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Examples

Words
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Examples

Fix M ∈ N, M > 0.

A word w (often called located word) is a function from N to M with
finitely many non-zero values.

The domain of w is the finite set {n ∈ N : w(n) > 0}.

For words, v ,w , we write
v < w

if each element of the domain of v precedes each element of the domain of
w .

By convention
v + w

is defined precisely when v < w and is then equal to pointwise addition of
v and w .
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Examples

A variable word x (often called located variable word) is a finite
non-empty set dx ⊆ N and a function fx : N \ dx → M with finitely many
non-zero values

For i ∈ N,
x [i ]

is the word that is the union of fx and the function constantly equal to i
on dx .

For variable words x , y , we write

x < y

if all elements of domain(fx)∪ dx precede all elements of domain(fy )∪ dy .
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Examples

Furstenberg–Katznelson theorem for located words
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Examples

For a sequence of natural numbers (i0, . . . , il), the type of (i0, . . . , il) is
the sequence obtained from (i0, . . . , il) by shortening each run of identical
numbers to a single number.
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Examples

Katznelson–Furstenberg, S.(for located words):

Fix a set F of finitely many types. Color, with finitely many colors, all
words from N to M + N. There exists a sequence of variable words (xn)
from N to M with xn < xn+1 and such that the color of words of the form

xn0 [i0] + xn1 [i1] + · · ·+ xnl [il ],

with n0 < n1 < · · · < nl , depends only on the type of the sequence
obtained from (i0, . . . , il) by deleting all entries less than M, provided this
type belongs to F .
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Examples

For example:

one color if ip ≤ iq, for M ≤ ip, iq and p ≤ q,

another color if ip ≥ iq, for M ≤ ip, iq and p ≤ q.
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Examples

Hales–Jewett Theorem for left variable words
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Examples

A variable word x is left-variable if the minimal element of dx is smaller
than the minimal element of the domain of fx .
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Examples

Carlson–Simpson, Todorcevic:

Color, with finitely many colors, all words from N to M. There exist a
word w and a sequence of left-variable words (xn) from N to M with
w < xn < xn+1 such that the color of words of the form

w + xn0 [i0] + xn1 [i1] + · · ·+ xnl [il ],

with
n0 < n1 < · · · < nl and i0, . . . , il < M,

is fixed.
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Examples

Gowers’ theorem
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Examples

Let T : N→ N be defined by

T (n) =

{
n − 1, if n > 0;

0, if n = 0.

Extend T to words by applying it pointwise.
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Examples

For a sequence of natural numbers (i0, . . . , il), the type of (i0, . . . , il) is
the number

min(i0, . . . , il).
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Examples

Gowers:

Color, with finitely many colors, all words from N to M. There exists a
sequence of words (xn) from N to M with

xn < xn+1 and max xn = M − 1

and such that the color of words of the form

T i0(xn0) + T i1(xn1) + · · ·+ T il (xnl ),

with n0 < n1 < · · · < nl , depends only on the type of (i0, . . . , il).

S lawomir Solecki (University of Illinois) Ultrafilter Space Methods November 2014 18 / 57



Examples

A strengthening of Gowers’ theorem—
not a theorem
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Examples

Let E be the set of all non-decreasing functions s : M → M such that

s(0) = 0 and s(i + 1) ≤ s(i) + 1, for all i < M − 1.

Note that T ∈ E .

E acts on words pointwise.
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Examples

For a sequence (s0, . . . , sl) of elements of E , define the type of (s0, . . . , sl)
to be

max(s0[M], . . . , sl [M]).
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Examples

Statement:

Color, with finitely many colors, all words from N to M. There exists a
sequence of words (xn) from N to M with

xn < xn+1 and max xn = M − 1

and such that the color of words of the form

s0(xn0) + s1(xn1) + · · ·+ sl(xnl ),

with
n0 < n1 < · · · < nl and s0, . . . , sl ∈ E ,

depends only on the type of (s0, . . . , sl).
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Examples

The statement is not known to be true, but the finite version is true. This
is a recent result of Bartošova and Kwiatkowska using some ideas of Tyros.
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Structures
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Structures

Λ-semigroups
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Structures

A partial semigroup is a set S with a binary operation from a subset of
S × S to S such that, for x , y , z ∈ S ,
if one of the products (xy)z , x(yz) is defined, then both are and are equal.

S , T partial semigroups
h : S → T is a homomorphism if, for s1, s2 ∈ S , whenever s1s2 is defined,
so is h(s1)h(s2) and

h(s1)h(s2) = h(s1s2).

A semigroup is a partial semigroup with total multiplication.
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Structures

Λ a set, S a partial semigroup, and X a set

A Λ-partial semigroup over S based on X is an assignment to each
λ ∈ Λ of a function from a subset of X to S such that for s0, . . . , sk ∈ S
and λ0, . . . , λk ∈ Λ there exists x ∈ X with s0λ0(x), . . . , skλk(x) defined.

A Λ-semigroup over A based on X is a Λ-partial semigroup over A based
on X such that A a semigroup and the domain each λ ∈ Λ is equal to X .

A Λ-semigroup is point based if X consist of one point, usually denoted
by •.
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Structures

A and B are Λ-semigroups with A being over A and based on X and B
being over B and based on Y .

A homomorphism from A to B is a pair of functions f , g such that
f : X → Y , g : A→ B, g is a homomorphism of semigroups, and, for each
x ∈ X and λ ∈ Λ, we have

λ(f (x)) = g(λ(x)).
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Structures

Colorings and Λ-semigroups
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Structures

Assume we have a Λ-partial semigroup over S and based on X .

A sequence (xn) of elements of X is basic if for all n0 < · · · < nl and
λ0, . . . , λl ∈ Λ

λ0(xn0)λ1(xn1) · · ·λl(xnl ) (1)

is defined in S .

Assume we additionally have a point based Λ-semigroup A over (A,∧).

A coloring of S is A-tame on (xn) if the color of elements of the form (1)
with the additional condition λk(•) ∧ · · · ∧ λl(•) ∈ Λ(•) for all k ≤ l
depends only on

λ0(•) ∧ λ1(•) ∧ · · · ∧ λl(•) ∈ A.
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Structures

A Λ-semigroup from a Λ-partial semigroup—
following Bergelson, Blass, Hindman
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Structures

S a Λ-partial semigroup over S based on X

γX is the set of all ultrafilters V on X such that for s ∈ S and λ ∈ Λ

{x ∈ X : sλ(x) is defined} ∈ V.
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Structures

γS is the set of all ultrafilters U on S such that for s ∈ S

{t ∈ S : st is defined} ∈ U .

γS is a semigroup with convolution: (U ,V)→ U ∗ V, where

C ∈ U ∗ V ⇐⇒ {s ∈ S : {t ∈ S : st ∈ C} ∈ V} ∈ U .

In other words,

C ∈ U ∗ V ⇐⇒ ∀U s ∀Vt (st ∈ C ).
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Structures

Each λ induces a function from γX to γS by the formula

C ∈ λ(V) iff λ−1(C ) ∈ V.

This procedure gives a Λ-semigroup γS over γS based on γX .
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Theorem

Theorem
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Theorem

Theorem (S.)

Fix a finite set Λ. Let S be a Λ-partial semigroup over S, and let A be a
point based Λ-semigroup. Let (f , g) : A → γS be a homomorphism.

Then for each D ∈ f (•) and each finite coloring of S, there exists a basic
sequence (xn) of elements of D on which the coloring is A-tame.
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Theorem

The goal:

produce homomorphisms
from point based Λ-semigroups A to γS of interest.
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Theorem

A point based Λ-semigroup A over A is determined by an assignment

Λ 3 λ→ aλ ∈ A.

If S is based on X and over S , a homomorphism from A to γS is
determined by an ultrafiler V ∈ γX and a homomorphism g : A→ γS such
that for λ ∈ Λ

λ(V) = g(aλ).
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Monoid actions and Gowers’ theorem

New ones from nothing—monoid actions
and Gowers’ theorem
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Monoid actions and Gowers’ theorem

Construction
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Monoid actions and Gowers’ theorem

A monoid is a semigroup with a distinguished element e, which is its
identity.

e always acts as identity.
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Monoid actions and Gowers’ theorem

S a partial semigroup such that for all s1, . . . , sk there is t ∈ S such that
s1t, . . . , skt are defined.

Λ a monoid

Λ acts on S by endomorphisms so that, for s, t ∈ S , if st is defined, then
so is sλ(t) for each λ ∈ Λ.

Form a Λ-partial semigroup SΛ over S , based on S , where each λ ∈ Λ
is interpreted as the function given by the action.
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Monoid actions and Gowers’ theorem

Example.

Partial semigroup S :

S = the set of all words with + as defined before

Monoid Λ:

Λ = M with the following multiplication: for i , j ∈ M, let

i · j = min(i + j ,M − 1)

Action of Λ on S :

Λ acts on S by
i(w) = T i (w)

So Λ acts on γS by continuous endomorphisms.
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Monoid actions and Gowers’ theorem

Topology
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Monoid actions and Gowers’ theorem

A compact semigroup U is a semigroup whose underlying set is a
compact space such that

U 3 u → uv ∈ U

is continuous for each v ∈ U.
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Monoid actions and Gowers’ theorem

S a partial semigroup as above, γS is a semigroup

γS has a natural topology with basis consisting of sets of the form

{U ∈ γS : C ∈ U},

where C ⊆ S .

γS is compact.

Multiplication on γS is continuous on the left.

So γS is a compact semigroup.
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Monoid actions and Gowers’ theorem

Each endomorphism
λ : S → S

induces a continuous endomorphism

λ : γS → γS

by the formula
C ∈ λ(U)⇐⇒ λ−1(C ) ∈ U ,

for C ⊆ S and U ∈ γS .
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Monoid actions and Gowers’ theorem

Back to the construction
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Monoid actions and Gowers’ theorem

Given S and Λ as before, construct the Λ-partial semigroup SΛ.

Then γSΛ is a Λ-semigroup over γS based on γS , and each λ ∈ Λ is a
continuous endomorphism of γS .
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Monoid actions and Gowers’ theorem

Abstractly we have:

a compact semigroup U and a monoid Λ acting on U by continuous
endomorphisms,

which we view as a Λ-semigroup UΛ over U based on U, with each λ
interpreted as the continuous endomorphism from the action.
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Monoid actions and Gowers’ theorem

A homomorphism from a point based Λ-semigroup to UΛ:

If A is a pointed Λ-semigroup over A, then a homomorphism (f , g) from
A to UΛ is

f (•) ∈ U and a homomorphism g : A→ U

such that for λ ∈ Λ
λ(f (•)) = g(λ(•)).
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Monoid actions and Gowers’ theorem

So, after setting u• = f (•) ∈ U and aλ = λ(•) ∈ A,

λ(u•) = g(aλ). (2)

So a homomorphism from A to UΛ is determined by

the assignment Λ 3 λ→ aλ ∈ A,

an element u• ∈ U,

a homomorphism g : A→ U

such that (2) holds.
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Monoid actions and Gowers’ theorem

Example:

Semigroup A:

A = M with the following multiplication: for i , j ∈ M, let

i ∧ j = min(i , j)

Point based Λ-semigroup A:
Assignment Λ→ A: the identity function.

This defines a point based Λ-semigroup A: i(•) = i .

Need: u• ∈ γS and a homomorphism g : A→ γS such that

i(u•) = g(i).
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Monoid actions and Gowers’ theorem

Set:

D = the set of all w ∈ S with max w = M − 1

Note: D is a two-sided ideal in S

Need: u• ∈ γS and a homomorphism g : A→ γS such that

i(u•) = g(i) and D ∈ u•.

Note that
D ∈ u• ⇐⇒ u• ∈ H,

where
H = {U ∈ γS : D ∈ U} = γD.

H is a compact two-sided ideal in γS .
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Monoid actions and Gowers’ theorem

Proposition

U a compact semigroup, Λ (= M) acts on U by continuous
endomorphisms, H ⊆ U be a compact two-sided ideal.
Then there exists u• ∈ H and a homomorphism g : A (= M)→ U such
that for each i ∈ M

i(u•) = g(i).
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Monoid actions and Gowers’ theorem

Proposition

U a compact semigroup, Λ acts on U by continuous endomorphisms,
H ⊆ U a compact two-sided ideal.
Then there exists a homomorphism (f , g) : A → UΛ with f (•) ∈ H.
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Monoid actions and Gowers’ theorem

From the proposition and the theorem, we get a basic sequence (wn) of
elements of D such that the color of

T i0(wn0) + · · ·+ T il (wnl ) = i0(wn0) + · · ·+ il(wnl )

depends only on

i0 ∧ · · · ∧ il = min(i0, . . . , il) = type of (i0, . . . , il).

This is Gowers’ theorem.
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