\mathcal{S} a Λ -partial semigroup over S based on X

 γX is the set of all ultrafilters $\mathcal V$ on X such that for $s \in S$ and $\lambda \in \Lambda$

 $\{x \in X : s\lambda(x) \text{ is defined}\} \in \mathcal{V}.$

 γS is the set of all ultrafilters ${\mathcal U}$ on S such that for $s\in S$

 $\{t \in S : st \text{ is defined}\} \in \mathcal{U}.$

 γS is a semigroup with convolution: $(\mathcal{U}, \mathcal{V}) \rightarrow \mathcal{U} * \mathcal{V}$, where

$$C \in \mathcal{U} * \mathcal{V} \iff \{s \in S \colon \{t \in S \colon st \in C\} \in \mathcal{V}\} \in \mathcal{U}.$$

In other words,

$$C \in \mathcal{U} * \mathcal{V} \iff \forall^{\mathcal{U}} s \, \forall^{\mathcal{V}} t \ (st \in C).$$

Each λ induces a function from γX to γS by the formula $C \in \lambda(\mathcal{V})$ iff $\lambda^{-1}(C) \in \mathcal{V}$.

This procedure gives a Λ -semigroup γS over γS based on γX .

Theorem

Theorem (S.)

Fix a finite set Λ . Let S be a Λ -partial semigroup over S, and let A be a point based Λ -semigroup. Let $(f,g): A \to \gamma S$ be a homomorphism. Then for each $D \in f(\bullet)$ and each finite coloring of S, there exists a basic sequence (x_n) of elements of D on which the coloring is A-tame.

The goal:

produce homomorphisms

from point based A-semigroups ${\mathcal A}$ to $\gamma {\mathcal S}$ of interest.

A point based Λ -semigroup \mathcal{A} over A is determined by an assignment

$$\Lambda \ni \lambda \to a_{\lambda} \in A.$$

If S is based on X and over S, a homomorphism from A to γS is determined by an ultrafiler $\mathcal{V} \in \gamma X$ and a homomorphism $g : A \to \gamma S$ such that for $\lambda \in \Lambda$

 $\lambda(\mathcal{V}) = g(a_{\lambda}).$

New ones from nothing—monoid actions and Gowers' theorem

Construction

A **monoid** is a semigroup with a distinguished element *e*, which is its identity.

e always acts as identity.

S a partial semigroup such that for all s_1, \ldots, s_k there is $t \in S$ such that s_1t, \ldots, s_kt are defined.

Λ a monoid

A acts on S by endomorphisms so that, for $s, t \in S$, if st is defined, then so is $s\lambda(t)$ for each $\lambda \in \Lambda$.

Form a Λ -partial semigroup S_{Λ} over S, based on S, where each $\lambda \in \Lambda$ is interpreted as the function given by the action.

Example.

Partial semigroup *S*:

S = the set of all words with + as defined before

Monoid Λ :

 $\Lambda = M$ with the following multiplication: for $i, j \in M$, let

$$i \cdot j = \min(i+j, M-1)$$

Action of Λ on S: Λ acts on S by

$$i(w) = T^i(w)$$

So Λ acts on γS by continuous endomorphisms.

Topology

A compact semigroup U is a semigroup whose underlying set is a compact space such that

 $U \ni u \to uv \in U$

is continuous for each $v \in U$.

 ${\it S}$ a partial semigroup as above, $\gamma {\it S}$ is a semigroup

 γS has a natural topology with basis consisting of sets of the form

$$\{\mathcal{U}\in\gamma S\colon C\in\mathcal{U}\},\$$

where $C \subseteq S$.

 γS is compact.

Multiplication on γS is continuous on the left.

So γS is a compact semigroup.

Each endomorphism

$$\lambda \colon S \to S$$

induces a continuous endomorphism

$$\lambda \colon \gamma S \to \gamma S$$

by the formula

$$C \in \lambda(\mathcal{U}) \Longleftrightarrow \lambda^{-1}(C) \in \mathcal{U},$$

for $C \subseteq S$ and $\mathcal{U} \in \gamma S$.

Back to the construction

Given S and A as before, construct the A-partial semigroup S_{Λ} .

Then γS_{Λ} is a Λ -semigroup over γS based on γS , and each $\lambda \in \Lambda$ is a continuous endomorphism of γS .

Abstractly we have:

a compact semigroup U and a monoid Λ acting on U by continuous endomorphisms,

which we view as a Λ -semigroup U_{Λ} over U based on U, with each λ interpreted as the continuous endomorphism from the action.

A homomorphism from a point based Λ -semigroup to U_{Λ} :

If A is a pointed Λ -semigroup over A, then a homomorphism (f,g) from A to U_{Λ} is

 $f(ullet)\in U$ and a homomorphism $g\colon A o U$

such that for $\lambda \in \Lambda$

$$\lambda(f(\bullet)) = g(\lambda(\bullet)).$$

So, after setting $u_{\bullet} = f(\bullet) \in U$ and $a_{\lambda} = \lambda(\bullet) \in A$,

$$\lambda(u_{\bullet}) = g(a_{\lambda}). \tag{2}$$

So a homomorphism from \mathcal{A} to U_{Λ} is determined by the assignment $\Lambda \ni \lambda \to a_{\lambda} \in A$, an element $u_{\bullet} \in U$, a homomorphism $g : A \to U$ such that (2) holds.

Example:

Semigroup A:

A = M with the following multiplication: for $i, j \in M$, let

$$i \wedge j = \min(i, j)$$

Point based Λ -semigroup \mathcal{A} :

Assignment $\Lambda \rightarrow A$: the identity function.

This defines a point based Λ -semigroup \mathcal{A} : $i(\bullet) = i$.

Need: $u_{\bullet} \in \gamma S$ and a homomorphism $g \colon A \to \gamma S$ such that

$$i(u_{\bullet})=g(i).$$

Set:

D = the set of all $w \in S$ with max w = M - 1

Note: D is a two-sided ideal in S

Need: $u_{\bullet} \in \gamma S$ and a homomorphism $g: A \rightarrow \gamma S$ such that

$$i(u_{ullet}) = g(i)$$
 and $D \in u_{ullet}$.

Note that

$$D \in u_{\bullet} \iff u_{\bullet} \in H,$$

where

$$H = \{\mathcal{U} \in \gamma S \colon D \in \mathcal{U}\} = \gamma D.$$

H is a compact two-sided ideal in γS .

Proposition

U a compact semigroup, $\Lambda (= M)$ acts on U by continuous endomorphisms, $H \subseteq U$ be a compact two-sided ideal. Then there exists $u_{\bullet} \in H$ and a homomorphism $g : A (= M) \rightarrow U$ such that for each $i \in M$

$$i(u_{\bullet})=g(i).$$

Proposition

U a compact semigroup, Λ acts on U by continuous endomorphisms, H \subseteq U a compact two-sided ideal. Then there exists a homomorphism $(f,g): \mathcal{A} \to U_{\Lambda}$ with $f(\bullet) \in H$. From the proposition and the theorem, we get a basic sequence (w_n) of elements of D such that the color of

$$T^{i_0}(w_{n_0}) + \cdots + T^{i_l}(w_{n_l}) = i_0(w_{n_0}) + \cdots + i_l(w_{n_l})$$

depends only on

$$i_0 \wedge \cdots \wedge i_l = \min(i_0, \ldots, i_l) = \text{type of } (i_0, \ldots, i_l).$$

This is Gowers' theorem.