The weakly compact embedding property for a cardinal κ is the assertion that for every transitive set M of size κ with κ ∈ M, there is a transitive set N and an elementary embedding j:M→N with critical point κ. When κ is inaccessible, this property is one of many equivalent characterizations of κ being weakly compact, along with the weakly compact extension property, the tree property, the weakly compact filter property and many others. When κ is not inaccessible, however, these various properties are no longer equivalent to each other, and it is interesting to sort out the relations between them. In particular, I shall consider the embedding property and these other properties in the case when κ is not necessarily inaccessible, including interesting instances of the embedding property at cardinals below the continuum, with relations to cardinal characteristics of the continuum.

This is joint work with Brent Cody, Sean Cox, myself and Thomas Johnstone. Slides, further information and commentary is available on my blog at The weakly compact embedding property.