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0 Overview

0.1 Introduction

To say that the Lebesgue spaces, which arise as natural generalizations of the spaces of integrable
and essentially bounded functions on a measure space, are useful in analysis is a ridiculous un-
derstatement, evident to anyone with even minor experience in the subject. A terse explanation
of the ubiquity of these spaces is that they possess a host of functional analytic properties that
provide powerful tools for working with them. Interpolation theory has its genesis in the study of
a particularly useful set these properties related to the mutual embeddings of the Lebesgue spaces
and the implications of these on the study of operators between Lebesgue spaces. Arguably, it is the
latter, which centers on the theorems of Marcinkiewicz and Riesz-Thorin, that is the most useful in
practice, as it allows one to study the mapping properties of operators on a wide range of Lebesgue
spaces (the interpolation spaces) by first understanding the properties in a restricted setting (the
endpoints of the interpolation). Abstract interpolation theory seeks to extend these ideas and tools
into a more general setting.

The purpose of these notes is to provide a brief introduction to this theory and to highlight some
of the powerful tools it provides for use in applications, in particular the idea of fractional regularity.
As a warning, the title should be taken seriously: the notes are by no means a complete study of
this topic, and huge portions of the theory and many important results are completely ignored.
The reasons for this are two-fold. First, these notes originated in the course Function Spaces and
Generalized Regularity, taught jointly by the author and Giovanni Leoni at the Scuola Matematica
Interuniversitaria Summer School in Cortona, Italy from July 5th to 16th of 2021 (though, it should
be noted that, due to the pandemic, the course was actually taught through Zoom from the author’s
basement). This school ran only for two weeks with fifteen hours of lectures on interpolation theory
and fifteen more on fractional Sobolev spaces (taught by Leoni), and the material recorded here
is already a strict superset of what it was possible to cover in the interpolation lectures. Second,
there are many very good and very thorough books on the subject, and a deeper study should begin
by looking at these. In particular, the texts of Bennett and Sharpley [I], Bergh and Lofstrom [2],
Brudnyi and Krugljak [3], Lunardi [5], and Triebel [7] are all recommended.

The notes are organized as follows. In the remainder of this overview we review notation used
throughout the notes and provide a quick motivation for our study by examining some interpola-
tion properties of Lebesgue spaces In Section [1| we develop the classical theory of interpolation in
Lebesgue spaces mentioned above. To properly frame this, we first need a number of tools from
advanced real analysis: the distribution function, rearrangements, and Lorentz spaces. These are
developed in Section In Section [I.2) we prove the main theorems on interpolation in Lebesgue
spaces: the classical theorems of Marcinkiewicz and Riesz-Thorin. In Section [1.3| we provide some
examples of applications of these theorems by studying the Hardy-Littlewood maximal function,



various estimates of the Fourier transform (the Hausdorff-Young theorem and its variants), and
certain integral operators, including those of convolution and Riesz potential type.

In Section |2l we introduce the abstract interpolation theory that arises as a generalization of the
Marcinkiewicz theorem. This is known as the real method of interpolation, as it relies entirely on
real variable techniques, in contrast with a second known method that relies crucially on complex
variables and holomorphic functions, which is entirely ignored in these notes. In the abstract
framework we first need to build a scale of spaces analogous to the scale of spaces obtained by varying
p in the Lebesgue context. The preliminary functional analysis for this is carried out in Section
2.1 Then in Section we construct interpolation spaces from given pairs of compatible Banach
spaces. In Section we prove a couple important theorems about abstract interpolation. In
Section we then study three concrete examples of the spaces obtained through real interpolation
and demonstrate some applications.

0.2 Notation

We will employ the following notational conventions throughout these notes.

1. We use F to denote either of the fields R or C. All vector spaces are over I, where F is allowed
to be either. The natural numbers, N, include 0.

2. We will often write Ry = (0,00) = {x € R |0 < x}.

3. Given a metric space X, x € X, and r > 0, we define the open balls B(z,r) = {y €
X | d(z,y) < r} and the closed balls B[z,r] = {y € X | d(z,y) < r}.

4. Given normed vector spaces X and Y over a common field, we write £(X;Y) ={T : X —
Y | T is bounded and linear} and endow it with the usual operator norm

1Tl goxivy = sup{l[Tlly | [zl <1} (0.2.1)

5. Given a measure space (X, 9, ) and 1 < p < oo we will write LP(X;F) for the space
of F—valued p—integrable functions. When F = R we will typically abbreviate LP(X) =
LP(X;F). If we want to emphasize the measure we will write L (X;F).

6. We will write (P(Z; F) = LE(Z;F) for p the counting measure.

7. Given a measure space (X, 9, u) we will write S(X;F) for the space of simple functions on
X and Sy (X;F) for the space of simple functions with support of finite measure.

8. For 1 <n € N we write w,, = L"(B(0, 1)) for the n—dimensional Lebesgue measure (written
L") of the unit ball in R", and we write o, = H"1(0B(0,1)) for the (n — 1)—dimensional
Hausdorff measure (written H"™') of the unit sphere in R". These are related via

! a
Wp = / dx = ozn/ " dr = . (0.2.2)
B(0,1) 0 n

9. Given topological vector spaces X and Y, we write X — Y if X C Y is a vector subspace
and the inclusion map [ : X — Y is continuous.



0.3 Motivation

Let (X, 9, ) be a measure space and 1 < p < oco. We recall two basic facts about Lebesgue spaces
that serve as the initial motivation for developing the theory of interpolation. For the first consider
fe LP(X;F)\{0} for 1 <p < oo and let t € R,. Then we can write

f=IXumsn + Xgpney = fit+ fo (0.3.1)
Then f, € L®(X;F) and || fol|; < t, while

Lt
f 1=/|f|du=/ \f\dué/ = 1110 (0.3.2)
H 1HL . 1 16 (f>1) tp—1 tp Ip—1 L

which in particular means that f; € L'(X;F). This shows that we can always decompose a generic
f € LP(X;T) into a sum of elements of L'(X;F) and L>°(X;F), which is noteworthy since 1 and
oo are the extreme points of the set [1,00]. In fact, we can take this a bit further by realizing that
the parameter ¢ € R, can be tuned. Indeed, we can optimize the right side of the bound

IAillze + 1 fell e < g 1N (0.3.3)
over t € R, to see that the minimal value occurs when
L= (= D | fI, =0t = (p— 1) £, (0.3.4)

Using this choice of ¢ in the estimate above shows that

1l 1 s == inf{llall o + [Ibll e | f=a+bae Ll be L®}
< (G=17 4 (o= 1)) ], (035)

which actually shows the stronger result that LP(X;F) — LY(X;F) + L>(X;F), where the latter
space is endowed with the infimum norm written above.
The second fact we wish to recall from Lebesgue theory has to do with multiple inclusions.
Suppose that 1 < py < p; < oo and let py < p < p; be given by
I 1-90

0
= + — for 0 € (0,1). 0.3.6
p Po P ( ) ( )

In other words, 1/p is the convex interpolation between 1/py and 1/p;. Suppose f € LP(X;F) N
L (X;TF). If p1 < oo, then Holder’s inequality allows us to estimate

p(1-0)/po pf/p1
D _ (1-0)p | p|0p Do D1
/X PP du = /X F10 1% gy < ( /X £ du) ( /X £ du) , (0.3.7)

which implies that f € LP(X;F) and

11l < WUz 112 (0.3.8)

The same is true if p; = 0o, and we leave it as an exercise to verify this. In fact, we can take
this a bit further by recalling that we can endow the space L°(X;F) N LP*(X;F) with the norm

4



||f||LPOOLP1 = maX{HfHLpo ) ||f||LP1} Then the previous estimate shows that ||f||LP < ”f”LPomLma
and so LP(X;F) N L (X;F) — LP(X;F).
Note that if we combine these results, we deduce that for all 1 < p < oo we have the embeddings

LYX;F)NL®(X;F) — LP(X;F) < LYX;F) + L™(X;F), (0.3.9)

which we can think of as telling us that the LP(X;IF) spaces somehow interpolate between the
spaces on the left and right. This and the above results show that the Lebesgue spaces have very
interesting interpolation properties. The goal of these notes is to further develop these ideas, first
in the context of Lebesgue spaces and their natural generalization, Lorentz spaces, and second in
the completely abstract setting of “compatible” Banach spaces. This leads to a set of powerful tools
that have many applications in analysis and PDE, for example.

1 Classical interpolation theory

In this section we develop the interpolation theory of Lebesgue and Lorentz spaces. First we develop
the necessary analytic tools. Then we prove the theorems of Marcinkiewicz and Riesz-Thorin. We
conclude the section with some applications of these theorems.

1.1 Analysis tools

Here we collect a number of analytic tools that are useful in interpolation theory.

1.1.1 The Minkowski and Hardy inequalities
We begin by proving a version of Minkowski’s inequality for integrals.

Theorem 1.1.1 (Minkowski’s inequality, integral form). Suppose that (X, My, pn) and (Y, My, v)
are o—finite measure spaces and let (X x Y, M, @ My, u @ v) be the associated product space. Let
I1<p<oocand f: X XY — [0,00] be a up ® v—measurable function. Then

( / ( / f(x,y)du(y))pdu(x))l/pé / ( / (f(x,y))pdﬂ(x))l/pdy(y). (111)

Proof. We begin by making a reduction. We claim that it suffices to prove the result under the
extra assumptions that X and Y are finite and that f is bounded. Indeed, if the result is proved
in this case then the monotone convergence theorem allows us to extend it to the case of X and Y
o—finite with f bounded by using decompositions of X and Y into countably many finite-measure
subsets. In turn, the monotone convergence theorem again allows us to extend to general f by
passing to the limit with finite truncations of f. This proves the claim, so we henceforth assume
that X and Y are finite and f is bounded.

When p = 1 Tonelli’s theorem tells us that actually holds as an equality. Suppose then
that 1 < p < oo and set p' = p/(p — 1) € (1,00). We may assume without loss of generality that
the left side of is non-zero, as otherwise the result is trivially true. Note also that the right
side of is finite due to assumptions of X, Y and f.

Define the measurable function F': X — [0, 00) via

F(x):/yf(a:,y)du(y) (1.1.2)
5



If F =0 for uy—a.e. x € X, then there’s nothing to prove since the left side of ((1.1.1)) vanishes in
this case. We may assume, then that this is not the case. Then by Tonelli’'s theorem and Holder’s
inequality we can bound

1Pl = [ ([ seniw) auo = [ ([ renw)) Ewr-ac
:Aéﬂammm“wwwwsA(AmewmQW(Qmm%mﬁww@

—wmmmé(éumwwwwfﬂww.um>

By assumption, 0 < |[F|| () < 00, so we can divide both sides by by HFHLP(X to deduce (|1.1.1).
m
Remark 1.1.2. Minkowski’s integral inequality can also be proved using duality arguments.

Next we prove another very useful pair of inequalities, due to G.H. Hardy.

Theorem 1.1.3 (Hardy’s inequalities). If f : (0,00) — [0,00) is Lebesgue measurable, s > 0, and

1 <p< oo, then
</0°° xslﬂ (/Ox f(t)dt>pdx> ” < (/OOO xp_s_lf(x)pdx) 1/p. (1.1.4)
( /0 T ( / ) f(t)dt)pdx) e ( /0 * e f(w)pdx) v is)

Proof. Using the change of variable ¢ = zr shows that
1
f (rz)
0 / [yt = | —ppdr (1.1.6)

o) ()"

Minkowski’s integral inequality then shows that

oo 1 D 1/p 1 o » 1/p
([ ) o) = [ (1)

but we may again change variables to write

ey e [T @ (1.1.9)

xrstl-p 0 rstl-p

» |3

and

S

Then

Thus

1 OOf(rg;)p 1/p 00 f(l‘)p /p p1 o/p— p 0o e ) 1/p
[ 25 o ([ L8 [ ([ msns)”

(1.1.10)




Chaining these together gives the first inequality.
The second identity follows similarly:

(/ </ f(®) dt) dx) p:(/ooo(/ Ny )dr) dg;) /p
_/1 (/0 v pr(m)pdl“) dr=| r1+s/p< e )pdy)pdr
(/0 vy )pdy>p. (1.1.11)

O

Cnl@

Remark 1.1.4. One particularly interesting case of Hardy’s inequalities is occurs when p > 1 and
s =p—1, in which case

([ ([ a o) <o) oo

This tells us that if f € LP((0,00)) then the average function A : (0,00) — [0,00) defined by

_ i/xf(t)dt (1.1.13)

is such that A € LP((0,00)).

1.1.2 The distribution function

We now establish an important relationship between the integral of a function (or rather the integral
of its p' power), and the size of the sets where | f| is large.

Theorem 1.1.5 (Chebyshev’s inequality). Let (X, 0, ) be a measure space, 1 < p < 0o, and
f: X — F be measurable. Then for each t € (0,00) we have that

e € X1 1f@1 >t < 5 [ 17 du (1.1.14)

Proof. Let t € (0,00). We compute

u({o € X | |f@)] > t}) = /{|f>t}du§ /{ W< 2 5 [ \rran (1.1.15)

1>t} t”

This suggests that we introduce some notation.

Definition 1.1.6. Let (X, 9, u) be a measure space and f : X — F be measurable. We define the
distribution function of f to be ds : [0,00) — [0, 00] given by

dp(t) = p({x € X | [f(2)| > 1}). (1.1.16)

Let’s consider some examples.



Example 1.1.7. Let (X, 91, 1) be a measure space. Suppose that £ € 9 and f = X . Then for
t > 1 we have that {z € X | xz(x) >t} = @, while for ¢t € [0,1) we have that {z € X | xp(z) >

t} = E. Thus
p(E) iftel0,1)
dy.(t) = 1.1.17
e (1) {0 if t € [1,00). ( )
When p(E) < oo we can write this as dy, = u(E) X[ 1)- A

Example 1.1.8. Let (X, 91, 1) be a measure space. Suppose that f: X — [0, 00) is a finite simple
function given by

f=Y aixg, (1.1.18)
i=1
where Fy, ..., E, € 9 are finite measure sets that are pairwise disjoint, and 0 < a,, < - -+ < a; < 00.

Set a,.1 =0. For j =1,...,n set
j
bj =Y n(E). (1.1.19)
=1

Let t € [0,00). If t > @y then clearly d(t) = u(@) =0. If t € [az, 1), then |f(x)| > t if and only if
x € Ey, 50 df(t) = p(Er). More generally, if ¢ € [a;41,a;) then

[f(@)] >t e UE (1.1.20)

i=1
and hence dy(t) = b;. Assembling this information shows that

n

df(t) = Z ij[aj+1,aj)(t)' (1121)
j=1
Thus the distribution function of a finite simple function is again a finite simple function. A

Example 1.1.9. Let (X,9%, 1) be a measure space. Suppose that f : X — [0,00) is a simple
function that is not finite. We may then write

=Y aixp, (1.1.22)
i=1
where Fy, ..., E, € MM are pairwise disjoint, and 0 < a,, < -+ < a; < 0o. Since f is not a finite

simple function, there exists 1 < i < n such that u(E;) = co. We then define
m=min{l <i<n|uE;) =o0}. (1.1.23)
If m =1 then it’s clear that

o for0<t<q

dy(t) = { (1.1.24)

0 fora; <t

Assume then that 1 <m <n. For j =1,...,m — 1 set
J
by =Y n(E). (1.1.25)
i=1

8



If t € [aj11,a;) for 1 <j <m —1 then
J
[f(x)| >t zel JE (1.1.26)

=1

and hence ds(t) = b;. On the other hand, if 0 < t < a,, then df(t) = oco. Assembling this
information shows that

for 0 <t < ayy,
Ap(t) = § s N (1.1.27)
z_]:l ij[aj+1,aj)(t) fOI‘ am S t

From this analysis we can write
df(t) = Z ij[CLj+1,aj)(t) (1128)
j=1

with the understanding that b; = oo for j > m. Thus the distribution function of a simple function
is again a simple function. A

Example 1.1.10. Let (X,9, 1) be a measure space and f : X — F be measurable. Then
4(t) = u{x € X | |f(2)] > 1)) = di (1), (1.1.29)
This shows that f and |f]| : X — [0, 00) have the same distribution functions. A

The next result establishes some basic properties of the distribution function.

Proposition 1.1.11. Let (X,9, u) be a measure space and f,g: X — F be measurable. Then the
following hold.

~

- f gl < |f] a.e. then d, < djs on [0, 00).

2. If c e F\{0}, then d.¢(t) = ds(t/ |c|) for all t € [0, 00).
3. Ift,s €[0,00), then dsyy(t +s) < dp(t) + dy(s).

4. Ift,s € [0,00), then ds,(ts) < dg(t) + dy(s).

5. dy is nonincreasing and right continuous.

Proof. The first two items are trivial. For the third item note that if |f(z) + g(x)| > ¢t + s then
either |f(z)| > t or |g(x)| > s since otherwise

@)+ lg(@)] <t +s <|f(x)+g(x)] < |f(@)]+|g()], (1.1.30)
a contradiction. Thus
{reX | |f(x)+g@)|>t+stC{re X | |f(x)| >t} u{ze X | |g(x)| > s}, (1.1.31)

which immediately implies that dy;,(t +s) < d(t) +dy(s). This proves the third item. The fourth
item follows from a similar argument, which we leave as an exercise.



We now turn to the proof of the fifth item. It’s obvious that d; is nonincreasing. Fix ¢ € [0, 00)
and suppose that {t,}>2, C (¢, 00) is such that t,, — ¢t. Extract a decreasing subsequence {t,, }°°_,.
Note that

Uz eX | 1f@)] >t} ={zeX||f(x) >t} (1.1.32)
and that
{fre X | |f(@)] >t} S{ze X | |f(@)] >t} (1.1.33)
Hence

as(t) = (U{az € X | |f()] > tnm}) =l pu({r € X | ()] > ta,}) = lim_dyts,)

(1.1.34)
On the other hand, since d; is nondecreasing we have that
Jim dy(tn,,) = lim dy(t,), (1.1.35)
and so
de(t) = lim ds(t,). (1.1.36)
n—oQ
This proves that dy is right continuous, completing the proof of the fifth item.
m

Now we examine how the distribution function behaves with respect to sequences of functions.
The next result should be thought of as analogous to the monotone convergence theorem and Fatou’s
lemma.

Proposition 1.1.12. Let (X,9, 1) be a measure space. Suppose that for each n > ¢ € 7 the
function f, : X — F 1s measurable. Further suppose that f : X — F is measurable. Then the
following hold.

1. If{|ful}22, is a.e. nondecreasing and |f,| — |f| a.e. asn — oo, then {dy, }22, is nondecreas-
ing and dg, — dy pointwise as n — 00.

2. If
|f| < liminf |f,| a.e. in X, (1.1.37)
n—oo
then
dy <liminfdy, in [0,00). (1.1.38)
n—oo

Proof. We first prove the first item. Proposition shows that {d;,}>°, is nondecreasing, so
it suffices to prove that dy, — d; pointwise as n — oo. Fix t € [0,00). Modifying the functions
fn on null sets if necessary, we may assume without loss of generality that {|f,|}>2, is pointwise
nondecreasing. Then

{re X | |ful@)] >t} S{z e X | |fop(z)] >t} (1.1.39)
for each n > /¢, and
U{x€X| |fu(@)| >t} ={x e X | |f(x)] >t} (1.1.40)

10



Thus

ay(t) = (U{x € X | [fula)] > t}) = Jim (e € X | [fu(a)] > 1}) = Jim dg, (1), (1141)

which completes the proof of the first item.

Next we prove the second item. For n > ¢ define the measurable function g, : X — [0, 00)
via g,(x) = inf,,>, | fm(z)|. By assumption we then have that {|g,|}>2, is a.e. nondecreasing and
gn = lgn| — g = hﬂiol,}f |fn| a.e. as n — oo. Consequently, the first item tells us that

dy = lim d,,. (1.1.42)

n—oo

On the other hand, by assumption we have that |f| < |g| = ¢ a.e. in X, and by construction we
have that |g,| < |f.| a.e. in X. Consequently, Proposition [1.1.11|implies that

dy <d, = lim d,, <liminfdy,. (1.1.43)

n—oo n—oo

This proves the second item.
O

Next we record a useful result that allows us to compute the distribution function for some map
given that we know the distribution function of the map restricted to essentially disjoint sets.

Proposition 1.1.13. Let (X,9M, 1) be a measure space. Suppose that I # & is countable and
{Xitier € M s such that X = J,c; Xi and p((X; N X;) =0 ford,j € T withi# j. Let f: X —TF
be measurable, and for each © € I define the measurable function f; = fXx,. Then

dp(t) = dy,(t) for allt > 0. (1.1.44)

i€l

Proof. Exercise. O]

1.1.3 The layer cake theorem and its consequences

The following result establishes a deep connection between the distribution function of a map and
integrals related to the map.

Theorem 1.1.14 (Layer cake theorem). Let (X,9M, u) be a measure space and let v be a Borel
measure on [0,00) such that the map ¢ : [0,00) — [0, 00] given by p(t) = v([0,t)) is finite for every
t €[0,00). Let f: X — [0,00) be measurable. Then o f is measurable and

/gpofduz/ dsdv. (1.1.45)
X 0

Proof. First note that ¢ is nondecreasing and ¢(0) = v(&) = 0, so ¢ o f is y—measurable.
Since f is measurable we can pick a sequence {f,}5>, C S(X;[0,00)) such that f,, < f,41 on
X and f,, — f pointwise as n — oco. For each n € N write

Ny
fo=> @inXg,, (1.1.46)
=1

11



such that 0 < an, , < -+ < ai,. Define an, 41, = 0 as well as

bjn = (Ein) € [0,00] for 1 < j < N,,. (1.1.47)

According to Examples [1.1.8| and [1.1.9] we have that dy, () = 0 for ¢ > a;,, and

dfn (t) = bj,n fort € [aj+17n, aj,n)- (1148)
Hence,
| =S biallaseim ), (1.1.49)
0 j€dn
where
Jn = {1 Sj S Nn ‘ V([ajJrl,n,aj,n)) > O} (1150)
Note that
Plajn) — @(aji1n) = v([aj11,0, ajn)) > 0 for j € J,. (1.1.51)

On the other hand,
/ P 0 fadp =Y (ain)(Ein), (1.1.52)
’LEIn
where
L= {1<i< N, | glan) > 0}, (1.1.53)

According to (1.1.51]) we have that J, C I,,. Note also that since ¢ is nondecreasing the set I,, has
the property that if i € I,, then {1,...,i} C I,, and so

jeJn=A{1...,5} CI,. (1.1.54)
Now, from (|1.1.52)and (|1.1.54)) we can compute (employing the convention that co-0 = 0 here)
Nn
/@ofndﬂ Z@azn z’,n)_z,uEin Zy[aj+1naajn))
icly, i€l j=i
= Z Z v([aj11,n, @jn ))X{z ..... Z ZM i)V ([@j1410, 4, n))X{z ..... Nn}<j)
i€l jEI, JEIn i€y
J
= Z (@110, @) Z w(Ein) = Z V(@10 @jn)) Z 1(Ein)
Jj€JIn i€lnN{l,....5} Jj€In i=1
=Y v([aj 1, ajn))bs, (1.1.55)
J€JIn

and upon combining this with (1.1.49)) we deduce that

/gpofnd,u:/ dy,dv. (1.1.56)
b's 0

Since ¢ is nondecreasing we know that {po f,}2° ; is also nondecreasing and converges pointwise to
o fasn — oo. Proposition [1.1.12|implies that {dy, }2° is nondecreasing and dj, — d; pointwise
as n — 0o. Combining these facts with the monotone convergence theorem, we may send n — oo

in (1.1.56]) to conclude that ((1.1.45]) holds.

O
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The most important consequence of the Layer Cake theorem is the following corollary.

Corollary 1.1.15. Let (X, 9, p) be a measure space and f : X — F be measurable. Then for
1 < p < oo we have that

/Iflpduz/oopt”ldf(t)dt. (1.1.57)
X 0

Proof. Let v, be the Borel measure on [0, c0) given by

v,(E) = / ptPldt, (1.1.58)
E

where here dt is Lebesgue measure on [0,00). Then 1,([0,t)) = t* and we deduce from the layer
cake representation and Example [1.1.10] that

/]f|”du:/ ptp1d|f(t)dt:/ pt?ld(t)dt. (1.1.59)
X 0 0
O

1.1.4 Decreasing rearrangements

We know that the distribution function is nonincreasing and right continuous. This does allow
for the possibility of jump discontinuities. If none existed, then we would be free to invert the
distribution function. Since we can’t do this in general, we do the next best thing. The resulting
function, which we define now, will play a key role in our subsequent analysis.

Definition 1.1.16. Let (X, 9, 1) be a measure space and f : X — F be measurable. We define the
decreasing rearrangement of f to be the function f# :[0,00) — [0, 00] given by

f#(t) = inf{s € [0,00) | ds(s) < t}. (1.1.60)

We will prove momentarily that f# is nonincreasing, so it is a bit of an abuse of notation to call
f# the decreasing rearrangement. Nevertheless, this is the standard notation, so we adopt it here.

Let’s consider some examples.

Example 1.1.17. Let (X, 9, 1) be a measure space. Suppose that E' € 9t and f = X 5. We know
from Example that
E) ifte|0,1
dy (1) = {“( ) iftelo) (1.1.61)

0 if t € [1,00).

In particular this implies that d,,(s) < u(E) for all s € [0,00), and thus (X )#(t) = 0 for all
t > pu(E). Also, if t < p(E) then d,,(s) < t if and only if s € [1,00), which implies that
(Xp)7(t) = 1. Hence

1 it (0, u(B))
<><E>#<t>—{0 A (11.62)

A

13



Example 1.1.18. Let (X, 91, 1) be a measure space. Suppose that f : X — [0,00) is a finite
simple function given by

n
=Y aixg, (1.1.63)
i=1
where Fy, ..., E, € 9 are finite measure sets that are pairwise disjoint, and 0 < a,, < - -+ < a; < 00.

Set a,+1 = 0. We saw in Example that

n

di(t) = 0iX (a0 (1), (1.1.64)
j=1
where for 1 < 7 < n we set
J
bj=>_ u(E;) € (0,00). (1.1.65)
=1

Set by = 0. Then an argument in the same spirit as Example [1.1.8, which we leave as an exercise,
shows that

() = Z a5 X, ;) (0)- (1.1.66)
=1

This proves that the rearrangement of a finite simple function is a finite simple function.
A

Example 1.1.19. Let (X,9, 1) be a measure space. Suppose that f : X — [0,00) is a simple
function that is not finite given by

F=Yaxg (1.1.67)
i=1
where F1, ..., E, € 9 are finite measure sets that are pairwise disjoint, and 0 = a,,11 < a, < --- <
a; < oo. We saw in Example that
for 0 <t < ap,,
di(t) = =i (1.1.68)
D 1<j<m—1 ij[ajH,aj)(t) for a,, <'t,
where
m=min{l <i<n|u(E;) = oo}, (1.1.69)
J
bj=> u(E;) € (0,00]if 1< j<m, (1.1.70)
i=1

and we have employed the convention that the sum over an empty set of indices is 0. From this we
find that if we set by = 0 then we can write

() = Z%X[bj_l,bj)@)- (1.1.71)

This proves that the rearrangement of a non-finite simple function is a non-finite simple function.
JAN
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Example 1.1.20. Let (X, 9, 1) be a measure space, f : X — F be measurable and define |f] :
X — [0,00) via |f| () = |f(x)]. We know from Example |1.1.10| that

dy(t) = p({z € X | [f(2)] > t}) = djp (2). (1.1.72)
Hence f# = |f|*. JAN
Our next result establishes some of the basic properties of the decreasing rearrangement.

Proposition 1.1.21. Let (X, 9, u) be a measure space and suppose that f,g: X — F are measur-
able. Then the following hold.

1. f# is nonincreasing.

If [gl < |f] a.e. then g* < f# on [0,00).

Ifc € F then (cf)* = |c| f#.

Ift € [0,00) and dg(t) < oo, then f#(d;(t)) < t.

Ift € [0,00) and f#(t) < oo, then d;(f#(t)) <t.
Ift,s €[0,00), then (f +g)*(t +s) < f7(t) + g% (s).

Ift,s €]0,00), then (fg)"(t+s) < f#(t)g7(s).

NS v e

Proof. The first item follows directly from the fact that d; is nonincreasing.

To prove the second item we note that Proposition [I.T.1T]tells us that dy < dy, and the inequality
g” < f* then follows easily from the definition. To prove the third item we first note that it suffices
to prove the result when ¢ # 0, as the equality is trivial when ¢ = 0. For ¢ € C\{0} and ¢ € [0, c0)
the second item of Proposition [1.1.11| implies that

{s 2 0] des(s) <t} ={s=>0]d(s/[e]) <t} = |c[{s = 0| ds(s) <1}, (1.1.73)

which then implies that (cf)#(t) = |c| f#(t), completing the proof of the third item.
The fourth item follows trivially since if ds(f) < oo then

f#(ds()) = inf{s > 0| ds(s) < ds(t)} <t (1.1.74)

For the fifth item we note that if f#(#) < oo then by definition for each n € N we can find
rn € [f7(t), f#(t) + 27") such that df(r,) < t. Clearly r, — f#(t) as n — oo, so the right
continuity of d; implies that

dy(f#(t)) = lim ds(r,) < t. (1.1.75)

n—oo

This proves the fifth item.

We now turn to the proof of the sixth item. Fix ¢, s € [0, 00). Without loss of generality we may
assume that f#(t)+g7(s) < oo, in which case we can set a = f#(t) < oo and b = g7 (s) < co. Then
the fifth item tells us that ds(a) < ¢ and d,(b) < s. Consequently, the third item of Proposition
1.1.11} implies that

dirg(a+0) <df(a)+dyb) <t-+s (1.1.76)

and so by definition (f + ¢)#(t +s) <a+b= f#(t) + f#(s). The sixth item is proved.
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To prove the seventh item we assume without loss of generality that f#(t) - g7 (s) < oo and
again set a = f#(t) < co and b = g#(s) < co. Then the third item of Proposition [1.1.11] tells us
that

dsg(ab) < ds(a) + dy(b) <t +s (1.1.77)

and so (fg)#(t + s) < ab= f#(t)g”(s). The proves the seventh item.
[l

Now we record the most important features of decreasing rearrangements.

Theorem 1.1.22. Let (X, 9, 1) be a measure space and suppose that f : X — F is measurable.
Let f# :]0,00) — [0, 00] be its decreasing rearrangement. Then the following hold.

1. For s,t € [0,00) we have that s < f#(t) if and only if t < ds(s).
2. f* is right continuous.
3. If s € [0,00), then
dy(s) = p{z € X | |f(@)] > s}) = L'({t € [0,00) | F#(2) > s}, (1.1.78)
where L denotes Lebesque measure on R. In particular d; = dps.

4. For every 1 < p < oo we have that

[ran= [ty (L.L70)
X 0
and we also have that
esssup |f| = inf{C > 0| |f| < C a.e. in X} =sup f#(t) = f#(0). (1.1.80)
>0

Proof. To prove the first item fix s,¢ € [0,00). If s < f#(t) then s & {r | ds(r) < t}, so we must
have that ¢ < d¢(s). Now suppose that ¢t < ds(s). Proposition guarantees that d; is right
continuous and nonincreasing, so we can pick € > 0 such that ¢t < ds(r) for all 0 <r < s+ ¢. This
means that [0,s+¢e] N {r | d;(r) <t} = &, and hence s < s +¢& < f#(t). This completes the proof
of the first item.
To prove the second item we fix T' € [0,00). If f#(T) =0 then f#(r) =0 for all » > T, and so
f# is trivially right continuous at 7T'. Suppose then, that f#(T) > 0 and pick 0 < s < f#(7T'). The
first item then implies that 7" < d¢(s), which then allows us to choose T" < r < df(s). In turn, the
first item implies that s < f#(t) for all t € [T, r]. Then since f# is nonincreasing we deduce that
s < lim f#(t) < f#(7). (1.1.81)

t—T+

This inequality holds for arbitrary 0 < s < f#(T'), and hence

fA(T) = lim f#(1), (1.1.82)

t—T+

which proves that f# is right continuous at 7. This proves the second item.
To prove the third item fix s € [0,00). The first item then implies that

L{t €10,00) [ f#(t) > s}) = L1({t € [0,00) | dy(s) > t}) = L([0,ds(5))) = df(s),  (1.1.83)
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which proves the third item.
Finally, we prove the fourth item. The third item tells us that d; = d;#, so Corollary [1.1.15
implies the fourth item for 1 < p < oco. Finally, we have that

esssup | f| = inf{s > 0| ds(s) = 0} = inf{s > 0| d;«(s) = 0} = sup f#(¢), (1.1.84)

>0
which completes the proof of the fourth item. n

The following result serves as an analog of the monotone convergence theorem and Fatou’s
lemma for decreasing rearrangements.

Proposition 1.1.23. Let (X,9, 1) be a measure space, and suppose that for each n > { € 7 the
function f, : X — F is measurable. Further suppose that f : X — F is measurable. Then the
following hold.

1 If{| fal}ee, is a.e. nondecreasing and |f,| — |f| a.e. asn — oo, then {f#}>2, is nondecreas-
ing and f — f# pointwise as n — oo.

2. If
|f| < liminf|f,| a.e. in X, (1.1.85)
n—oo

then
f# <liminf f# in [0, 00). (1.1.86)
n—oo
Proof. We begin with the proof of the first item. According to Proposition [1.1.21] we have that
f# < fj:_l < f# for all n > ¢, and so

lim f#(t) < f#(t) for all t € [0, 00). (1.1.87)

n—o0

Suppose, by way of contradiction, that there exists ¢ € [0, 00) such that

lim f#(t) < f#(t) (1.1.88)
n—oo
and choose s € [0, 00) such that
lim f7#(t) < s < f#(1). (1.1.89)
n—oo

By the first item of Theorem we then have that ¢ < ds(s). Proposition tells us that
dy, — df as n — 00, so we can find N > ¢ such that n > N implies that t < dy, (s) < ds(s), which
particular implies that s < f#(t), a contradiction since {f#}°°, is nondecreasing. This proves the
first item.

To prove the second let us suppose, again by way of contradiction, that

liminf f7(t) < f#(t) (1.1.90)
n—oo
for some t € [0,00). In particular we can pick s € [0,00) such that

liminf f7(t) < s < f#(t). (1.1.91)

n—o0

Then again by Theorem [1.1.22f and Proposition [1.1.12| we have that

t < dg(s) < liminfdy, (s), (1.1.92)

n—oo
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which implies that there exists N > ¢ such that

t <dy,(s) forall n > N, (1.1.93)
and hence that
s < f#(t) for all n > N. (1.1.94)
Consequently,
s < liminf f#(t) < s, (1.1.95)
n—oo
a contradiction. Hence
f#(t) < liminf f#(t) for all t € [0, 00), (1.1.96)
n—oo
which proves the second item. O

1.1.5 The Hardy-Littlewood rearrangement inequality
Our goal now is to prove a key inequality related to rearrangements. We begin with a lemma.

Lemma 1.1.24. Let (X,9M, 1) be a measure space. Suppose that f: X — F is measurable, and let
E € M. Then for every t € [0,00) we have that

e (t) < min{d;(8), u(E)) (1.1.97)
and
(X)) < FH(O) X008 (1): (1.1.98)
Moreover,
w(E)
/ fldp < / FA(1)dt. (1.1.99)
E 0
Proof. Fix t € [0,00). Since £ C X we may then bound
dre(t) = pl{z € E| ()] > t}) < min{ds(t), u(E)}. (1.1.100)

With this inequality established we then see that
{s € [0,00) | ds(s) <t} C {s € [0,00) | dpp(s) < 1}, (L.1.101)

which implies that (fxz)#(t) < f#(t). Similarly, if u(E) < t then df,,(s) < u(E) < t for all
s € [0,00) and hence (fxz)*(t) = 0. Thus

(X)) < FH(O) X008 (1): (1.1.102)

The inequality ((1.1.99)) then follows directly from the last bound and Corollary [1.1.15]
O

We now have the tools needed to prove the aforementioned inequality. It serves as a sort of in-
termediate inequality that nestles between the terms encountered in the standard Holder inequality.

Theorem 1.1.25 (Hardy-Littlewood rearrangement inequality). Let (X, 901, u) be a measure space,
and suppose that f,g: X — [0,00] are measurable. Then

/ngdpg/ooof#(t)g#(t)dt. (1.1.103)
18



Proof. We begin by making two reductions. First, it suffices to prove the result under the assump-
tion that f # 0 and g # 0, i.e. neither f nor g is trivial, as in this case the inequality is trivially
satisfied. Second, we claim that it suffices to prove the result when f is simple. Indeed, suppose the
result is proved whenever f,g: X — [0,00) and f is simple. We then choose a sequence { f,,}°°, of
non-negative simple functions such that f,, 7 f a.e. as n — oo. Applying the result, we find that

/X Fogdp < /0 T gt ()t (1.1.104)

According to Proposition [1.1.23| we have that f# 7 f# on [0,00) as n — 00, so the monotone

convergence theorem allows us to send n — oo in (|1.1.104)) to deduce that (1.1.103]) holds. This
proves the claim.

Assume then that f,g: X — [0,00) and that f is simple. We may write

F=> aixg, (1.1.105)
i=1
where Fy, ..., E, € 9N are pairwise disjoint, and 0 := a,11 < a, < -+ < a1 < 0. We saw in
Examples|[1.1.18 and [1.1.19| that
FE) = aiXp, 1)), (1.1.106)
j=1
where
_ n. | if fis f.inite (1.1.107)
min{l <i <n | p(E;) =oco} otherwise ,
bp = 0, and
J
bj =Y pu(E;) € (0,00 if 1 <j<m. (1.1.108)
i=1
Write Fy = @ and for 1 < j <nset F; = Ule E; and d;j = a; — aj4;. This allows us to rewrite
F=> diXe, (1.1.109)
j=1
Similarly, we have the identity
m—1
> dixp, (x) = f(x) = ay, for all x € F,_y. (1.1.110)
j=1

Now we use Theorem [1.1.22] Lemma |1.1.24] (1.1.106]) and (1.1.110)) to bound

/fgduz fgduz/ fgdu+/ fgduﬁ/ fgdu+/ amgdp
X Fy Fr_1 Fo\Frm_1 Fr_1 Fo\Frm_1

m—1
= / (f — am)gdp + / amgdp =Y _ d; / 9X g, A1+ am / 9Xr,dp
Fro1 F, = X X

() u(Fn)
d; / g* (t)dt + ap, / g™ (t)dt.
0 0

(1.1.111)

=24 | e 0+ an [0 <
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We then compute

Jj=1 j=1
m—1 w(Fy) m—1 w(Fy)
=Yoo [ gt - Y [ gt war
j=1 0 =1 0
m=l1 w(Fy) m w(Fj—1) (Fm—1)
= “a/ g (t)dt— aa/ g* (t)dt = —am/ dt+y aJ/
Jj=1 0 j=1 0 0
(1.1.112)
Chaining the previous two estimates together then reveals that
w(fn)
/fgd,u< Za]/ dt+am/ g7 (t)dt
J 1) fm 1)
0o m—1 M(Fn)
/ Z @G X [b;_1.by) ()dt+am/ gt (t)dt. (1.1.113)
H(mel)

We now split to cases. If f is finite, then m — 1 =n — 1 and u(F),) < oo, so (|1.1.106]) allows us
to compute

oo m—1 w(Fyp) o N
/0 Zajx[b“b g (8)dt + am / g*(t)dt = / S X, (D5 (1)
7 j=1

(mel)

/ fE(t)g* (t)dt. (1.1.114)

On the other hand, if f is not finite, them p(F,) = pu(F) = by = p(Em) = 00, so (1.1.106) allows
us to compute

oo m—1 M(Fn)
/O Z%X[bg 1:55) ()dt+am/ g" (t)dt

(mel)

0o m—1 b o m
= [ a0 O | g0t [ 0 05

bmfl

/ fF(t)g* (t)dt. (1.1.115)

Combining (1.1.113), (L.1.114)), and (1.1.115) then proves (L.1.103).

]

We proved the Hardy-Littlewood inequality for non-negative functions, but it also works just as
well for more general maps.

Corollary 1.1.26. Let (X,9, 1) be a measure space and let f,g: X — F be measurable. Then

gdu] < [Wslans [ st 0 (1.1.116)

Proof. Exercise. O
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1.1.6 Lorentz spaces

Our aim now is to define a larger class of functions than the Lebesgue spaces. To motivate this we
begin with the following simple result.

Proposition 1.1.27. Let (X, 9, ) be a measure space, 1 < p < oo, and f : X — F be measurable.

Then
sup t(dg())"? = sup t'/7 f#(t). (1.1.117)
>0 >0
Proof. Write
A =supt(ds(t))? and B = supt'/? f#(t). (1.1.118)
£>0 >0

We will prove that B < A < B.
Suppose, by way of contradiction, that A < B and pick s € (0,00) such that A < s < B. By
the definition of B we may then choose ¢ > 0 such that s < t'/?f#(t). By Theorem [1.1.22| we then

see that
s

ti/p
which is a contradiction. Thus B < A.

Now suppose, again by way of contradiction, that B < A and pick B < s < A. Choose t > 0
such that s < t(d;(t))*/?. Then Theorem |1.1.22] again tells us that

< fH) =t < d; <t1%> = s < tl/ [df (tl%ﬂl/pgfl, (1.1.119)

‘z—p<df():>t<f#(t:>:>s< f#(t:)éB, (1.1.120)

which is a contradiction. Thus A < B. O

Consider a function f € LP(X;F). We know from Theorem [1.1.22] that

||f||Lp=(/Ooo(f#(t))pdt)l/pz(/0 (17 £ (1) Cf) O Ay oy (112D

where we have defined the measure p = dt/t on (0,00). On the other hand, Chebyshev’s inequality
and Proposition tell us that

sup /7 f#(t) = sup t(ds (1)) < || f]l o - (1.1.122)
t>0 t>0

The null sets of pu and £ (standard Lebesgue measure) agree, and so L*((0,00)) = L7 ((0,00)).
Thus

sup tl/pf# _ H l/pf#
>0

HL%((OM)) . (1.1.123)

These computations suggest that there is interesting information encoded in the quantities
L/p £#
[P g 000y For 1< 0 < 0. (1.1.124)

Indeed, there is! We begin our exploration of this by defining some new spaces.

Definition 1.1.28. Let (X, 9, 1) be a measure space.
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1. Let f: X — T 1s measurable, 1 <p < oo, and 1 < q < 00. For g < oo we define

e = ([ @rron®) " < el (1.1.125)

and for ¢ = co we define

I/l oo = sup{t'/? f#(t) | £ > 0} € [0, 00]. (1.1.126)

2. For 1 <p,q < oo we define the Lorentz space LP? to be
LPUXGF) = LPYX, 13 F) = {[f]~ | f: X = F is measurable and ||f]||;,. < oo} (1.1.127)

where once more ||~ is the equivalence class generated by a.e. equality. We will write

LPa(X) = [P9(X;R).
Let’s consider some examples. The first shows that Sy, (X;F) C LP4(X;F) when p, ¢ < oco.

Example 1.1.29. Let (X,9, 1) be a measure space. Suppose that f : X — [0,00) is a finite
simple function given by

n
=Y aixp, (1.1.128)
i=1
where F, ..., E, € 2 are finite measure sets that are pairwise disjoint, and 0 < a,, < -+ < a; < 00.

Set a,4+1 = 0. We saw in Example [1.1.18|that if we set

= ZJ:M(EZ-). (1.1.129)

for 1 < j <n, and by = 0, then
Z @G X, (1.1.130)

For 1 < p,q < co we then compute

*° dt - b _ P i
WAl = [ @G =St [ eae =230 (s —u). (s
J=1 i-1 j=1

A
The next example shows just how inclusive the Lorentz space LP**° can be.

Example 1.1.30. Let 1 < p < oo and consider X = R" with Lebesgue measure. For o > 0 define
f:R* = Rvia f(0) =0 and f(z) = |z|” . Then

1
< —5 & < — 1.1.132
e lel < (1.1.132)
and so
dp(t) = wat ™ (1.1.133)
where w,, = L"(B(0,1)). Consequently, f € L»> if and only if p = n/a, in which case
£l e = 0/ = wi/™. (1.1.134)
The bound 1 < p requires that
0<a<n. (1.1.135)
In particular, if « = n/p for a given 1 < p, then f € LP*>°(R™). A
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We used Proposition|1.1.27]to justify our choice of the form of |||-||| ;,.,, and this result showed that
£l oo = Sup;sq t(ds(t))HP, i.e. we can recharacterize this quantity in terms of the distribution
function. We can do something similar for the integral quantities as well.

Proposition 1.1.31. Let (X, 9, 1) be a measure space, V be a finite dimensional normed vector
space, 1 < q < o0, and 0 < a < oo. Then

/OOO ) %/Ooo SQ(df(s»a%. (1.1.136)

t

In particular, for 1 < p < oo we have that

Uln = ([ st >>q/pd$) . (1.1.137)

S

Proof. The second assertion follows from the first by setting & = ¢/p. To prove the first we compute,
using Tonelli’s theorem and the fundamental theorem of calculus:

()
/ t(f* () / t* 1/ qs* 'dsdt = / t* 1/ qs? X(Of# )(8)dsdt
0
:q/ s / to‘_lx(ovf#(t))(s)dtds:q/ 5771 / t* dtds. (1.1.138)
0 0 0 {t>0| f#(t)>s}

However, from Theorem [1.1.22| we know that

{t>0]|s< W)} ={t>0|t<ds(s)} = (0,ds(s)). (1.1.139)
Thus,
/ t(f#(t) = q/ s1™ 1/ t*tdtds = / s17H(ds(s))ds, (1.1.140)
0
which is the desired equality. O]

Remark 1.1.32. The identity used here can be significantly generalized. Indeed, if u,v are Radon
measures on [0, 00) define p,, ¢, : [0,00) = [0,00) via ¢, (t) = p([0,t)) and ¢, (t) = v([0,t)). Then
for Radon measures p and v on [0,00) we have that

/OOO puo f7(t)dv(t) = /OOO @, 0 ds(s)du(s). (1.1.141)

We leave it as an exercise to verify this.
Now we record some very basic properties of Lorentz spaces.

Proposition 1.1.33. Let (X, 9, 1) be a measure space and 1 < p,q < oco. Then the following hold.
1. LP9(X5F) = D(X5F) and ||l = 1110
2. If 1 <q<ooand pu(X) >0 then L>>(X;F) = {0}.
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3. Ifl<p<ocandl <qg<oo orp=q= o0, then
Spin(X;F) C LP(X;TF), (1.1.142)

where we recall that Sp;,(X;F) denotes the set of simple functions of finite support.

Proof. Exercise. O]

At this point it is not clear why we have used the symbol ||-||| in place of the usual norm symbol
|-][. The reason, unfortunately, is that ||-|||,,, is not actually a norm in general. We investigate
this now.

Proposition 1.1.34. Let (X,9M, u) be a measure space and 1 < p,q < oo. Let f,g: X — F be
measurable and suppose that ||| f|l| .o s |Gl p.e < 00. Then the following hold.

L A1f W gpa = O and (|l p.c = O if and only if f =0 a.e.
2. Af e F then ||afll oo = |l 11l o.a-
3. We have that ||f + gll s < 27 1l s + 22 (1 M -
4. LPU(X;F) is a vector space.
Proof. The first and second items are trivial. We know from Proposition that
(f + 97 (1) < f7(t/2) + g7 (1/2). (1.1.143)

If p, g < 0o, then Minkowski’s inequality provides us with the bound

0 dt 1/q 0 dt 1/q o0 dt 1/q
+ (/ (tl/Pg#(t/Q))q7) — 9l/p (/ (tl/pf#(t))q7> + 91/p </ (tl/pg#(t/Q))qT)
0 0 0
=271 fll e + 27 gl oo - (1.1.144)

A similar argument, which we leave as an exercise, shows that (1.1.144)) also holds when either
p = 00 or ¢ = oo. This completes the proof of the third item. The fourth item then follows from
the second and third. O]

In general the bound in the third item cannot be improved, as we show in the following example.

Example 1.1.35. Let 1 < p < oo and define f,g : (0,1) — R via f(z) = 277 and g(x) =
(1 —2)~¥/?. Note that for t > 0

1
flz) >te » (1.1.145)
and so
1 if0<t<l1
de(t) = - 1.1.146
0 {1/tp if 1< t. ( )

which together with Proposition [1.1.27]implies that

1o = sup(d ()7 = 1. (1.1.147)
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Similarly, [l — 1.
Next write h = f 4+ g and note that

1 1
O=h(z)=——a /P4 (l-a) V" ler=1-zor=1/2 (1.1.148)
p p

From this and the fact that h diverges at 0 and 1 we deduce that f achieves its minimum at x = 1/2
and

min h(z) = h(1/2) = 2U/P 4 ol/p — 91+1/p, (1.1.149)
<x<
Thus,

dpyg(t) = dp(t) =1 for 0 <t < 21F1/P, (1.1.150)

and in turn this and Proposition imply that

If + gl poee > lim 2117 = 2151, (1.1.151)

t—21+1/p
From these calculations we then find that

IS + glll .o
(1l pea [ 177 [y

> olP > 1, (1.1.152)

When combined with the bound from the previous proposition, we deduce that this bound is actually
an equality.

A

We now give a name to the norm variant we have discovered.
Definition 1.1.36. Let V' be a vector space. A function |||-|[| : V xV — [0,00) is called a quasinorm
of

1. |||lv[ll = 0 if and only if v =0,

2. lewl|l| = |a |[|v]l| for every v € V' and a € F,

3. There exists a constant C > 1 such that |||v + wl|| < C(|||v||| + [[|w]l|) for all v,w € V.
We say V is a quasinormed space if it is equipped with a quasinorm |||-|||. Given a quasinorm we

can define convergent and Cauchy sequences in the obvious way. With these notions in hand we
can say that V' is quasi-Banach if every Cauchy sequence is convergent.

Example 1.1.37. If (X,9, 1) is a measure space, then LP9(X;F) is a quasinormed space. A

Quasinorms are almost as good as norms, but there are certain technical results that they
don’t provide. For example, the following version of the generalized triangle inequality holds in
quasinormed spaces.

Proposition 1.1.38. Let V' be a vector space equipped with a quasinorm ||-|| with constant C' > 1.
Ifvi,...,v, €V form > 2, then

flov -+ ol < €™ ] (1.1.153)
=1
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Proof. Exercise. Hint: induct on m > 2. O]

Next we show an essential inclusion result for the Lorentz spaces: LP9(X;F) C LP"(X;F) when
q<r.

Theorem 1.1.39. Let (X, 9, 1) be a measure space, 1 < p < o0, and 1 < ¢ < r < oo. If
f e LPi(X;F) then f € LP"(X;F) and

1/q—1/r
q
Wl < (2) " Wl (11.154)

In particular, we have the subspace inclusions
LPYX:F) C LP9(X;F) C LP"(X;F) C LP>®(X;F). (1.1.155)

Proof. We first consider the case r = 0o, in which case ¢ < oo by assumption. Fix t > 0 and write

$i/r = (%/0( 1/pya ‘f) . (1.1.156)

Then since f# is nonincreasing we can bound
d t d 1/q 1/q
wrgrt = (4 [rrrop®) " < (2 [ @) < (1) Uil @i
D Jo s D Jo S p
Since t > 0 was arbitrary, we deduce that f € LP*°(X;F) and

1/q

q

£l oo = sup V7 f7(2) < (—) WA e - (1.1.158)
t>0 P

Now suppose that 1 < ¢ <7 < oco. We compute

| wrrrar g = [Carsorer st ord < i [ errtord

0 0 0 t
= A5 A (1.1.159)

which then implies that

1/q—1/r
1—q/r r q
£ zor < IFNEE AN T < (p) AN o - (1.1.160)

]

Next we establish a version of Holder’s inequality. We begin with a version for functions taking
values in a field F.

Theorem 1.1.40 (Holder’s inequality for Lorentz spaces). Let (X, 9, 1) be a measure space and
1 < p,q < 0. Suppose that f € LP9(X;F) and g € LP7 (X;F), where

1 1 1
-+—-=1 and +—- =1 (1.1.161)
p v qg q
Then fg € L'(X;F) and
/ngdu’ < /lel gl dpe < (I1Fll oo Mgl o - (1.1.162)
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Proof. 1t clearly suffices to prove only the second bound in ([1.1.162)). To prove it we use Theorem
1.1.25| and the standard Holder inequality to bound

o0 oo #1/p L/
[t [ rtwgt e = [t Ot 0 < Ul loll (11163

This is the desired estimate.

]

A typical exercise in Lebesgue theory shows that the Lebesgue spaces satisfy a nice interpolation
property: inclusion in LP° and LP' for py < p; implies inclusion in L? for py < p < p;. The same
is true in Lorentz spaces, though the inclusion is actually a bit stronger than we might expect. We
conclude our initial discussion of Lorentz spaces by exploring this now.

Theorem 1.1.41. Let (X,9M, 1) be a measure space, 1 < py < p1 < 00, and 1 < qo,q1 < 00. If
fe Lrov(X;F)yn LPra (X TF), then f € LP9Y(X;F) for every po < p < p; and 1 < q < oo, and

1/q 6/q0 (1-0)/¢ 1/q
p qo q1 Do h 0 1-6
f , S (_> (_) (_> ( + ) f Q>4 f P1,9 11164
F Il 2.0 . o . e e L zroa0 1N porar— ( )

where

1/po —1/m

Proof. We will prove the result when ¢ < oo and leave the case ¢ = oo as an exercise. The result
is trivial if f = 0, so we may assume that f # 0.
Fix T' € (0,00). Theorem [1.1.39 guarantees that f € LPo>°(X;F) N LPY>°(X;F), so we have the

estimate

e (0,1). (1.1.165)

FE@) < min{t ™2 Yl oo P 1 M orioe - (1.1.166)
We may then bound

> d T d > d
WA, = [ @t = [ wmrrars + [ errors

T 0o
_ dt B dt
g T / (7)1 e / (/o)

T t

q q
_ MWz ey |||JC|H$T5 (1.1.167)

a
for
a=4 -2 -pgamdp=2L -2y (1.1.168)
P DN Po D
If a,b > 0, then the map T +— aa~'T® 4+ b3~'T~" achieves its global minimum at
p\ M (ath)
Tonin = (—) : (1.1.169)
a
and the minimal value is
LY presmperare), (1.1.170)
a B
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Since f # 0 we may then minimize the right side of ([1.1.41)) as a function of T'. Doing so, we
arrive at the bound

p Ha Po D1 Ha ] 1-6
Fllgea < (—) ( + ) TN zrose N porroo - 1.1.171
/1l . P —— W o MAI ( )
Then ((1.1.164]) follows by chaining this bound together with the bound of Theorem [1.1.39, O]

Finally, we turn to the issue of completeness of Lorentz spaces, establishing that they are indeed
quasi-Banach.

Theorem 1.1.42. Let (X, M, ) be a measure space and 1 < p,q < oo. Then LPI(X;F) is a
quasi-Banach space.

Proof. We will prove the result when F = R and leave the details of how to extend this to F = C
as an exercise.

If p =00 and ¢ < oo then LP9(X) = L*9(X) = {0} and is thus trivially complete. If p = ¢ = 0o
then LP9(X) = L*(X) and is thus complete due to the completeness of the Lebesgue spaces. It
remains to handle the case 1 < p < oo and 1 < ¢ < co. We will prove the result under the extra
assumption that ¢ < co and leave the case ¢ = oo as an exercise.

Suppose that {f,}>°, C LP9(X) is Cauchy. According to Proposition and Theorem|1.1.39
we have that

1/q
supt(d, () = supt#5#(0) < (£) gl (11.172)
>0 >0 p
for every g € LP?(X). Applying this to g = f,, — f,, shows that {f,}2°, is Cauchy in measure, and
so we can find a measurable function f : X — R and a subsequence {f,, }?>, such that f, — f
a.e. in X as k — oo.

For ¢ < j € 7Z we have that

|f = fo,| = lim | fa, — fu,| ae. in X, (1.1.173)
k—o00
and so Proposition [1.1.23| implies that
(f = fu))* < lim inf(f,, — fa,) in [0, 00). (1.1.174)
—00
This and Fatou’s lemma then allow us to bound
7 = sl = [ @20 = R #0052 [ tmint e, — ) H 01
sWLpa = d t = Jo koo d t

<timint [~ fo PO = it [ o~ S [} (11075)
0 J t k—00 J ’

k—o0

Upon sending j — oo and utilizing the fact that {f,}°°, is Cauchy in LP?(X), we deduce that
fo, — f — 01in LP9(X) as k — oo. In turn, since quasi-Cauchy sequences are bounded (the proof
for Cauchy sequences works), this and Proposition [1.1.23 imply that

T dt r dt > dt

| @t <tmt [ @ @n <t [ @ o0

0 t J—0 0 J t J—0 0 J t
= liminf ||| f, [||7,, < oo (1.1.176)

Jj—00
for all T' > 0, and hence that f € LP7(X). We leave it as an exercise to check that Cauchy sequences
in quasinormed spaces with convergent subsequences are actually convergent. Thus f, — f in

LP9(X) as n — oo, which proves that LP?(X) is complete.
0

28



1.2 Interpolation theorems

Our goal in this section is to exploit the properties of the Lebesgue and Lorentz spaces in order to
prove some interpolation results for operators between them. The point of this is that it is often
easy to check that an operator (say, linear) is bounded between certain pairs of spaces. We will look
for results that allow us to extend from these special pairs to other pairs that interpolate between.
We will prove two main results: the Marcinkiewicz and Riesz-Thorin interpolation theorems.

1.2.1 The real method of Marcinkiewicz

We begin with some definitions, starting with the notion of truncation.
Definition 1.2.1. Let (X,9M, 1) be a measure space.

1. We write
LYX;F) ={[fl~ | f: X — F is measurable}. (1.2.1)

We know from measure theory that L°(X;F) is a vector space over F.
2. Given f € L°(X;TF) and t € [0,00) we define the truncation of f to be fi: X — F given by

_ ) f@) i fe)] <t
filx) = {0 if 1) >t (1.2.2)

Clearly f; € L°(X; ).

3. Suppose that E C L°(X;TF). We say that E is closed under truncation if f € E implies that
fi € E for every t € [0,00).

Example 1.2.2. Simple functions are closed under truncation, as are finite simple functions. A

Example 1.2.3. Let (X,90, 1) be a measure space. Then LP?(X;F) is closed under truncation for
every 1 < p,q < oo. The same is true of LPo%(X;[F) N LP+9(X;F) and LPo%(X;F) 4 LP09 (X F).
To see this note that if f,. is the truncation of the measurable function f : X — F, then

) ds(t) —dy(r) for0<t<r
dy, (t) = {0 for t > r (1.2.3)
and so
() =inf{s | d;,(s) <t} =inf{0 < s <7 | dp(s) — ds(r) <t} = f#(ds(r) + ). (1.2.4)

In particular, this means that
FE(t) < min{f*(t),r} (1.2.5)

and so f,. € LP»%(X;F) whenever f € LPi%(X;F).
A

We now prove one of our two main interpolation results.
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Theorem 1.2.4 (Marcinkiewicz). Let (X, 9, p) and (Y, M, v) be measure spaces and let 1 <
DiyTiy Si < 00 fori=0,1 be such that py < p1, ro # 11, So = 1, and

51 = {1 ipL <o (1.2.6)

oo if p1 = oo.

Let U C LY X;TF) be a subspace closed under truncation, and suppose that T : U — L°(Y;TF) is
such that there exist A, Cy, C; > 0 such that

T(f +9)l < AUT(f)| + [ T(9))) v — a.e. inY (1.2.7)

for every f,g € U, and

|||T(f>|”LTz‘»°°(Y;IF) <G |||f|||LPi’Si(X;IE‘) (1-2-8)
for every f € UnN LP*(X;F) and i = 0,1. Then for every 0 € (0,1) there exists a constant
C=C(0,p;,ri, s, A C;) >0 such that

T zraymy < M Lracxmy (1.2.9)
for every f € UN LP(X;F), where 1 < ¢ < oo and

L_1-9 ﬂandlzl_e—i-ﬁ. (1.2.10)
p Po P r T'o T
Proof. Note that py < p < p;. We will prove the result under the assumption that 1 < py,q < oo
and leave the remaining cases as an exercise. Throughout the proof we will employ the convention
of writing C' > 0 for a generic constant depending on 6, pg, p1, 7o, 71, ¢, A, Cy, and C; that may
change from line to line. Let f € U N LP(X;F). We divide the rest of the proof into several steps.
Step 1 — Set up
The relations and some simple algebra show that

Yro=lr _o_Ypo-lp o Yr=VUn _, ,_ 1p=1/m
Vro—1/r 0= 1/po—1/p1 and 1/ro—1/r, b=0= 1/po —1/p1 (1.2.11)
and hence we may define
L 1/T0_ 1/7” _ 1/7”0 — 1/7’1 _ l/r_ 1/7~1
T 1/po—1/p 1/po—1/p1  1/p—1/p; > 0. (1.2.12)
For 7 > 0 define f,, g, : X — F via
fr(x) = {f(x) ! |f@| < FH) (1.2.13)
0 otherwise
and
] # (7
gww:{ﬂ@ it 1f(2)] > F4() o
0 otherwise.

Since U is closed under truncation we have that f, € U, and since g, = f — f. and U is a vector
space we have that g, € U. By construction we have that |f,|,|g-] < |f|, and so f#, g% < f#.
Additionally, a simple computation, which we leave as an exercise, reveals that

FE) < {

A H0<t<r

) if <t (1.2.15)
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and

) if0o<t<TY
gty < {70 o<t T (1.2.16)
0 if 77 <.

Step 2 — Fstimates for f. and g,
Holder’s inequality and the bounds 1/p; < 1/p < 1/po imply that

RTESTIN; Tw/o#dt(ﬂ /o/dt) (Tw/# dt)
| emao < [empoT< ([ emr) ([ aerrors

1/q

< ¢r(W/po=1/p) </ (tl/Pf#(t))q%> < oo (1.2.17)
0

and

Up gt B < et KL VRN
[0 <o [ omts [T o

00 dt [ee] dt 1/q
Splf#wwm( / /= q/pt) ( / (tl/Pf#@))q;)

< C’f#(TV)T”/pl + CY(1/p1=1/p) (/oo

~

1/q
(tl/pf#(t))Q%) < oo (1.2.18)

from which we deduce that
gr € LPY(X;F) and f, € LP"(X;TF) (1.2.19)

for every 7 > 0.

We know from ([1.2.8)) that
TP oo vy < C A it (x) for @ = 0,1 (1.2.20)

whenever h € U N LP»!(X;F). Applying this to f, and g, shows that

T () rovoe vy < C Ml grlll oo xey and T praoo vy < C Ml xmy (1.2.21)

which, when combined with the estimates ((1.2.17]) and ((1.2.18]), implies that for each 7 > 0 we have
the bounds

Mg < Crtm [T <o [Cpmprn® g2

and
T(f)]*(7) < CrYm / £ (¢ )% < CFE(E)mUn L ot / fim f#(t)%. (1.2.23)

0 .

Step 3 — Estimates from ({1.2.7)
From the bound ([1.2.7) we deduce that

TN =1T(fr +9:)| < AIT(f)[+ AT(g,)| v—ae inY, (1.2.24)
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and so Proposition and Example tell us that
[T(NF() < AT+ T (g7 (1) < AIT(DIF(E/2) + AT (917 (2/2)
= A[T(f)]*(t/2) + AT (g7)]* (t/2) (1.2.25)

for all t > 0, and in particular for ¢ = 27. Consequently, a change of variable and Minkowski’s
inequality imply that

i T Dl = ([ (i) ‘“)

<o ([T e + [T(g»]#(ﬂhqd{)w
<o([TermmrorD) " o ([Termerrort) " a2

Step 4 — Synthesis and conclusion

Multiplying (1.2.22)) and (1.2.23)) by 7/" and employing the algebraic relations in (1.2.12)) shows

that
1r # e [T /p #() Wp-1p0) [ 1m0 N
/(T (g,))" (1) < CT1 t/Po f () — ; =Cr PO f7 () — ; (1.2.27)
0 0

and

dt

Tl/r[T(ﬁ-)]#(T) < Cf#(T'Y)T'Y/p1+1/r71/T'1 + CTl/rl/h/ tl/plf#( t)— -

T

< CfHF(r)rP 4 Crr/rm) / A (1225)

T

From ([1.2.27)), the change of variable z = 77 (which implies d7 /7 = v~ 'dz/z), and Hardy’s inequality
we may then bound

oo d 1/q oo - g p g
</0 (Tl/r[T(g"')]#(T))q?T) <C (/0 T'Vq(l/Pfl/Po) (/(; 251/100f#< ) :) ?7—)
OO z q 1/ ~
=C (/0 La(1/p=1/po) (/O tl/pof#(t)%> %) a <C (/0 ga=a(/po=1 /D)=L 1 /r0 £ ()]0 ff)

dt
—c([Twreor t) Ml (1229)
Similarly, (1.2.28) allows us to bound

([“eragarort) o ([ emept)
e ( /0 a1 /p-1/p0) ( / i gy & ) >
:C(/o e ()0 df) +C(/0°°Zq(1/p1/p1> / P (1 )Cit) %)q

0 d q
<o ([Twrrord) = il 1220)
0
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We now chain together the bounds (1.2.26)), (1.2.29)), and ([1.2.30)) to deduce that

TN craeyrmy < CUF Mooz - (1.2.31)
This is (1.2.9)). O

Some remarks are in order.

Remark 1.2.5. With a bit of elementary but tedious work, the exact form of the constant C' =
C(0,pi, 1,8, A,C;) > 0 that appears in the final estimate can be tracked in the proof of the
Marcinkiewicz theorem. If we were to do so we would find that the constant blows up as 6§ — 0
and 0 — 1. This is, of course, not surprising: we should not expect to be able to improve our
assumed estimates for free as a byproduct of the theorem.

Remark 1.2.6. In the Marcinkiewicz theorem we do not assume that the map T is linear, and in
particular we make no assumptions about how T behaves relative to scalar multiplication. There is
then no good reason for us to require the functions on X and on'Y take values in the same field.
In fact, an examination of the proof shows that the exact same results hold if we replace L°(X;T)
and L°(Y;F) with L°(X;Fy) and L°(Y;Fy). In other words, the fields we use as the target spaces

for our functions can be different. This is often useful in practical applications of the theorem.

Remark 1.2.7. Probably the most common use of Theorem|1.2.4| occurs in showing that the map T
15 bounded between Lebesgue spaces. In order to get a Lebesque estimate from the theorem we need
p<randq=r:

1T vy = WO M e vy < CNALorxmy < C M Npoxmy = C M llpxm  (1:2.32)

for every f € UN LP(X; V), where C and C" are some constants depending on the parameters. In
order to guarantee that p < r we typically assume that p; < r; for 1 = 0,1, which then implies that
p < r. This places a fairly serious restriction on the range of validity of the Marcinkiewicz theorem,
though there are many uses of the result anyway.

In the event that LP?(X;F) C U in the Marcinkiewicz theorem, we immediately find that we
can view T : LP4(X;F) — L™(Y;F) as a bounded map in the sense that ||T°(f)|||;re < C || f]|p.a-
However, in practice we often want to utilize a space U that is much smaller than LP»9(X;F) but
possibly dense. In this case we can actually use Marcinkiewicz to extend 7" to LP»4(X;TF), provided
that T satisfies a slightly more restrictive condition than stated in the theorem. We explore this in
the next example. We will return to more practical applications of the theorem soon.

Example 1.2.8. Assume the hypotheses of Theorem m Suppose that T : U — LY(Y;TF) is
real-valued, i.e. T(f) is real a.e. in Y for each f € U. Further suppose that 7" is a sublinear
operator, i.e. for f,¢g € U we have that

T(f +9) <T(f) +T(g) and |T(=f)| = [T(f)] ae. inY. (1.2.33)
Consequently, for f,g € U we can estimate
T(H)<T(f=9)+T(9) =T(f)=T(9) <T(f —g) <|T(f —g)| ae inY, (1.2.34)
and so upon reversing the roles of f and g we find that
T(g)=T() <[Tg—=Pl==T( =gl =—-T(g=H <T(f) =T(9) a.e. in Y. (1.2.35)
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Combining these, we deduce that
T(f) =T <|T(f —g)| ae. inY, (1.2.36)

which implies that
I7TCF) =T s vy < NS = D s ) - (1.2.37)

Combining this estimate with the one provided by the Marcinkiewicz interpolation theorem then
shows that
ITC) =T praiyy W = Doy < CUNF = 9l oac) - (1.2.38)
Now, if we know that U is dense in LP9(X; V'), then we may use the fact that L™*(Y") is quasi-
Banach (proved in Theorem to uniquely extend 7T to a sublinear operator 7" : LP4(X;F) —
L™(Y; F) satisfying
()l

pra < Cl s (1.2.39)
A

1.2.2 The complex method of Riesz-Thorin

We now aim for the proof of the second interpolation result. It will be tied to the structure of
the complex numbers. We begin by recalling the maximum modulus principle for holomorphic
functions.

Theorem 1.2.9 (Maximum modulus principle). Suppose that @ # U C C is open and connected
and that f : U — C is holomorphic in U. If there exists z € U such that |f(z)| = maxy |f|, then f
1s constant in U. In particular, if U is compact and f extends continuously to U then

mgx lf| = max |f|- (1.2.40)

Now we prove a very interesting estimate known as Hadamard’s three lines lemma. It will be
the workhorse for our interpolation result.

Lemma 1.2.10 (Hadamard’s three lines lemma). Let R = {z € C | 0 < Re(z) < 1}, and suppose
that f € CP(R;C) is holomorphic in R°. Further suppose that My, My > 0 are such that

|f(0+1dy)| < My and |f(1+1iy)| < M, for ally € R. (1.2.41)
Then for every x € [0, 1] we have that
|f(z +iy)| < My~ My. (1.2.42)
Proof. Note first that for 2 = z 4 iy € R we have that
| My~ M7 | = My~ M{ > min{Mo, M} > 0. (1.2.43)
This allows us to define the functions g, g, € CP(R;C) (here 1 < n € N) via

9(2) = /2)

= s and ga(2) = g(2)el I (1.2.44)
0 1

34



The boundedness of g follows from the boundedness of f and (|1.2.43]), while the boundedness of g,
follows since for z = x + iy we have that

‘f(Z)‘ (z2—y2-1)/ ||f||cO(R) 2
n(2)] = =5 e 1.2.45
l9n(2) MM = min{ My, My} < ( )

This estimate also tells us that
19n(2)] <1 for z € OR (1.2.46)

and that for each n > 1 there exists r,, > 0 such that
Im(z)| > 7, = |gn(2)| < 1. (1.2.47)

Clearly g and g, for n > 1 are holomorphic in R°. Fix n > 1. For each m > 1 define the

rectangle R, = {z € R° | |Im(z)| < r, + m}. According to the estimates ([1.2.46]) and (1.2.47)) we
have that for n € N

ORm 9| ( )
and so the modulus principle guarantees that

r%ax\gn] <1 (1.2.49)

Sending m — oo then shows that
sup |g,| < L. (1.2.50)
R

Finally, since ¢,(z) — g(z) as n — oo for each z € R, we deduce that |g(z)] <1 on R, and hence

that ((1.2.42]) holds.
O

We now have all the tools needed to prove the second interpolation result, the Riesz-Thorin
interpolation theorem.

Theorem 1.2.11 (Riesz-Thorin). Let (X, 9, 1) and (Y, M, v) be measure spaces and suppose that
1 < po,p1,q0, 1 < 0. If go = ¢ = o0 then also suppose that Y is o— finite. Write U = S(X;C) N
LP(X;C) N LP*(X;C) and suppose that T : U — L°(Y;C) is a linear map and that there exist
My, My > 0 such that

HTfHL‘IO(Y;(C) < M ||f||LPO(X;(C) and ||Tf||L‘11(Y;(C) <M ||f||LP1(X;(C) (1.2.51)

forall f € U. Let 6 € [0,1] and 1 < p,q < 0o be given by

1 1—-06 0 1 1-0 0
b Do D1 q qo q1
Then
||Tf||Lq(Y;(C) < M(}“’Mf ||f||Lp(X;C) forall f € U. (1.2.53)

In particular, the map T extends to a bounded linear map T : LP(X;C) — LUY;C), satisfying

([T.2.53).
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Proof. First note that once ((1.2.53)) is established, the extension of 7" to a bounded linear operator

T:LP(X;C) — Li(Y;C) follows immediately from the density of U in LP(X;C). Thus it suffices

to prove . Throughout the proof we adopt the convention that if ¢ = d = oo, then ¢/d = 1.
Let R={z € C| Re(z) € [0,1]} € C. Define the functions P,Q : R — C via

P(z) = (1= 2)p/po + zp/p1 (1.2.54)

Q(2) = (1 = 2)¢ /gy + 2d' /a1 (1.2.55)

By construction we have that

0 < min{p/po, p/p1} < Re(P(z)) < max{p/po,p/p1} < oo

, (1.2.56
0 <min{q'/gp,¢'/qr} < Re(Q(2)) < max{q'/g5,¢'/q1} < o0, )
Write f € U and g € Syin(Y;C) as
J K
f= ervaEj and g = Z SkWEX (1.2.57)
j=1 k=1

for {E;}7_, € 9 and {F,}/_, € M pairwise disjoint and r;, s, € (0,00), and |v;| = |w;| = 1 for
1 <j<Jand 1 <k < K. Since g is a finite simple function we know that v(Fj) < oo for
1<k <K.

Note that for each j = 1,...,J we have that ViXEg, € U, so

T(vjXp,) € L*(Y:C)n L™ (Y;C) C LY(Y;C) (1.2.58)

and hence that Tf € L%(Y;C). Moreover, since v(Fy) < oo, Holder’s inequality implies that
T(vjXp,) € L'(Fy; C), and hence

/ T(vjxp)dv € Cfor 1 <j< J1<k <K (1.2.59)
Fy,
For z € R define
J K
f.= er(z)vaEj € S(X;C) and g, = ng(z)kaFk € Spn(Y;C). (1.2.60)
j=1 k=1

We then define the function F' € CP(R;C) via

J K
F(2) = / 9T f.dv = erfu)sg(z)wk (/ T(vaEj)dz/) eC. (1.2.61)
Y Fy,

j=1 k=1

Note that the boundedness of F' on R follows from the fact that Re(P(z)) and Re(Q(z)) satisfy
(1.2.56)). Furthermore, for each j, k the maps

R° >z rf(z) €eCand R°3 2z s°% e C (1.2.62)

are holomorphic, and thus F' is holomorphic on R°.
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Suppose that z € R is such that Re(z) = 0. In this case, if po, ¢, < co then

P(z !
ri’ (=) = r? and qu() = si, (1.2.63)

which implies that

/4
1l xcy = LI ) and lg:1 ot ey = NN 70y, (1.2.64)

We leave it as an exercise to verify that m also holds if either py = oo or ¢}, = 0.
Now suppose that z € R is such that Re(z) = 1. In this case, if p;, ¢} < oo then

P(z
PPPE |

71Q(z)
j 5)

=7, (1.2.65)

and so '
1l or x.c) = Hfl\%?}c and [|g:[] Ly Hqu . (1.2.66)

We again leave it as an exercise to verify that ((1.2.66) also holds if elther pP1 = 00 Or g = 00.
Now, if z € R is such that Re(z) = 0 then (1.2.51)), (1.2.64)), and Hélder’s inequality allow us to

estimate

[F < NTfoll oo viey 1921 ot iy < Mo L=l oo vy 11921 o

/
= Mo A1 ) N9y (1:2:67)

Similarly, if z € R is such that Re(z) = 1 then (1.2.51)), (1.2.66) and Hélder’s inequality imply that

[FG < NTfoll o viey 1920 ot iy < MLzl o ey 19211 ot v

= My I Nl - (1:2:68)

Lemma [1.2.10] and (1.2.52)) then imply that

1-6 0
FO)] < (Mo IR0 gl ) (M Iy ol )
= My MYl ooy 19 o vy - (1:2:69)

Since P(0) = Q(A) = 1 by construction, we then have that fo = f, g9 = g, and

= FO) < My MY || £l 1o iy 191l o vy (1.2.70)

gT' fdv
Y

Since we know from above that T'f € L(Y; C), we may then employ a standard result in Lebesgue
theory to bound

1Tl pagyc) = | 9 € Spin(Y:C) and lgll e yc) < 1}

gT' fdv
Y

< My~ M} [l prxy . (1.2.71)

which is ((1.2.53)).
O
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1.2.3 Comparing and contrasting the two interpolation theorems

It is worth pointing out the differences between the Marcinkiewicz and Riesz-Thorin theorems.
There is a trade-off between the two results. Marcinkiewicz let’s us have a more general type
of operator (not necessarily linear, but satisfying ) and works in more general spaces (the
Lorentz scale) with weak estimates (bounds in L"*°), but we pay a constant that depends on
the p,q,r, s parameters and blows up as we approach the endpoints. For Lebesgue spaces it is
also subject to the restrictions discussed in Remark [I.2.7] Riesz-Thorin requires a more restrictive
operator (linear), and works only for a stricter class of spaces (stronger estimates required) over the
complex field, but it gives better interpolated bounds (the constants don’t blow up), and it is not
subject to the restrictions of Remark Note that neither theorem is stronger than the other:
they are simply different.

1.3 Applications

Our goal now is to demonstrate various uses of the Marcinkiewicz and Riesz-Thorin theorems.

1.3.1 The Hardy-Littlewood maximal function

Let f: R™ — F be locally integrable. Then the Hardy-Littlewood maximal function M(f) : R" —
[0, 0] is defined via

M(f)(z) = sup ! /B( )If\. (1.3.1)

r>0 wnrn

Note that for a fixed x € R™ the continuity of the map R, > r — wﬂ% fB(z " |f| € R shows that
the supremum over r > 0 can be replaced by the supremum over » € Q N R+. The latter set is
countable, so M(f) is measurable. It is then a trivial matter to verify that the Hardy-Littlewood
maximal function, viewed as a map M : L} _(R™;F) — L°(R™;F), is sublinear (see Example .

loc

Let f # 0 be locally integrable. We may trivially bound

M) oo < (11l oo - (1.3.2)

On the other hand, since f # 0 we can pick § > 0 and 0 < R < oo such that

/B(O . Ex (1.3.3)

Then for x € R" with |z| > R have that B(0,R) C B(x, R+ |z|) and 1/(2|z|) < 1/(|z| + R), so we
can bound

1 1 1)
Mf:cZ—/ fz—/ fl>—2 1.3.4
D@2 S TTTR Jowen = ol + B Jaomy | = 2l (134
Hence,
1) dx
M(f)(x)dx > / — = 00, 1.3.5
/B(o,R)c () 2"wn Jp(o,r)e 7] ( )

and we deduce from this that M(f) is never integrable when f is nontrivial and locally integrable.
In spite of this failure, we can get a weaker estimate that will be sufficient for using Marcinkiewicz.
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Theorem 1.3.1. Let 1 <p < oo and 1 < g < oo. The Hardy-Littlewood mazimal operator extends
uniquely to a bounded sublinear operator M : LP4(R™;F) — LP9(R™;F), i.e. there exists a constant
C =C(p,q) > 0 such that

M e < ClSllpoa for all f e LPIR™F). (1.3.6)

In particular, by taking ¢ = p we have that M : LP(R™;F) — LP(R™F) is a bounded sublinear
operator.

Proof. Let f € LY(R™F). If z € R", t > 0, and M(f)(z) > t then there exists r, > 0 such that

/ |f| > tw,ry, (1.3.7)
B(z,rg)

and hence
By = {z e R" | M(f)(x) >t} C | ] B(x,7a). (1.3.8)

reFEy

Vitali’s lemma allows us to extract a countable subcollection {B(x;,7;)}; that is pairwise disjoint
and satisfies the bound
> LY(Blwi, i) > CL"(Ey) (1.3.9)

for a constant C' = C'(n) depending on the dimension n. Then

1 1 1 1
= L F <—E n<—§ < — = — 1. 1.3.1

Consequently,
M e < CLllAL (1.3.11)

for some constant Cy > 0.

We now know that M maps L>(R"™;F) to L>°(R™;F) and L'(R"™;F) to L»*°(R"™;F) in a bounded
way. The Marcinkiewicz interpolation theorem and Example then tell us that for each 1 <
p < oo and 1 < g < oo there exists C' > 0 such that

MU zoa < CUSN o (1.3.12)

for all f € LP4(R™;F). In particular, choosing ¢ = p shows that

M)l <Cl Sl forall<p<oo. (1.3.13)

1.3.2 The Hausdorff-Young inequality and its variants
The Fourier transform is the map *: L'(R"; C) — L>*°(R™; C) defined via

f&) = | fla)e ™ da. (1.3.14)
R’ﬂ
It’s a simple matter to verify that * is a bounded linear map,

|, <. (1.3.15)
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and that f is uniformly continuous. Actually, the Riemann-Lebesgue lemma (a proof of which can
be found in any book on Fourier analysis) shows that

lim f(£)=0 (1.3.16)

|§|—o0

so - actually maps into the space of uniformly continuous functions that decay to zero at infinity.
Remarkably, for f,g € L'(R";C) N L*(R"; C) we have that

[ ga= [ Foad s, =
J1= 1

(1.3.17)

2’

which allows us to uniquely extend * to a unitary bijection * : L?(R"; C) — L%(R"; C) satisfying the
above for all f, g € L?(R";C). Again, a proof can be found in any book on Fourier analysis.

We will take these facts as given and use them as inputs in interpolation theory. The classic
Hausdorft-Young inequality applies Riesz-Thorin to these estimates to deduce further boundedness
properties of the Fourier transform.

Theorem 1.3.2 (Hausdorff-Young). Let 1 < p < 2. Then the Fourier transform extends to a
bounded linear map - : LP(R™; C) — LP (R™; C). In particular,

4

<||fll;» forall f € LP(R"™;C). (1.3.18)

'

Proof. The above bounds tell us that
(ML < |Ifll,2 for all f e L'(R™C) (1.3.19)

and R
|
The result then follows from these bounds and the Riesz-Thorin interpolation theorem after we note
that if

T | f|l 2 for all f € L*(R"™C). (1.3.20)

1 1—-6 6 1 1-46 0

- i agpndt=—"4 1.3.21

» 5 +1an . 5 +oo (1.3.21)
then

Sp-=1 (1.3.22)
and hence ¢ = p/. O

Note that we also could have used Marcinkiewicz to deduce the boundedness of * from LP(R"™; C)
to L” (R™; C) since p < p' for 1 < p < 2. However, this would result in a worse estimate for the norm
than that provided by Riesz-Thorin. We can still use Marcinkiewicz to learn something, though.

Theorem 1.3.3 (Hausdorfl-Young, Lorentz variant). Let 1 < p < 2 and 1 < q¢ < co. Then the
Fourier transform extends to a bounded linear operator * : LP¢(R™; C) — LP"4(R"; C).

Proof. Exercise. m

Remarkably, this isn’t the end of the story! We can derive another variant that employs certain
weights on the Fourier side.
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Theorem 1.3.4 (Hausdorff-Young, weighted variant). Let 1 < p < 2 and p < q¢ < p’. Then there

exists a constant C' > 0 such that
1/q
q d§
|§|n(1—q/p’)> < ¢ HfHLP (1323)

for every f € LP(R™;C).

Proof. Define the measure y on R” via p = dé/ |€]*". We will write LA(R™;C) and LP4(R™; C) for
the Lebesgue and Lorentz spaces relative to the measure p, and when we omit the p we mean the
usual spaces relative to Lebesgue measure.

Define the map 7' : L'(R"; C) + L*(R";C) — L) (R"; C) via

Tf() = [¢" F(€). (1.3.24)
Using , we may bound
Tfl,» = NP LS > = . 1.3.25
P R RGI = A1, (13.25
Next, we claim that
Tl e < wnll £l s (1.3.26)

where w, is the volume of the unit ball in R" (see the Section [0.2]). To see this first note that if
¢ € R™ is such that ¢t < |T'f(£)[, then ([1.3.15)) implies that

t<[g"

1/n
\_\fl 11l = (HfT!L) <[], (1.3.27)

and hence
{€€R"| [TF()] >t} € BO,t//||fII}4")*. (1.3.28)

Thus, for t € R, we may bound

TS (13.29)
e T not

d oo n—ld . )
:a |Tf(§)|>t})g/B(Otl/n/”f”l/n)c_fza/t rldr o | ],

which implies (|1.3.26]) since w,, = a,/n.
With (1.3.25)) and (|1.3.26]) in hand, we may apply the Marcinkiewicz interpolation theorem to
deduce that for each 1 < p < 2 there exists C' > 0 such that

(.

for all f € LP(R";C). When ¢ = p this is (1.3.23) since

1 g —2p, (1.3.31)

2 d§
€[

~

f€)

1/p
) =TSl < ClIf e (1.3.30)

as is readily verified. In the general case of p < ¢ < p’ we define 6 € [0, 1] via ¢ = (1 —0)p + 0p/, or
equivalently
/

/o 1_ / 1_
P oand1—g=L "0 _ q/p/: a/v"
P =p P-p 1-p/p  2-p

(1.3.32)
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Then from (|1.3.30), the basic Hausdorff-Young inequality from Theorem [1.3.2) and Hoélder’s in-
equality we may bound
o\
)

’ 0
FOf d) <AL IS =l 1.33)

A ‘p 1-6

¢ de f(€)
|§|n(1fq/p’) - /n |€|n(27p) (

g(/w ‘

p d&
| gln(%p) ”
and we deduce that

1/q
d
q—iiﬁ <Ol (1.3.34

£

£

~

f€)

|§|n(1*Q/p

This is (T.3.23).

1.3.3 Integral operators

Let (X, 90, 1) and (Y, N, v) be measure spaces and U C L°(Y';F) be a subspace. We now turn our
attention to maps T : U — L°(X;TF) of the form

wmzﬁm“w@ww, (1.3.35)

where K : X XY — F is a given measurable “kernel” function. Of course, we need to worry about
hypotheses on K and f that will guarantee that this integral makes sense, and we will identify
sufficient conditions for this. When the operator is well-defined it is obviously linear, and such
linear maps are referred to as integral operators.

Our first result on integral operators assumes that the kernel satisfies some uniform integrability
conditions.

Theorem 1.3.5. Let (X, M, 1) and (Y, M, v) be o—finite measure spaces, and let 1 < p < oco. Let
K : X xY — F be measurable with respect to M @ N and suppose there exists a constant A > 0
such that

/ |K(z,y)|du(z) < A forv—ae yeyY
X (1.3.36)

/ |K(x,y)|dv(y) < A for u—a.e. x € X.
Y

Then the following hold.

1. If f € LP(Y;F) then for p—a.e. x € X the integral [, K(x,y)f(y)dv(y) is well-defined, and
the function T'f : X — F defined a.e. via

T5(e) = | Klan ) (1337
is such that Tf € LP(X;F) and
1Tl o xmy < AUS N Loy - (1.3.38)
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2. The induced map T : LP(Y;F) — LP(X;F) is linear and bounded.

Proof. First note that it suffices to prove the first item, as the second follows immediately from the
first. Second, note that we may reduce to proving the result with F = C since R C C and T'f is
clearly real-valued when K and f are. If p = 1 or oo, then the first item follows from Fubini-Tonelli
or Holder, respectively. Then the Riesz-Thorin interpolation theorem implies that the first item
continues to hold for general 1 < p < oco. O]

Remark 1.3.6. We also could have applied Marcinkiewicz to prove the theorem, but the constant
would have been worse.

We can parlay the result of Theorem [1.3.5|into a proof of Young’s inequality.

Theorem 1.3.7 (Young’s inequality). Let 1 < p,q,r < oo satisfy

1 1 1
-+ -=1+-. (1.3.39)
p q r
Then for each f € LP(R™F) the linear map Ty : L'(R™F) N LY (R*;F) N S(R™; F) — LO(R™;F)
given by

Frg(e) = | FWgle —y)dy (1.3.40)
is well-defined and extends uniquely to a bounded linear map I'y : LY(R™; F) — L"(R™; F), and
ITrgll e < [ fllzo llgllpa for all g € LYR™F). (1.3.41)
Proof. First note that the conditions on p, ¢, r imply that
N (1.3.42)

p q r
If we define K : R" x R" — F via K(z,y) = g(z — y), then we may use Theorem with
A =||g||;: to see that
ITsgll e < gl 11 Lo (1.3.43)

so I'rg is well-defined on L'(R™F). If r = p, then ¢ = 1 and the result follows from this and a
standard density argument.
On the other hand, Holder’s inequality shows that

ITs9ll e < Mgl /11 for all g € L¥ (R™ F). (1.3.44)

If r = 0o, then ¢ = p’ and again the result follows from this and a standard density argument.
Suppose, then, that p < r < oo in which case we can define 6 € (0,1) via
1 1-0 0 1—-0

St — = (1.3.45)
r P 00 P

This implies that
1—-60 0 0 0 1 1 1

2 e e R T (1.3.46)
1 p p p L
We may then apply Riesz-Thorin to deduce that the map I'f extends to a bounded linear operator
I'y: LYR™F) — L"(R™; F) with
ITsgll e < 111 Nlgll o (1.3.47)

and the result is proved. O
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This suggests a definition.

Definition 1.3.8. Let 1 < p,q,r < 0o satisfy
1

1
S=14-. (1.3.48)
q T

We define the bilinear map x : LP(R™; F) x LY(R";F) — L"(R™; F) via

frgle)= | fygle—y)dy= [ flz—y)g(y)dy. (1.3.49)
R™ R™
By Young’s inequality this is well-defined and bounded:

1 gll e < [1fl1ze llgll o - (1.3.50)

Remark 1.3.9. If we replace R™ with Z™ and Lebesque measure by counting measure in Young’s
inequality, then the argument pushes through without modification and shows that if we define

frg(m)=>" f(k)g(m —k), (1.3.51)
ke
then fxg € ("(Z™;F) when f € (P(Z",F) and g € (I(Z";F) with (1.3.39) satisfied. Moreover,
15 gller < NSl Nl

In the above we have exploited Riesz-Thorin in order to get bounds on integral operators.
It turns out that we can also use the Marcinkiewicz theorem, and this allows us to put weaker
assumptions on the kernel. To prove this we fist need a lemma.

Lemma 1.3.10. Let (X,9M, 1) be a measure space. Let f: X — F be measurable, 7 € Ry, and set
E(r)={ze X | |f(z)| > T} (1.3.52)
Define h., g, : X =V wia

_ I

f
hry = fXE(T)c + T X e ond gr = f=h= /]

|f] (f1 = T)Xpe- (1.3.53)

Then
df (t) th <T

‘ (1.3.54)
0 if T < t.

dgT(t) = df(t + T) and th(t) = {
Proof. First note that |h,(x)| < 7 for all 2, so d_(t) =0 for t > 7. For t < 7 we then compute

dp, (1) = p({x € E(T)"| |f(x)] > t}) + u(E(7)) = p{z € X | [f(2)] > 1}) = df(t),  (1.3.55)
which proves the equality for h.. On the other hand,

f(z)

dy, (1) = p({z € E(7) | )]

(f@)=7) > t}) = p({zr € X[ [f(2)] =7 > t}) = dp(t + 7).

(1.3.56)
0
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With the lemma in hand, we can now prove a variant of Theorem [1.3.5]

Theorem 1.3.11. Let (X, M, u) and (Y, N,v) be o— finite measure spaces, and let 1 < p,q,r < 00

be such that
1 1 1
—t+-=1+-.
p g r

Let K : X XY — F be measurable with respect to M RN, and suppose there exists a constant A > 0
such that

(1.3.57)

‘”K<'7y)|HLf1,OO(X;F) <A fOT' V—a.e yYcE Y

1.3.58
K @, Mooy < A for i — ace. o € X. (1.3.58)
Then the following hold.

1. If f € LP(Y;F) then for p—a.e. x € X the integral [, K(x,y)f(y)dv(y) is well-defined, and
the function Tf : X — T defined a.e. via

Tf(z) = /Y K (2. 9) (4)dv(y) (1.3.59)

is such that Tf € LP(X;F).

2. The induced map T : LP(Y;F) — L"(X;TF) is linear and bounded, and there exists a constant
C > 0 depending only on p,q,r, such that

1T f o xpy < CANS oy Jor all f € LP(Y;F) (1.3.60)
Proof. First note that
1 1 1 1 1 1 1
e (1.3.61)
r p g p q qa p
and this tells us that p < ¢’ and ¢ < p’. Next note that the result is trivial if A = 0, so we can

assume that A > 0.
Consider 0 # f € LP(Y;F). Assume for now that || f||,, =1 and A < 1. Let 7 > 0 and define

E(r)={(z,y) e X xY | |K(x,y)| > 7}, (1.3.62)

and
a8
1= 77
K|
Define the operators T} and Ty with K replaced by K; and K5, respectively.
By the Lemma [1.3.10] we may compute

K |K| = 7)X g and Ky = K — K. (1.3.63)

oo o0 1—q
[ 1K ldvte) = [ ity [ o= T (1.3.64)
Y 0 T q—
and similarly
ri-q
[ 1w due) < T (1.3.65)
X q—1
Thus Theorem tells us that T) f is defined a.e. and
rl-a rl-a
T < = —. 1.3.
ISl < 2 1l = 75 (1.3.66)
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On the other hand, since ¢ < p’ we may compute

/

p/Tp —q

/ K, ) du(y) = ¢/ / g (1)t < / gy —
Y 0

. 1.3.67
0 P —q ( )

This bound and Holder’s inequality imply that 75 f is defined for a.e. x € X and that

/_ 1/]7/ 1/p/
) (5)
Ty f mg( fll.. =1 - 7T 1.3.68
17211}, v —q 11l . ( )

These two arguments combine to show that Tf =T, f + T f is well-defined a.e. in X.
Due to the decomposition T'f =T f + T5f we can bound, for any t € R, ,

dryp(t) < dp g (t/2) + drys(t/2), (1.3.69)

r/q /
(1 q\"/(ar")

then (1.3.68)) shows that ||T2f]|; < t/2 and hence dr,f(t/2) = 0. With this choice made we then
use Chebyshev to bound

drs(t) < drys(8)2) < (M)p . < ol )p

t (g — 1)t

and so if we choose

= M (g>[(1_q)(m)]/(qp/) t—pH(=aprl/a _ % (1.3.71)
(=1 A\r o
for some constant C' = C'(p, q,r) > 0, due to the algebraic calculation
1_
% —p=p (—5 - 1) - —p}g S (1.3.72)
The bound 1
dre(t) < Ct_T (1.3.73)

was proved under the assumption that || f||,, = 1, but for general f # 0 we can apply this estimate
to f/||fll;» to deduce that

drs(t) < C (%) (1.3.74)

This yields the bound
T f oo < CNAN o (1.3.75)

for all p, r satisfying the relation to ¢ in the hypotheses.
Since 1 < p < oo we may choose 1 < pg < p < p; < oo and define 1 < ry <r <r; < oo via

1 1 1 1 1 1
-+—=1+—and -+ —=1+—. (1.3.76)
q Do To qa DN 1
Define 6 € (0,1) via
1 1-60 46
- = + = (1.3.77)

p Po y4!
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and note that

1-6 60 1 1-6 40 1 1 1
+—:(1—0+8)(——1>+ +—=-4+-—-1=-. (1.3.78)
To 1 q Po b q P r

Further note that p; < r; for « = 1,2 by construction, so p < r.
The estimates above tell us that

T £l oo ey < Cill Fll iy for i = 1,2 and f € LP(Y;F) (1.3.79)

for constants C; > 0. Then according to this and the Marcinkiewicz interpolation theorem there
exists a constant C' > 0 such that

ITf e xmy < C Il oo xm) (1.3.80)
for all f € LP(Y;F). Finally, this estimate was derived under the auxiliary assumption that A <1,
but the general case follows from this special case applied to K/A. m

As an immediate consequence we get a very useful variant of Young’s inequality.

Theorem 1.3.12 (Young’s inequality, weak-strong form). Let 1 < p,q,r < oo satisfy
4 =14-, (1.3.81)
If f € LP(R™;F) and g € L2(R";F), then the function f*g:R" — F given by

frg(r) = . f(y)g(x —y)dy (1.3.82)

is well-defined a.e., measurable, and belongs to L"(R™;F). Moreover, there exists a constant C =
C(p,q,r) > 0 such that

1f*9lle < Clfl e llgll o (1.3.83)
for every f € LP(R™;F) and g € L2>°(R"; F).

Proof. This follows from Theorem |1.3.11] by setting K (x,y) = g(z —y) and A = |||g]|| ;4. O

Remark 1.3.13. This theorem can again be extended to functions defined on the integer lattice Z".
We will not need this, though, so we don’t record it in a precise form.

As a brief glimpse of the power of this generalized version of Young’s inequality we present the
following result on the Riesz potentials.

Theorem 1.3.14 (Hardy-Littlewood-Sobolev inequality). Let o € R satisfy 0 < a < n. For
[ € Spin(R™;IF) define the Riesz potential of f to be the measurable function Z,f : R* — F given by

Iaf(:v):/R W g, (1.3.84)

oz =y
Then I, extends to a bounded linear operator Z,, : LP(R™;F) — L"(R™;F) for 1 <p <n/(n— «)
and

1 1 n-
P G (1.3.85)
.




Proof. Note that

1 1
t< —% — 1.3.
< PR & x| < e (1.3.86)
and so if we write g(z) = 1/|z|* then
4, (t) = w, (1.3.87)

and we deduce that ¢ € L™**. We can then apply Theorem [1.3.12] to deduce that Z, €
L(LP(R™;F); L"(R™; F)) whenever

1
r

O
These bounds for the Riesz potential cannot be improved. Indeed, we have the following example.

Example 1.3.15. Suppose that there exists C' > 0 such that

|\ Zofll;» < CIfll,» forall feLP. (1.3.89)

Pick f € LP(R™)\{0} such that f > 0 a.e., which implies that Z, f # 0. For A > 0 consider f\ € L?
given by fi(x) = f(Ax). We then compute

1l = A1 fll - (1.3.90)
Al f09) 0w)
) Yy _
Tofr(z :/ ady:)\a/ —— —dy = NI, f(\x), 1.3.91
M= Tl e o — ] A 39
and so
| Zafoll e = A" | o f |1 - (1.3.92)
Thus
AT T fll e S XTPC f g (1.3.93)

Since both of the norms are nonzero and we are free to send A — 0 and A — oo in this inequality,
we see that we can avoid a contradiction if and only if

1 1 —
P r r o p n n—p(n — «)

This scaling argument shows that the relationship between p and r from the theorem is a necessary
condition. Note that we need 1 < p < n/(n— «) for this to make sense at all. The scaling argument
does not address what happens at the endpoint cases, p = 1 and p = n/(n — «), though. We will
show that the Riesz potentials are unbounded in these cases.

Let p = 1, which means that 7 = n/a. Consider f € L*(R™;F)\{0} real valued such that f >0
a.e. Pick R > 0 and ¢ > 0 such that

e (1.3.95)
B(0,R)
Then for |z| > R and |y| < R we have that |z — y| < |z| + |y| < || + R < 2|z|. Thus, for || > R
we can bound 5
T.f(2) > / Wy > / AL IS (1.3.96)
BO.R) 1T — Y B(O,R) 2% |7 2% |z|
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and so

5 n/a d
/ T f ()] dex > (—) / 25 = oo, (1.3.97)
B(0,R)° 2¢ BO,R) |7]

which in particular means that Z,, f ¢ L"(R™;TF).
Let p =n/(n — «), which means that r = co. Fix 1 < f < p and define f : R" — R via

fa) = )77 [log ||| PP for 0 < |z| < 1/e (1.3.98)
0 otherwise. o
Then since 1 < f3,
1/e dr &0 ds
P _ I - 1.3.
= a0 | gty = | sogep < (1.3.99)

so f € LP(R™;TF). However, if 0 < § < 1/e, 0 < |y| < 1/e, and |z| < §, then |z —y| < |z| + |y| <
5+ |y| < 2]y, and so

fy) 401 f(y)dy

Zof(z) = / —

(o<lyl<1/e} 1T — y|* 7 T 20 {6<|yl<1/e} |y|*

1 dy g /1/6 r"ldr Qg /1/‘S ds
2% Jiscpi<rser Jy* TP log(1) [y))ere 2% Js  rmllog(1/rm)]¥r 2% ), s[logs]?/r

(1.3.100)
Since B/p < 1,
/ T_ds (1.3.101)
o sllogs)r 7 -
and we conclude that Z, f ¢ L>®(R™; F).
A

2 Abstract interpolation theory

We have now seen that the Lebesgue and Lorentz spaces admit a rich interpolation theory that is
extremely useful in the sense that it allows us to gain information about the mapping properties of
certain types of operators by first understanding how the operator acts on two fixed pairs of such
spaces. Our goal now is to generalize these techniques to the context of more abstract spaces, and
to thereby distill the essential ideas at the core of what we’ve done so far. In turn, we can hope
that this will provide a clearer perspective on the Lebesgue and Lorentz interpolation as well as
equip us with tools analogous to the Marcinkiewicz and Riesz-Thorin theorems that we can use in
a more general context.

A serious problem with this program immediately presents itself: in the context of Lebesgue and
Lorentz spaces we naturally have a continuum of parameters with which can interpolate, namely the
values 1 < p, q < 0o, but in a more general context it’s not obvious where such parameters will come
from. This means that our starting point will not be the development of the interpolation theory for
operators but rather the construction of the interpolation spaces themselves. Once we have these in
hand, we can then turn to the question of building the corresponding operator interpolation theory.

Fortunately, these spaces can be constructed, and they do admit a beautiful and useful theory
of operator interpolation. Once we have developed this in this section, we will return to the
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context of the previous section and demonstrate how what we saw there fits into this framework.
Unfortunately, due to time constraints, we will not be able to fully develop this theory in these
notes. Because of this, we have chosen to focus solely on the so-called real method of interpolation,
which is, roughly-speaking, the abstract generalization of the Marcinkiewicz interpolation theorem.
There is a corresponding abstract generalization of the Riesz-Thorin theorem known as the complex
method that we will completely ignore.

2.1 Compatible pairs of Banach spaces

We begin by laying the groundwork for the construction of the interpolation spaces. The crucial
observation was described in the overview: if (X, 9, i) is a measure space and 1 < p < oo, then

LY(X;F) N L®(X;F) — LP(X;F) — LY(X;F) + L®(X;F). (2.1.1)

In fact, it’s possible to prove the same result with L?(X;F) replaced by LP4(X;F) for any 1 < ¢ < co.
What this tells us is that the spaces we use for interpolation always nest between the extreme spaces
LYX;F)NL>®(X;F) and L' (X;F) + L°>°(X;F). This suggests that if we want to extend our theory
we should start by looking at pairs of Banach spaces Xy and X; for which we can make sense of
XoN Xy and Xy 4+ X;. We turn our attention to this now.

2.1.1 Reminders about the basics of Banach spaces

We first record a couple quick reminders about the structure of general Banach spaces. The first
gives a characterization of completeness in terms of infinite sums.

Theorem 2.1.1. Let X be a normed vector space. The following are equivalent.
1. X 1is Banach.
2. If {x,}5°, C X and Y7, ||xn|| is convergent in R, then Y, x, is convergent in X.

Proof. Suppose first that X is Banach and that Y, ||z,|| is convergent in R. Let ¢ > 0. Since R
is complete we may choose N > ¢ such that m > n > N implies that

D apl| <Dl <« (2.1.2)
k=n k=n

and hence the partial sums {ZnNz s Tn} -, are Cauchy and hence convergent due to the completeness
of X. Hence > 7, x, converges in X.

Now suppose that (2) holds and let {z,}2>, € X be Cauchy. We may extract a subsequence
{20, }32, such that ||z, ,, — @, || < 27F for all k > €. Set yy = zp,,, — Tn, for k > £. Then

D ollull <> 27F <o, (2.1.3)
k=¢ k={

and so by (2) we have that >~ , v converges in X. However,

K [e'S)
;yk = Tuy = Tng = 1M @0 = T, + ;yk € X, (2.1.4)
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i.e. the subsequence {z,, }32, converges in X. Basic real analysis tells us that Cauchy sequences
with convergent subsequences must be convergent, so we find that {z,}>°, is convergent. Hence X

is complete.
O

Our second result records two useful ways to check that we have an embedding X < Y when
X and Y are Banach spaces.

Theorem 2.1.2. Let X and Y be Banach spaces and suppose that X C'Y as a vector subspace.
Then the following are equivalent.

1. X =Y, ie. the inclusion map I : X — 'Y is continuous.
2. There exists a constant C' > 0 such that ||z|y < C||z||y for all z € X.
3 If{zp}2, C X, 2, >z in X, and x, >y inY, then x =y.

Proof. The equivalence of the first and second follow from the equivalence of boundedness and
continuity for linear maps, and the equivalence and the second and third follow from the closed
graph theorem. O]

2.1.2 Compatible Banach spaces and their sums and intersections

If we want to form the intersection Xy N X; and the sum Xy + X; for general pairs of spaces X
and X7, then we clearly need that the vector space structure of these spaces are compatible in some
way. In fact, it will be crucial to have a sort of topological compatibility condition as well. We
define this notion now.

Definition 2.1.3. Suppose that Xq, X1 are Banach spaces over the field .

1. We say Xy and X1 are compatible if there exists a Hausdorff topological vector space Z over
F such that X; — Z is a subspace for i = 0,1 and the inclusions are continuous.

2. Suppose that Xo, X1 are compatible. We define
Xolez{Z€Z|Z€X0 a’ﬂdZEXl} (215)

and
Xo+Xi={z€Z|2z=29+x1 for xzg € Xy and x1 € X;1}. (2.1.6)

Define |||l x,nx, * Xo N X1 — R via
2l xonx, = max{[le]lx, ; llzllx, } (2.1.7)
and define |||y, . x, : Xo + X1 — R via
12/l x, 1 x, = inf{llzollx, + ll71llx, | * =20+ 21 for zo € Xo and z; € X1} (2.1.8)
Note: we will sometimes write ||||o,y = |l x,x, and [|-llony = [ x,nx, as shorthand.

We can now mimic the usual proof that LP0N LP* and LP° + LP* are complete in this more general
context.

Theorem 2.1.4. Suppose that Xy and X, are compatible Banach spaces. Then the following hold.
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1. ||-||X0le 1s a norm, and Xo N Xy is a Banach space when equipped with this norm.
2. |"llx,+x, i a norm, and Xo+ Xy is a Banach space when equipped with this norm.
3. We have the continuous embeddings

XoNX; = X; < Xo+ Xy fori=0,1. (2.1.9)

Proof. We begin with the proof of the first item. The fact that ||-||y,~x, is a norm follows directly
from fact that ||-[| i, is a norm for i = 0, 1; we leave it as an exercise to check the details. Consider
a Cauchy sequence {z,,}°°, C Xo N X;. Then the definition of the norm shows that the sequence
is Cauchy in both Xy and in Xj, and since these are both assumed to be complete, there exist
r € Xg and y € X; such that x, — x in Xy and z, — y in X; as n — oo. Due to the continuous
embeddings X; — Z for ¢ = 0,1 we have that x,, — = and z,, — y in Z, but limits in Z are unique
since Z is Hausdorff, and hence x = y € Xy N X;. From this we readily deduce that

Jggo [z = 2nll xynx, =0 (2.1.10)

and so Xy N X; is a Banach space.

We now turn to the proof of the second item, which is a bit more involved than the proof of
the first. First we show that |||y, ,x, is a norm. Clearly [|z|y  , > 0 and [|0]ly,  x, = 0. On
the other hand, if |[z[| y .y, = 0 then for every n € N we can find y, € X, and 2, € X, such that
r =1y, + 2z, and

g, + zall, <277 (2.1.11)

Then ¥y, — 0 in Xy and 2z, — 0 in X; and since the inclusions X; < Z are continuous we have that
=Y, + 2, > 0asn — ooin Z, and so x = 0. Homogeneity and the triangle inequality are easy
and left as an exercise to verify. Thus, ||-||x, ,x, is a norm.

We now prove completeness for Xy + X;. Consider a sequence {z,,}5°, € Xy + X; such that
> o 17y, 1 x, < oo. For each n > ¢ we can pick y, € X, and 2, € X; such that

1Ynllx, + 120l x, < NZallxgex, +277 (2.1.12)
which in turn means that
o) o
Syl + 3 Mlzall, < oo. (2.1.13)
n=¢( n=>~¢
Since X, and X; are Banach, we can use Theorem to see that we have the convergence
> ya=yin Xgand Yz, =z in X;. (2.1.14)
n={ n=>~¢

Set r =y + z € Xg + X; and note that for N > £ we have

=Y w, = <y— Zyn) + <Z—Zzn) : (2.1.15)

which implies that

N N N
a:—z:cn < y—Zyn + z—Zzn — 0 and N — oc. (2.1.16)
n=~{ Xo+X1 n=>~{ Xo n=~{ X1
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Thus, > °,z, = x € Xy + X, where the sum convergences in the Xy + X; norm, and so by
Theorem we conclude that Xy + X, is Banach. This proves the second item.

Finally, we prove the third item. The subspace inclusions XqNX; C X; C X+ X, are obvious,
so we only need to prove continuity. We have the bound

[2llx, < llzllx,nx, forevery z € XoN X, (2.1.17)

which proves that Xq N X; < X;. On the other hand, if x € X, then x = x 4+ 0 and so

2l g, < Nl (2.1.18)

which shows that X; — X, + X;.
O

Remark 2.1.5. Notice that in the proof we don’t really exploit the assumption that Z is a topological
vector space in the sense that we never use the continuity of scalar multiplication. This shows that
we could in principle weaken the assumptions on Z in the notion of compatibility and require that Z
s merely an Abelian topological group in which Xy and X are subgroups with respect to the additive
group structure of these vector spaces.

2.1.3 Intermediate spaces

We now have the ability to form the Banach spaces Xy N X; and Xy + X; when X, and X; are
compatible. As the next step we introduce the notion of a space intermediate to these, which
generalizes the relations we saw in ([2.1.1]).

Definition 2.1.6. Suppose that Xo and X; are compatible Banach spaces. A Banach space X 1is
said to be intermediate to Xo and X, if

XoNX; = X <= X+ X;. (2.1.19)
Let’s consider some examples.
Example 2.1.7. Xy N X; and Xy + X; are both trivially intermediate to Xy and Xj.
Example 2.1.8. Theorem shows that both X, and X; are intermediate to Xy and X;.

Example 2.1.9. From (2.1.1)) we know that LP(X;F) is intermediate to L'(X;F) and L>(X;
when 1 < p < oo. The same is true of LP9(X;F) for 1 <p < oo and 1 < ¢ < 0.

>3 > D>

Given a pair of intermediate spaces Yy and Y; between compatible spaces Xy and X; we clearly
have that Yy and Y; are compatible, and so we can repeat our previous constructions. The next
elementary result shows how the resulting spaces sit inside the existing ones.

Proposition 2.1.10. Let Xy and X7 be compatible Banach spaces, and suppose that Yy and Y, are
intermediate to Xo and Xy. Then Yo NY, and Yy + Y7 are intermediate to Xy and X, and we have

the following embeddings:
Yo \

XoNX, —— YoNY, Yo+ Y, —— Xo+ X, (2.1.20)
Y,
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Proof. Exercise. O]

Given three topological vector spaces that nest via X — Y < Z we have two natural operations
we perform to construct new spaces: we can take the closure of X in Y, and we can take the closure
of Y in Z. We now give this idea a special name in the context of intermediate spaces.

Definition 2.1.11. Suppose that Xy and X are compatible Banach spaces and that X is interme-
diate to Xy and X;. We define the space X as the closure of Xo N X, in X, and the space X as the
closure of X is Xo+ X1. The space X is called the lower closure and X is called the upper closure.
Clearly, X and X are Banach, and we have the continuous inclusions

XoNX; = X=X — X — X, + X, (2.1.21)

which in particular means that X and X are intermediate to X, and X;.

At this point the only spaces that we know are intermediate to a compatible pair X, and X,
are Xo, X1, Xo N Xy, and Xy + X;. It turns out that we can characterize the upper and lower
closures of these in terms of sum and intersection operations in a very nice way. Indeed, we have
the following fundamental result.

Theorem 2.1.12. Let Xy and X, be compatible Banach spaces. Then the following hold.
1. X, =X,NX, and X, = X, N X;.

X, =Xo+ X, and X =X, + X;.

XNX,=X,NX;=X,NX, =XoNX,, X,NX; =X,, and X, N X, = X,.

Xo+X1=Xo+ X1 =Xo+ X1 =X+ Xy, X, + X1 = Xy, and X, + X, = Xo.

Xo—i-Xl:Xole:XoﬂXl:XO—'—Xl.

Proof. We begin with a bit of notation. If A and B are normed vector spaces and we have the
subspace inclusion A C B, then we write cl(A, B) C B for the closure of A in the topology of B.
We leave it as an exercise to verify that if A — B < C for normed vector spaces A, B, and C,
then

cl(A, B) = cl(A4,C) and cl(A,C) — cl(B,C). (2.1.22)
From and the fact that each X; is intermediate to Xy and X; we see that
X, =c(XoN Xy, X;) — (X, X;) = X (2.1.23)
and
X; = cl(XoN X1, X;) = cl(XoN Xp, Xo + X1) = cl(X1_5, Xo+ X1) = X1 (2.1.24)
so that B
X, = X;N X, (2.1.25)

To complete the proof of the first item it then suffices to show that this embedding is surjective.
Fix i € {0,1} and let z € X; N X,_;. Then for every € > 0 there exists z. € X;_; such that
|z — 2|y, <&, which in turn allows us to choose y. € X; and 2. € X;_; such that  —z. = y. + 2
and
yell; + llzell, s <& (2.1.26)
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Upon rearranging, we find that
X;dx—y. =x.+ 2z € X;_;, and hence z, + 2. € Xy N X;. (2.1.27)

Then
|z — (xe + 2.)||; = [|yll; < e foralle >0 (2.1.28)

and we deduce that = € cl(Xo N Xy, X;) = X,. Thus the embedding (2.1.25)) is surjective, and the
first item is proved.
For the second item we first note that by (2.1.24]) we have

Xl—z’ + Xz — Xl—i + Xl—i = Xl—i- (2129)

We claim that this embedding is a surjection. Indeed, for a fixed i € {0,1} and z € X;_; € Xy + X,
we can write x = xg + x1 for xy € Xy and 21 € X;. Then 2; = 2 — 21_; € X;_; N X;, but by the
first item X;_; N X; = X, S0

r=x1_;+x; € Xq_; + Xz (2130)

This proves the claim, which then completes the proof of the second item.
The third and fourth items follows directly from the first and second, so it remains only to prove
the fifth. From the first item we have

Xo+ X, =XoN X1+ XoNX; = XoN X+ XN X, = XN X, (2.1.31)

Let z € Xy N X;. By the second item we can then find a € X, b € X, c € X,, and d € X; such
that

r=a+b=c+d. (2.1.32)
Upon rearranging, this implies that
a—c=d—be XyN Xy, (2.1.33)
and hence
a=c+(a—c)eX,+XoNX; CX, (2.1.34)
SO

and thus the embedding (2.1.31)) is surjective, so X, + X, = Xo N X;.
Next we note that (2.1.22)) shows

XO + X1 = XO N X1 = CI(XO N Xla XO + Xl) — Cl(Xi,XO + Xl) = Xl for i = 0, 1 (2136)

SO

To conclude we will show that this embedding is also surjective. Let z € X, N X;. Since z € X,
for each ¢ > 0 we can find z. € Xy, a. € Xy, and b, € X; such that r — z. = a. + b. and
lacllo+ l|be]l, < e. Similarly, since x € X7, for each € > 0 we can find y. € Xi, c. € Xp, and d. € X;
such that  — y. = ¢. + d. and ||c.||, + ||d:||; < e. Then

Teta.+b.=x=vy.+c +d., (2.1.38)
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and upon rearranging we see that
Te+a. —c.=—b.+y.+d. € XgN Xy. (2.1.39)
Then x — (2. + a. — ¢.) = b. + ¢ and
[ = (e + ac = co)llgpq < llcello + 116l < 2, (2.1.40)

from which we deduce that z € X, N X;, and (2.1.37)) is surjective. Hence, Xo N X; = X, N X,
and the fifth item is proved. m

The final item of this theorem shows that there is a special role played by the single space
X0+X1 :XgﬁXl :Xole :XO +X1 (2141)

The following diagram summarizes the relation of this space to the others we have discussed.

XoﬂXl >X0‘ >X0
Xoﬂ& Xo“‘Xl:XOle:XO‘i‘Xl:XOle X0+X1
X; - > Xy Xo + Xy

(2.1.42)
We might hope at this point that we could iterate the constructions we’ve done so far to get
even more spaces. For instance, we could take the upper closure of X; or the lower closure of Xj.
However, the above diagram indicates another crucial fact: iterating these constructions doesn’t
produce anything else. Indeed, it immediately shows the following.

Corollary 2.1.13. Let X and Xy be compatible Banach spaces. Then for i € {0, 1} the upper
closure of X;, the lower closure of X;, and the space Xy + X; = XoNX, = XoNX, =X, + X,
coincide.

The upshot of this analysis is that while the upper and lower closure operations do allow us to
produce five new spaces intermediate to X, and X7, we are stuck with these five and can proceed
no further with the closure, sum, and intersection operations alone. If we want to construct more
intermediate spaces, we need a new idea. We will turn to the development of this idea momentarily,
but first we record another simple consequences of the above diagram.

Corollary 2.1.14. Let Xy and X, be compatible Banach spaces. The following hold.
1. If X; — X1, then
Xi—= X=X, ,=XoN X1 =Xg+ X1 = X1, (2.1.43)
2. If Xo N X1 is a closed subspace of Xy + X1, then
XoNX1 =X, =X, = X0+ X1 =XoNX; =XoNX;, =X, +X,. (2.1.44)
3. If X; € X1_; 1s a closed subspace, then
Xi=X=X=X+X1=XnX; =X NX1 =X, + X, C X1, (2.1.45)

Proof. Exercise. O
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2.1.4 The K and J functions

Our starting point for constructing more intermediate spaces to a given compatible pair of Banach
spaces Xy and X; is the simple realization that we can introduce a positive real parameter’s worth
of equivalent norms on the spaces Xy N X; and Xy + X;. We give these a special name now.

Definition 2.1.15. Let Xy and X, be compatible Banach spaces. We define the maps K : (Xo +
X)) xRy = Rand J: (XoNX;) xRy — R via

K(z,t) = inf{||zo||, + t |21]|; |z =20 + 21 forx; € X;,1 =0,1} (2.1.46)

and
J(z,t) = max{||z[,, ¢ ||[, }- (2.1.47)

We begin our study of these new functions with the following proposition, which records the
basic properties of the K function.

Proposition 2.1.16. Let Xy and X, be compatible Banach spaces. Then the following hold.

1. For eacht € Ry the map Xo+ X7 2 x — K(x,t) € R is a norm that’s equivalent to the usual
norm.

2. For each x € Xy + X1 the map K(z,-) is continuous, nondecreasing, and concave.

3. For each x € Xo+ X1, the map Ry >t — K(x,t)/t € R is nonincreasing, and we have the
mequalities

min{1,t/s}K(z,s) < K(x,t) < max{1,t/s}K(x,s) for allt,s € R,. (2.1.48)

4. Let K : (Xo+ X1) x R — R be the K map obtained by flipping the indices on Xy and X1,

i€
K(z,t) = inf{||z1||, +t ||2olly | © = w0+ 1 for z; € Xi,i = 0,1}, (2.1.49)
Then Kot
(f’ ) = K(x,1/t) for all x € Xo+ X, and t € R,. (2.1.50)

Proof. The fact that K(-,t) defines a norm is left as an exercise. Then the first item follows from
the simple inequality

min{1, ¢} ||z x, 1 x, < K(2,1) < max{1,t} ||z x  x, - (2.1.51)
Now let x = ¢ + x; for x; € X; and suppose that 0 <t < s < co. Then
K(2,8) < aolly + ¢ 1]l < llzolly + 5 2l (2.1.52)
but since this holds for all such decompositions, we deduce that
K(z,t) < K(z,s). (2.1.53)
Similarly, for § € [0, 1] we have that

0K (2,t)+(1-0)K(x,s) < O[||lolly+1 [zl ]+ (L =0){l[zollg+5 [[#1]l,] = llzollg + [0+ (1 =0)s] [|24]l; ,
(2.1.54)
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and since this holds for all such decompositions, we deduce that
OK(x,t)+ (1 —0)K(x,s) < K(x,0t+ (1 —0)s). (2.1.55)

This proves all of the second item except continuity, which we delay momentarily.
For the third item again let * = x¢ + x; with z; € X; and let s,t € (0,00). If t < s then the
first item shows that K (z,t) < K(z,s) = max{1l,t/s} K (z,s). On the other hand, if s < ¢, then

S S S
2K (1) < Slaollo + thanlly) = S oy + 5 lanlly < laollg + 1, (2.1.56)

and since this holds for all such decompositions we find that $K(x,t) < K(z,s), which implies
that K(x,t) < max{1,t/s}K(z,s). This proves the second stated estimate, but the first follows by
reversing the roles of s and ¢. This proves the third item.

Finally, we complete the proof of the second item by proving that K(z,-) is continuous. Fix
s € (0,00). Then

K(x,s) = Pm min{1,t/s}K(x,s) = ymmax{l,t/s}K(x, s), (2.1.57)
—S —S

so the inequalities of the third item show that K(z,s) = lim;_,, K(z,t), and we conclude that
K(x,-) is continuous. We leave the proof of the fourth item as an exercise.
O

Next we record a corresponding result on the basic properties of the J function.
Proposition 2.1.17. Let Xy and X, be compatible Banach spaces. Then the following hold.

1. For each t € Ry the map XoN Xy 2 x+— J(x,t) € R is a norm that’s equivalent to the usual
norm on Xo N X;.

2. For each x € Xy N X1 the map J(z,-) is continuous, nondecreasing, and conver.

3. For each x € XoN Xy, the map Ry >t — J(z,t)/t € R is nonincreasing, and we have the
mequalities

min{1,t/s}J(z,s) < J(z,t) < max{1l,t/s}J(x,s) for allt,s € R,. (2.1.58)

4. Let J: (XoNX;) xRy — R be the J map obtained by flipping the indices on Xy and X, i.e.

J (@, 1) = max{[zl, , ¢ [lz[o}- (2.1.59)

Then
J(z,t)

t

= J(x,1/t) for allz € XoN X, and t € R,. (2.1.60)

Proof. We will only prove the second and third items and leave the first and fourth as exercises.
If s <t then s|z|, <t|z], < J(z,t) and ||z|, < J(z,t), so J(z,s) < J(z,t), which shows that
J(z,-) is nondecreasing.

If s,t € Ry and § € [0,1], then [0s + (1 — 0)t] ||z||, < 0J(x,s) + (1 — 8)J(x,t), while ||z||, =
O llzlly+ (1 —=0)|z||, < 0J(x,s)+ (1 —0)J(x,t), so J(x,0s + (1 —0)t) < 0J(x,s)+ (1 —0)J(x,1).

Thus J(z,-) is convex.
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If t <sthen J(z,t) < J(x,s) by the above. On the other hand if s < ¢, then
s
cJ (@ 1) = max{(s/t) |zl s llell,} < max{l|zlly, s llzll, } = J(z, 5). (2.1.61)

Thus J(z,t) < max{l,t/s}J(x,s). The estimates of the third item follow from this and the inequal-
ity obtained by reversing ¢ and s. This also shows that Ry 3 ¢ — J(z,t)/t € R is nondecreasing.
Continuity follows directly from the bounds of the third item, and the proof of the second and third
items is complete. O

The K and J functions are related in a useful way, as the following result shows.

Proposition 2.1.18. Let Xy and X, be compatible Banach spaces. The for each v € Xy N X1 and
s,t € Ry we have that K(x,s) < min{l,s/t}J(z,t).

Proof. Since x € Xy N X; we have that K(z,s) < |zf|, < J(z,t) and K(z,s) < slz|, =
(s/)t l|lzlly < (s/1)J (1), so

K(z,s) <min{J(x,t),(s/t)J(x,t)} = min{l, s/t}J(x,t). (2.1.62)
[

It turns out that the K function’s asymptotic behavior at 0 and co encodes some useful informa-
tion related to inclusion in spaces that we have seen before. In turn, this information is equivalent
to an extremely useful decomposition that will be essential in our subsequent work with the K and
J functions. We record this result now.

Theorem 2.1.19. Let Xy and X be compatible Banach spaces. Then the following hold for x €
Xo+ X;5.

1. EE%K(x,t) =0 if and only if v € X;.
2. tlg})lo K(z,t)/t =0 if and only if v € X,.
3. The following are equivalent.

(a) Pi%lq%t) = tlirgoK(x,t)/t =0.

(b) xGXoﬂX1:X0+X1.

(c) There exists a sequence {Tn}nez € Xo N Xy such that x = ) _, x,, where the series
converges in Xo + X;.

Moreover, if any (and hence all) of these holds, then for any 1 < r < oo the sequence {, }nez,
in (c) can be chosen such that J(x,,r") < 2(1 4 r)K(z,r™) for each n € Z.

Proof. We begin by proving the first item. Suppose that Pr% K(xz,t) = 0. Then for every ¢ > 0
—

there exists § > 0 such that 0 < ¢ < ¢ implies K(z,t) < . In particular, for every ¢ > 0 we can
pick y. € Xy and z. € X; such that ||y.||, + (6/2) ||zc||; < e. In turn, this implies that
lz — zellop1 < llyelly < € for every e >0, (2.1.63)

and since z. € X; we deduce from this that = € X.
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Conversely, assume that * € X;. Then for every ¢ > 0 we can pick z. € X; such that
|z — 2|y < e In turn, we may choose y. € Xy and z. € X, such that z — 2. = y. + 2. and
lvellg + Il2c]l; < e. Then x = y. + (2. + 2.) and for any ¢ € (0, 00) we may estimate

K(z,t) < lyello + tllwe + zell; <e+tllae + z]; - (2.1.64)
Hence,

lim K (z,t) < ¢ for every € > 0, so lim K (z,t) = 0. (2.1.65)

t—0 t—0

This completes the proof of the first item.

The second item follows from the first and the fourth item of Proposition[2.1.16] The equivalence
of (a) and (b) in the third item follows from the first two items and Theorem [2.1.12] We will show
that (a) < (c¢) to conclude. These are clearly equivalent if x = 0, so we may assume without loss
of generality that x # 0.

Suppose that (a) holds and let 1 < r < co. For each n € Z we can choose y,, € X, and z, € X;
such that * =y, + 2, and

lynllo + 7" 2nll, < 2K (2, 77). (2.1.66)
Then (a) implies that
nLi{HOO Hynuo = nhjglo HZnHl = 0. (2-1-67)
For n € Z define
Tn = Yn = Ynt1 = Zn41 — Zn € Xo N Xy, (2.1.68)

By construction, for each n € Z we have the estimate

S(@n, ") < max{{lynllo + llynsallo, 7 znlly + 77 [[2nsally }

2
< max{2K (r,1") + 2K (e, ), 2K (2,7") + =K (2, 171))
T

< max{2K (z,m") + 2max{l,r} K(x,r"), 2K (z,m™) + % max{1l,r}K(z,m™)}
=2(1+7r)K(z,7"). (2.1.69)

Moreover, for N € N we may compute

xr — Z T =T —YN +Y_N+1=2N T Y_N11, (2.1.70)
[n|<N
which then implies that
T — Z Ty < |ly—~n41llg + llznll; = 0 as N — oo. (2.1.71)
<N log

Thus, (¢) holds, and we have proved that (a) = (c).

Now suppose that (¢) holds. Let € > 0, and choose N € N such that Hx = <N Tn < e.

0+1

Then we may estimate

K(z,t) < K(z — Z T, t) + K( Z T, t) < max{l,t} |z — Z T, +t Z || (2.1.72)

In|<N In|<N In|<N In|<N

0+1 1
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in order to see that lim K (z,t) < ¢ for every ¢ > 0 and hence lim K (x,t) = 0. Similarly, we may

t—0 t—=0
bound
K(x,t) < K(z - ngzv Tp, t) n K(ngz\/ Tn, )
t - t t
— ||z — Tn - Ty L
- t t
In|<N [n|<N

0+1 0

in order to see that tlim K(z,t)/t < e for every € > 0 and hence tlim K(x,t)/t = 0. Thus, (a) holds,
— 00 — 00

and we have proved that (¢) = (a), which completes the proof of the third item.
0

2.2 Interpolating between compatible Banach spaces

We now have all of the tools needed to begin constructing new intermediate spaces. In fact, with
what we now know about the K and J functions, there are many options available to us. We begin
our discussion with some heuristic considerations in order to justify the definition we will ultimately
work with.

2.2.1 Heuristics

We have now seen that for each ¢ € R, the function K(-,¢) defines an equivalent norm on X, + X
when X, and X; are compatible Banach spaces. Moreover, since K(x,-) is continuous for each
x € Xo+ X, it’s measurable for any choice of a Radon measure on R, . These facts suggest that we
might use some sort of Lebesgue norms relative to a Radon measure p on R, to build new spaces
intermediate to Xy and X;. This leads us to the following definition.

Definition 2.2.1. Let Xy and X; be compatible Banach spaces. Suppose that i is a Radon measure
on Ry and consider a continuous weight function w : R, — Ry. Let 1 < p < oo. We define
H«HX(“’w’p) : Xo+ Xy — [0, 00] via

HxHX(,u,,w,p) = ||'LUK($, )HLﬁ < 00, (221)
where we recall that Lﬁ(RJr) denotes LP on R, with respect to the measure . We define the space

X(p,w,p) ={z € Xo+Xu | [|2llx(wy < o0} (2.2.2)

“’w’p

Note that the weight w can be absorbed into the measure when 1 < p < 0o, so the main utility of
the weight is seen when p = o0.

Now, based on our prior discussion of intermediate spaces, the natural question that arises is
when we can guarantee that X (u, w, p) is intermediate. To address this question, first note that if
S X() N X1 then

K (1) < min|le ]y, ¢ 2]l } < min{L, ¢} o] g, (2.2.3)

and consequently
HxHX(u,w,p) < quxomxl [|wmin{1, }HLﬁ (2.2.4)
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On the other hand, for z € X, + X; we have K (z,t) > min{1,} ||z, , x,, s0

121 x oy 2 12l x4 x, 10 mindT, -3 - (2.2.5)

From these calculations we learn that if the space X (u, w, p) is nontrivial, then we have the inclusion
wmin{l, -} € L7(R,), and conversely this inclusion implies the embeddings

XoNX; = X(p,w,p) = Xo+ Xj. (2.2.6)

To prove that X (u,w,p) is intermediate, we also need to verify that it is complete. For this note
that the assumption that x is Radon guarantees that wmax{1,-} is locally in L (R,).

Theorem 2.2.2. Let Xy and X; be compatible Banach spaces and 1 < p < co. Suppose that p is a
Radon measure on Ry, w: Ry — Ry is continuous, and wmin{1,-} € LP(R). Then the following
hold.

1. The space X (p,w,p) is a Banach space intermediate to Xo and X;.
2. If wmax{l,-} € LE(R,), then X (u,w,p) = Xo + X1 with equivalent norms.

3. Suppose that p < co. If [p (w(t))Pdu(t) = oo, then X(u,w,p) < X, If J, (tw())Pdu(t) =
oo, then X (p,w,p) — Xo. If Jo, (W®))Pdu(t) = [o, (tw(t))Pdu(t) = oo, then X(u, w,p) —
XoN Xy =X+ X;.

Proof. From the above analysis we know that
120 x4 xy 1w 0in{ T, 3l o < W2l sy < Nl g, lwmind, -3 (2.2.7)

and so XoN X7 <= X(u,w,p) — Xo+ X;. To conclude we only need to prove that X (u,w,p) is
complete.

Let {z,,}52, C X (p, w,p) be Cauchy. According to (2.2.7), the sequence is also Cauchy in the
Banach space Xy + X;, and so converges in X, + X; to some x. For t € R, we may estimate

K(z —n,t) < K(2p — 2, ) + K(2 — 2, 1) < K(0 — T, 1) + max{ 1, t} |7 — 2 x 1, (2.2.8)

and
K(z,t) < K(xp,t) + K(x — 2, 1). (2.2.9)

Then for 1 < A < co we may bound
[wK (z — @y, ')HL{’L([)\—H/\]) < lwn — xm”X(u,w,p) + 2 = 2wl 5,1 x, [l max{1, '}HLﬂ([A—l,)\}) (2.2.10)
and
[wK (z, ')HL‘Z([)\—H)\]) < @l x g T 17 = Tl xoux, lwmax{L, '}HLZ([)\—l,)\]) : (2.2.11)
We take the limsup in (2.2.11]) to see that

|wK (z, ')HLﬁ([)\—l,)\}) < hmjuP HanX(

o) < 0O (2.2.12)

Sending A — oo and employing the monotone convergence theorem if p < oo, we deduce from this
that © € X (p, w,p).
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Now let € > 0 and choose N > ¢ such that n,m > N implies |z, — xm||X(M7w7p) < ¢. Then for

n > N we deduce from ([2.2.10f) that

[wK (2 = 20, )| 2 a1,

< limsup (Hl’n - meX(,LL,w,p) + [z = 2l x4 x, lw max{1, '}||Lﬁ([xl,)\])) <e (22.13)

m—r0o0

for all 1 < A\ < co. Again sending A — oo and using the monotone convergence theorem if p < oo,
we deduce that
n2 N = 12— Tl = 10K @ = 20, ), < 2 (2:2.14)

which means that z,, — x in X (pu, w,p) as n — oco. Hence, X (u, w,p) is complete, and the first
item is proved.

Suppose now that wmax{1,-} € LE(R, ). Then from the estimate K (z,t) < max{1,t} |||/ ,x,
we find that

120 x gy < Nl max{T, -}l o [l x4 x, (2.2.15)
for all v € Xo+ X;. This and (2.2.7) imply that [|-[|x(, ., and ||l x,; x, are equivalent norms and
X(u, w,p) = Xo + X;. This proves the second item.

We now prove the third item, assuming that p < co. Let 0 # z € X (u,w,p). If x ¢ X1, then
Theorem [2.1.19 implies that there exists € > 0 such that K (x,t) > ¢ for all ¢ > 0, and hence

00 > (2]l ) 2 € ( / +<w<t>>ﬂdu<t>)l/p. (2.2.16)

Hence, if fR+(w(t))pd,u(t) = o0, then x € X;. Similarly, if z ¢ X;, then Theorem [2.1.19| implies
that there exists € > 0 such that K(x,t)/t > ¢ for all ¢ > 0, and hence

o0 > el = (| w07 (@)pduu))w - ([ +<tw<t>>pdu<t>)l/p. (2217)

In turn, this means that if fR+ (tw(t))Pdu(t) = oo, then z € Xy. This proves the first two assertions
of the third item, and the third assertion follows from these and Theorem [2.1.12] which completes
the proof of the third item.

O

Remark 2.2.3. One consequence of this result can be stated nicely if we know a priori that XoN X,

is nontrivial. Indeed, in this case we know that X (u,w, p) is a nontrivial Banach space intermediate
to Xo and X, if and only if wmin{1,-} € LA(R,).

The simplest candidate to consider is w(t) = t~* for some o € R and u standard Lebesgue
measure on R;. Then it’s easy to check that wmin{l, -} € L*(R,) if and only if 0 < o < 1, while
for 1 <p < co we have that wmin{l,-} € LP(R,) if and only if

1 oo
dt dt
/ ———— < 00 and / — < 09, (2.2.18)
o tle=bp | top

which in turn is equivalent to

1 1
- <a<l4-. (2.2.19)
p p
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To ensure that we pick a useful weight for p < oo, we then consider 6 € (0,1) and set

a:(1_9)1+9<1+1)=1+9, (2.2.20)
p p p

K(z,)\" at\""
= — ) 2.2.21
behinn = ([ (552) F) 2221

The upshot of this analysis is that the most natural choice is not Lebesgue measure, but rather the
measure p = dt/t. This is actually a very nice choice on R, as it is a Haar measure for the locally
compact Abelian group R,. Thus, it seems like a good candidate to study is the space X (u, ()%, p).

Note that if p < oo, then
tPdt dt
/ e :/ e = 0% (2.2.22)
Ry Ry

and so the third item of Theorem shows that X (i, )79 p) = Xo N X1. On the other hand,

which means that

K(x,t)

K(x,t -
sup (z,1) < 0o = lim K(z,t) = lim =0=z¢€ XoN Xy, (2.2.23)

+>0 o t—0 t—o0

and again we find that X (u, ()7%,p) <= Xo N X;. Finally, note that wmax{1,-} ¢ L.(R,) for any
1 < p < oo, so the second item of the theorem does not apply and there is hope that X (u, ()79, p)
is strictly smaller than X, + X;.

2.2.2 The interpolation spaces

The above heuristics lead us to change our notation slightly and make the following definitions.

Definition 2.2.4. Let X and X be compatible Banach spaces.

1. For 1 <p<oo andf € (0,1) we define the space
(X0, X1)op = {2 € Xo+ Xy | [[z]ly, < oo} (2.2.24)

where |||y, : Xo + X1 — [0, 00] is defined for p < oo by

2y, = (/R+ (K(Zg’t))p%)l/p (2.2.25)

K(z,t)
0
Clearly, we have that (Xo, X1)e, = X(p, (-)7% p) for p = dt/t, and so Theorem im-

plies that (Xo, X1)e,p s a Banach space intermediate to Xy and Xy and that (Xo, X1)gp —
XoNX; = Xo+ Xy.

and for p = oo by

(2.2.26)

|]l,00 = sup
>0

2. Forp=o00 and 0 € {0,1} we define the space

(X0, X1)ooo = {2 € Xo + X1 | [l]ly, < 00} (2.2.27)
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where |||y o, + Xo + X1 — [0, 00] is defined by

K(x,t)
0

]l = sup (2.2.28)

Clearly, (X0, X1)o00 = X(p,(-)7% 00) for p = dt/t, and so Theorem implies that
(Xo, X1)o,p s a Banach space intermediate to Xo and Xy. However, in this case the available
embeddings are Xo — (Xo, X1)o00 < Xo for 6 € {0,1} (the former is trivial and the latter

follows from Theorem .

Three remarks are in order.

Remark 2.2.5. When 1 < p < oo, we don’t include the endpoint cases 0 € {0,1} since for
0 7é T &€ X() + Xl,

> (K ny [T = (2.2.20)

1t

/Ooo (K(f’t))p% N (K(;f@))” Ol%zoo. (2.2.30)

However, when p = oo, there is useful information encoded in the quantities

and

K(et) . Ki)
t t—0 t

|z]lg o =sup K(z,t) = lim K(x,t) and ||z|, = sup (2.2.31)
’ >0 t—o0 ’ >0

Remark 2.2.6. If we define K(x,t) = K(z,t)/t, then R, >t — K(x,t) € [0, 00| is nonincreasing,
and

Izlly, = H(_)I—Gf{(x, N, (2.2.32)
I
Since K (z,-) and its rearrangement coincide (exercise: verify this claim), we deduce that
(], = H(K(x, )H e, (2.2.33)

and we naturally arrive at a nice connection between Lorentz spaces and our new spaces.

Remark 2.2.7. For every choice of § € (0,1) and 1 < p < oo we know that (Xo, X1)s, —
XoNX, = Xo+ Xy. This highlights the special role played by the latter space in interpolation
theory: it serves as a container space for everything we construct using this method. Note, though,
that in general we do not know that (Xo, X1)s is contained in this space when 0 € {0,1}. It is
easy, though, to use Theorem[2.1.19 to see that

Xyp — (X(),Xl)ﬁ,oo — Xg. (2234)

Our next result establishes the fundamental embedding properties of our new spaces as we vary
the parameter 1 < p < oco. The result should be contrasted with Theorem [1.1.39

Theorem 2.2.8. Let Xq and X be compatible Banach spaces, 1 < p < oo, and § € (0,1). Then
the following hold.

1. We have that (Xo, X1)a, = (X1, Xo)1-0, with identical norms.
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2. If v € (Xo, X1)op, then
K(x,t) < (0p)/P? zlly, forallt € Ry (2.2.35)
with the usual understanding that (Op)'/? =1 for p = oc.
3. If p < q < oo, then (Xo, X1)o,p = (Xo, X1)o,, and
||£L‘||97q C )1/” 1/a ||a:|| for all z € (Xo, X1)gp. (2.2.36)

Proof. We'll prove the first two results for p < oo and leave the case p = 0o as an exercise. We use
the fourth item of Proposition [2.1.16| and a change of variables s = 1/t to compute

K(x,t)\? dt ds
E— ( (@ )) Do [ @rway®
R, t t R S

-/ <M> = e,y (2237

where K is determined by switching the roles of X, and X;. This proves the first result.
Next we use the fact that K (z,-) is nondecreasing from Proposition [2.1.16|to bound

Iz, > /too (K( 5 )) ds > (K (x,t))P /too Sldfep - K, b)) (2.2.38)

s s Optor

for every t € R,. Upon rearranging, we then complete the proof of the second item.
Now suppose that p < ¢ < oo. If ¢ = oo, then the second item implies that [lz([, <

(Op)L/P [l so it remains to consider the case ¢ < co. In this case we estimate

1/q
Kz, H)\"?" ( K(z,t)\" dt _
chHe,q:</R ( 7 ) T ) ) Sl gy < @) Yl (2:2:39)
+

which completes the proof of the third item. O

We can organize the results of Remark and Theorem as the following diagram, which
highlights the fact that for each # € (0,1) we have a continuum of nested intermediate spaces
indexed by 1 < p < oo, while for § € {0, 1} we have outlier spaces. We typically arrange the spaces
with 6 increasing as we move down, so here 0 < 0y < 0 < 6; < 1.

Xy > X < > (X07X1)O,oo —— Xo

A

;X1)00,1 — (X07X1)90,p — (X()aXl)Oo,oo

(Xo
XoNX; —— (Xo, X1)o1 — (X0, X1)op — (X0, X1)p.00o —— Xo N X3 Xo+ Xy

/

(X07X1)91,1 — (X07X1)91,p — (X07X1)91,OO

~

X, ¢ » X« > (X()aXl)l,oo — Xy

(2.2.40)
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Next we study how our spaces depend on the parameter # by examining the intersection of two
of them.

Proposition 2.2.9. Let Xy and X be compatible Banach spaces, 1 < p < oo, and 0 < 0y < 0 <
91 < 1. Then (X07X1>90,p N (XO,X1>91’p — (Xo,Xl)g’p, and

010 0-0g
] 61 —06
Izl < Nllge,” llzllor (2.2.41)

for every x € (Xo, X1)o,p N (Xo, X1)o, p-
Proof. Write 6 = (1 — )by + aby for a € (0,1). If p < oo then we use Hélder’s inequality to bound

K(z,t)\? dt K(z, )\ (K (2, )\ dt
|Iw\|§,p=/ < 9 ) 7:/ ( > " — Sl Iy llzllg?,  (2.2.42)
Ry Ry

and the stated bound follows by solving for a and taking p'* roots. A similar argument works for
p = 00. ]

One particularly interesting consequence of this result is the interpolation estimate recorded in
the following.

Corollary 2.2.10. Let Xy and X; be compatible Banach spaces, 1 < p < oo, and 0 € [0,1]. There
exists a constant C' € Ry such that if x € Xo N Xy, then

||$||9,p <C ||:E||(1)_9 ||x||? for all x € Xy N X;. (2.2.43)
Proof. Exercise. m

Proposition has the benefit of giving a nice constant on the right side but only works with
the same value of p in all the spaces. Next we prove that the spaces can be improved at the expense
of a worse constant on the right. This result should be contrasted with that of Theorem [1.1.41]

Theorem 2.2.11. Let X, and X, be compatible Banach spaces, and 0 < 0y < 6 < 6, < 1. Then
(X0, X1)60,00 N (X0, X1)6,,00 = (X0, X1)g,1, and

1 1 DE
el < (5 + ) el el 22.44)

for every x € (Xo, X1)gy.00 N (X0, X1)0;,00-

Proof. Tt suffices to prove the stated estimate, and for this we may also assume that x # 0. Due to
the assumed inclusions, we have the bound

K(a1) < min{t® [lz], 1" [lall, .} (2.2.45)
Set
1/(61—060)
1216 00
T = eR,. (2.2.46)
1219, 00
Then

K(z,t)dt /T 0 ||x||91,oo dt N /°° Al ||l‘||00,oo dt
0

R, 1t T - 0 t

e ! ! ! s |

O
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Now that we have developed some of the essential properties of our interpolation spaces, we re-
turn to the question of whether these spaces admit a corresponding theory of operator interpolation.
It turns out that they do, and the theory is relatively simple in comparison to the Marcinkiewicz
and Riesz-Thorin theorems.

Theorem 2.2.12. Let Xy and X, be compatible Banach spaces and Yy and Y; be compatible Banach
spaces over the same field. Suppose that T : Xo+ X7 — Yo+Y) is a linear map such that T(X;) CY;
and T € L(X;Y;) fori € {0,1}. Then for every 1 < p < oo and 0 € (0,1) we have that
T S L((X(), X1>9’p, (Yo, }/1)971)) and

1-6 [%
||T||,C((X()’Xl)g’p,(Y(),Yl)g’p) S ||T||,C(X(),Y0) ||T||,C(X1,Y1) ‘ (2248)

Proof. We write Ky for the K function associated to Xy and X; and Ky for the K function
associated to Yy and Y;. The result is trivial if 7" = 0, so we may assume that 7" # 0. Let
x =0+ 21 € (Xo,X1)op. Then Tw = Txg+ Txy, Txg € Yy, and Ty € Y7, so for t € Ry

Ky (Tw,t) <|[Twolly, + t1Txally; < 0T 2ixp0) 120l + ENT M 2o, im 122l x,

T 2 oxm)
= 1Tl eexomy | 2ollxg + 5 Nl |- (2:249)
” Hﬁ(Xo;Yo)

This holds for all such decompositions of x, and thus
Ky (Tz,t) < HT”c(XO;YO) Kx(x,t HT”[Z(Xl;Yl) / HTHL(XO;YO)) (2.2.50)

fort € R,.
Let u denote the measure dt/t on Ry and f : R, — R be measurable. For A € R, write
fr(t) = f(At). Then we may compute

[0 ROl = X 6750
Combining and (2.2.51)), we then find that

(2.2.51)

p -
Ly

0
1T 2, v 10 0
”Tx”(YO,Yl)@,p < HTHE(XU;Y()) (m ||x||(x0,x1)9,p = ||T||c(x0;yo) ”T”L:(Xl;Yl) ||x||(X0,X1)@,1,,7
0510
(2.2.52)

and this estimate completes the proof. O

In practice, we often verify the hypotheses of Theorem [2.2.12| with the help of the following
lemma.

Lemma 2.2.13. Let Xy and X, be compatible Banach spaces and Yy and Y, be compatible Banach
spaces over the same field. Suppose that for i € {0,1} we have T; € L(X;;Y;) such that To =Ty on
XoN Xy. Then there exists a unique T € L(Xo + X1;Yo + Y1) such that T|x, = T; for i € {0,1}.
Moreover, we have the bound

||T||£(X0+X1;YO+Y1) < maX{”T”c(XO;yO) ) ||T||L(X1;yl)}- (2.2.53)
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Proof. Suppose that x = xg + 1 = wy + wy for xg,wy € Xy and z1,w; € X;. Then zyg — wy =
wy — 21 € XoN Xy and so Ty(zg — wy) = T1(wy — x1) by hypothesis. Upon rearranging, this implies
that To(zo)+T1(x1) = To(wo)+T7(wy). From this we deduce that the mapping 7' : Xo+X; — Yo+Y)
defined by T'(z¢ + 1) = To(zo) + Ti(x1) is well-defined and linear. This map is bounded since if
T = 29 + x1, then

T2l v, < [ Toolly, + 1321y, < max{IT oy Tl (loll, + illy,) - (2:2:54)

and since this holds for all such decompositions we have the bound

IT2llyys < max{IT e -1 2 ol - (2:2.55)

This proves the existence of the desired T'. Uniqueness follows since if S is any other such operator,
the condition S|y, = 7; implies that Sx = Sxz¢ + Sz1 = Toxg + Thaxy = Ta for all v = xp + a1 €
X0+ Xi. ]

It’s also possible to prove some interpolation results for nonlinear operators. We will demonstrate
the basic principle in a particularly simple case in which the nonlinear map satisfies a Lipschitz-type
condition. For more sophisticated versions see the paper of Tartar [6].

Theorem 2.2.14. Let Yy and Y, be compatible Banach spaces, and let Xy and X; be Banach spaces
such that X1 < Xo. Suppose that f : Xo — Yg is such that f(X1) C Yy and there exist constants
Ao, Ay € Ry such that

1f(z) = f(w)lly, < Aollz —wlly, forallz,w e Xo (2.2.56)

and
1f(@)lly, < Arllzlly, for allx € X;. (2.2.57)

Then for 6 € (0,1) and 1 < p < oo we have that f((Xo, X1)ep) € (Yo, Y1), and
||f($)||(y0,yl)97p < Ay PA7 ||$||(X0,X1)67p Jor all x € (Xo, X1)op- (2.2.58)

Proof. Write Ky for the K function associated to Y, and Y; and Kx for the K function associated
to Xo and X;. Let x € (Xo, X1)p, and write x = x¢+x for xy € Xp and x; € X;y. Then f(z1) € V)
and f(x) — f(x1) € Yo by hypothesis, so f(x) = (f(z) — f(z1)) + f(z1) € Yy + Y1. Consequently,
for t € R, we may estimate

Ky (f(x),t) < If () = f(@)lly, + I @olly, < Aolle —allx, +2Ax [l ]y,

tA
= Ao (II%IIXO + A—l ||:c1||X1) . (2.2.59)
0

This holds for all such decompositions of x, so we deduce that
Ky (f(z),t) < AgKx(x,tA1/Ao). (2.2.60)
Arguing as in the proof of Theorem [2.2.12] we conclude from this that

1F @) | ivomine, < A0 AT 12N (x0.x0,, (2.2.61)
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2.2.3 Some special cases

We now turn our attention to some special cases in which we know more about the relation between
Xo and X;. We begin with a very simple result that shows that if Xy N X is trivial, then the
interpolation spaces are also trivial.

Proposition 2.2.15. Let Xy and X, be compatible Banach spaces, 1 < p < oo, and 0 € (0,1). If
XO N Xl = {O}, then (Xo,Xl)gJ, = {0}

Proof. We know from Theorem and Corollary [2.1.14] that {0} = X, N X7 — (X0, X1)s,p —
{0} — X() N Xl.
O

It often occurs in practice that X; < X;_;, in which case XoNX; = X; and Xo+ X; = X;_;. It
is then possible to find equivalent norms on (Xy, X;)y, that are useful in the sense that they only
involve strict subsets of R,. We record this result now.

Theorem 2.2.16. Let Xy and X, be compatible Banach spaces and 1 < p < oo. Suppose that
0€(0,1) if p<oo and @ €[0,1] if p=oo. Then the following hold.

1. If Xo = Xy, then Xy — (Xo, X1)op — Xi, and for any T € Ry an equivalent norm on
(Xo, X1)a, is given by the map

Iy + (0K (2, 8)P24) 7 € [0,00] if p < o0

XU2 T2 )|, + supt- 9K<x,t> 0, o] if p = co.
t>T

(2.2.62)

2. If X — Xo, then X; — (Xo,X1)s, — Xo, and for any T € R, an equivalent norm on
(Xo, X1)o,p is given by the map

|y + (fo tK (z,t) p%) €[0,00] ifp< oo

Xodzr+— 0 .
|y + Sup t7K(x,t) € [0, 0] if p= 0.

(2.2.63)

PTOOf. If Xg — Xl, then XoN Xy = X and Xo+ X1 = X4 Slmllarly, if Xi — X(), then
XoN X; = X; and Xy + X7 = Xp. As such, we only need to prove the equivalence of the norms.
For the first item we note that since Xg + X; = Xj,

min{1, ¢} |z, = min{L, ¢} o, x, < K(2,8) <t (2.2.64)
and so for 0 < t < T we have that
K(z,t) <tz . (2.2.65)
Consequently,
T dt 0
(/ (K (2, 1)) ) = |zl = sup 0K (x,t) (2.2.66)
0 0<t<T

and the equivalence for the first item follows.
For the second item, we instead bound

min1, 1} [z, = min{L, 6} [l2ll . x, < K(2,8) < [l (2.2.67)
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to see that for T' < t < oo,

K(z,t) < ||z, - (2.2.68)
Consequently,
>0 dt\ "
(/ (t_eK(x,t))p—) = ||z|l, < supt 'K (z,t) (2.2.69)
T l T<t
and the equivalence for the second item follows. n

As an immediate consequence of this new equivalence, we find a number of interesting embed-
dings.

Corollary 2.2.17. Let X, and X; be Banach spaces and 0 < 6y < 6, < 1. Then the following hold.

1. If Xo = Xy, then we have the embeddings (X0, X1)og.0o = (X0, X1)or1, (X0, X1)0.00 —
(X07X1)90,1; a’nd (XOaXl)Gl,OO — Xl - XO — (X()?XI)LOO - Xl-

2. If X1 — Xo, then we have the embeddings (Xo, X1)p,.00 — (X0, X1)o0,1, (Xoy X1)1,00 —
(Xo, X1)o,.1, and (Xo, X1)gy00 = Xo = X1 = (X0, X1)0,00 = Xo.

Proof. In light of Corollary [2.1.14] and Theorem [2.2.16| applied with 7" = 1, it suffices to observe
that

o0 ¢0o=01 ¢ 1 1 1
/ <00, —<1,and - < —fort>1 (2.2.70)
) t {0 t = o
for the first item, and
1 ,6,-6
1ot 1 1 1
/ <o, —<—-,and 1< —forO0<t<1 (2.2.71)
ot =t 6o
for the second item. O

It’s convenient to again organize what we know in a diagram. If Xy < X, then we have the
following zig-zag embedding diagram with 0 < 6y < 6; < 1.

Xo =X, « ” (X()’Xl)(],oo

PE——

(Xo, X1)op,1 — (X0, X1)opp — (X0, X1)00,00
(2.2.72)

(Xo, X1)o1 — (X0, X1)o,p — (X0, X1)a0,00

X, =X ° » X1 = (X07X1)1,oo

On the other hand, if X; — X, then we have the following zig-zag embedding diagram with

71



0<by<6; <1.

Xy =X ¢ » Xo = (X07X1)O,oo

\

(X07X1)90,1 — (XO;Xl)Bg,p — (X()le)@o,oo
(2.2.73)

(Xo, X1)o,1 = (Xo, X1)oyp — (X0, X1)gg,00

X=X ¢ > (X07X1)1,oo

These diagrams highlight the interesting fact that if X; < X;_;, then (X, X1); « is the smallest of
the interpolation spaces we have constructed, and (X, X1)1—i is the largest.

2.3 Further properties of interpolation spaces

We now aim to derive some more properties of our abstract interpolation spaces.

2.3.1 Equivalent norms

So far we have not really employed the J function in our analysis of the interpolation spaces. It turns
out to play a role through the following theorem, which establishes the existence of an equivalent
norm on (Xg, X1)g, that utilizes the J function. In the theorem we will also establish equivalence
with a discretized version of our previous norm. Roughly speaking, the idea is that we can return
to the context of Theorem and exploit the monotonicity properties of K(x,-) to switch from
the measure yu = dt/t and weight w(t) = ¢t to the measure ' = > _, §,» for some r > 1, but
with the same weight.

neL

Theorem 2.3.1. Let Xy and X; be compatible Banach spaces, 1 < p < oo, and 0§ € (0,1). Fix
1 <r < oo. Then there exist constants Cy, Cy,Cy, C3 € Ry such that

Collzlly, < Co|[{r™"" K (z,7") }nez|,»
S inf{H{rientJ(xm Tn)}nGZH@ ’ T = an fOT‘ {xn}nEZ g XO N Xl}

nel

< Oy |{r " K (.7 }nez| o < Cs llzlly, (2:3.1)

for all x € Xy + X;. Consequently, all three of these quantities define equivalent norms on
(XO>X1)9,p-

Proof. We will first prove the existence of constants Ay, A; € R, such that

Ao llzllg, < [{r " K (z,m™)nez|,, < Arllzllg, (2.3.2)

for all x € Xy + X;. Suppose initially that p < co. Since r > 1 we can write

n+1

/W(K(a:,t))ptitgp = Z/ (K(:c,t))Ptlip. (2.3.3)
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For each n € Z we can also compute

a1 (1 | B R B | 234
o t1+0p o 9_]7 rn0p B r(n+1)0p _ ynfp Hprgp - r(nt1)op Qp . ( .O. )

From these and the fact that K (x,-) is nondecreasing, we deduce that

rfr — 1 K(z,r)\" dt ror — 1 K(xz,r"t1)\*
o 2 (R < [ oyt < S Y (M)

nez neZ
rfr — 1 K(z,r)\"
- Z( e ) (2.3.5)
NneZ

This proves when p < co. In the case p = oo we note that

K(x,t) K(x,t)
sup =sup sup 5
t>0 t neZ rr<t<rntl t

K(l’, rn-i—l)

r'rLG

K(x,r™) < K(x,t)

n n+1
s = forr" <t <r

(2.3.6)

and

<

and argue similarly. Thus, (2.3.2)) is proved.
Next we will prove the existence of constants By, B; € R, such that

By H {T_Q”K(:U, r”)}neZHep
< inf{||[{r~""J (@, 7" ezl | 7= a for {2, }nez € Xo N X1}

neL

< B H{T’G"K(a:,r”)}nezﬂep (2.3.7)

for all z € Xy + X, and once this is established the proof is complete.

Suppose initially that the infimum in the middle of is finite, and pick any sequence
{#n}nez € Xo N Xy such that . = ) _, x,. For n € Z we can use Propositions [2.1.16/ and [2.1.1§|
to estimate

rTK (z, ") < Z K (2, ™) <77 Z min{1, 7"~} J(xp,, ™)

meEZ meZ

= Z min{1, r" "y (mmOpmml pg pemy(2.3.8)

meZ

Define the sequences k = {k, }nez, d = {dn}nez, 7 = {jn}tnez C Ry via

kp ="K (z,r"),d, = min{l,7"}r™° and j, = r " J(z,,r"), (2.3.9)
and note that
ldllp = d = r 4+ 070 < oo, (2.3.10)
neZ 0<n n<0

Then the ([2.3.8)) implies that
kn, < (dxj), for all n € Z, (2.3.11)

and so Young’s inequality (see Remark [1.3.9)) implies that

H{T_HnK(xvrn)}nEZng = HkHZP S ”d*]HKP S HdHEl ||j||£p - ||d||£1 H{r_en‘](xmrn)}nEZng’
(2.3.12)
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This holds for all such decompositions of x, and hence

=" K @, ")l < Nll L= @, bnezl | 2= D 2 for {wntnez € Xo N Xa}.
nez

(2.3.13)
Now suppose that H{T_G"K(a:,r”)}nezmp < 00. According to (2.3.2)), we then know that = €

(X0, X1)op — XoN X, and so the third item of Theorem [2.1.19 allows us to choose a sequence
{wn}nez € Xo N Xy such that z =), w, and J(w,,r") < 2(1+r)K(z,r") for n € Z. Then

inf{H{r’enJ(xn,r")}neZH@ |z = an for {z,}nez € XoN X1}

nel

< ||{r’9”J(wn, r”)}neZHﬂ, <2(1+7) ||{r’9”K(x,r”)}n€ZHZp , (2.3.14)

and together with ([2.3.13)) this proves (2.3.7)). ]

Of course, the reason we care about the new equivalent norms is that they allow us to prove
things that were out of reach with the original norm. To demonstrate what we can do with the J
formulation we now record an amusing embedding result that complements that of Theorem [2.2.11]

Theorem 2.3.2. Let Xy and X, be compatible Banach spaces and 0 < 6y < 6 < 6, < 1. Then
(Xo, X1)0,00 = (Xo5 X1)o0,1 + (X0, X1)oy1- (2.3.15)

Proof. Let x € (Xo, X1)p,00 and write z = >
and 2=}~ Tm. Then

@y, for {x,}nez € Xo N X;. Define y = 3

neL m<0 Tm

2R (y,2") <) 2K (2, 27) < ) 27" min{1, 2} (2, 27)

m<0 m<0
J (T, 2™ by _
< sup LEm:2") 3" 2% min{1,27 2™, (2.3.16)
meZ 2m9
m<0
and
> 27 min{1,2" 2 <y S o (% min 1, 20 o @), (2.3.17)
m<0 m<0
Hence,
27" K (y,2") < (d * e), for n € Z, (2.3.18)
where
dp = 27" min{1,2"} and e, = 2"~ %) ___ (n). (2.3.19)
Since d, e € (*(Z) we may use Young’s theorem to bound
—nbo n J(Im, 2m>
{27 K (y, 2") Ynez|n < ldll llell SUD o (2.3.20)

and so Theorem allows us to pick a constant C, € R such that

19llgp1 < Collzllg o - (2.3.21)
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On the other hand,

27K (2,2") < ) 2K (2,,,27) < ) 27" min{1, 2" 1 (2, 27)

m>0 m>0
J(Q?m, 2m) —n : n—m mil
< suegsz % min{1,2""™}2™  (2.3.22)
m m>0
and
> 27 min{1,2m 2 =y "o pin {1, 2 pom@=0), (2.3.23)
m>0 m>0
Hence,
27" K (y,2") < (f % g), for n € Z, (2.3.24)
where
fo=2""""min{1,2"} and g, = 2"y . (n). (2.3.25)

Then f,g € ('(Z), so again we can use Young’s inequality and Theorem to pick a constant
C; € R such that

12llg,1 < Ch l[[lg o - (2.3.26)

We now know that = y+ z with y € (Xo, X1)g,1 and z € (Xo, X1)g, 1. Moreover, (2.3.21) and
(2.3.26) show that

“:BH(XO,X1)90,1+(X0,X1)91’1 < ||?J||90,1 + ||Z||91,1 < max{Co, C1 } ||55||97oo' (2.3.27)
This proves the asserted embedding. O

We can summarize the results in Theorems [2.2.11] and [2.3.2] in the following diagram, in which
0<by<O<0<l.

(X07X1)90,1 — (X07X1>00,oo
(Xo, X1)0g.00 N (X0, X1)oy.00 — (X0, X1)o1 — (X0, X1)p.00 — (X0, X1)o0.1 + (X0, X1)oy 1
(XO>X1)91,1 — (XO7X1)91,00

(2.3.28)
As another use of our new norm, we prove that X, N X, is dense in (Xo, X;)g, for 1 < p < 0o
and 0 € (0,1).

Theorem 2.3.3. Let Xy and Xy be compatible Banach spaces, 1 < p < oo, and § € (0,1). Then
Xo N X is dense in (Xo, X1)g,p-

Proof. Let © € (Xo,X1)pp and pick 1 < r < oo. According to Theorem [2.3.1 we can choose
{Zn}nez € XoN Xy such that x =), x, (convergence in X, + X;) and

1/p
(Z(TQ”J(Q:TL, r”))p> < 0. (2.3.29)
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Let € > 0 and choose N € N such that
1/p
> "I ()P < Ce, (2.3.30)

In|>N

where Cy € R, is the constant from Theorem m Then Z\n|<N z, € XoNX; and x_z\n|<N T, =
Zn, with this series again converging in Xy + X;, and so Theorem [2.3.1{ implies that
In|>N

1/p
Co ||lr — Z |l < Z (r= " J(z,, r™))P < Coe. (2.3.31)
[n|<N 0.,p [n|>N
Since € > 0 was arbitrary, we conclude that Xy N X, is dense in (Xo, X1)gp. O

2.3.2 Reiteration

For a pair of compatible Banach spaces Xy and X, we now know that (Xo, X1)g, », and (Xo, X1)e,.p
are also compatible spaces. A natural question then arises: what happens if we interpolate between
these new spaces? Do we get something new, or do we end up with another interpolation space? In
order to answer this question we first need to introduce some machinery, starting with the following
simple result.

Proposition 2.3.4. Let Xy and X, be compatible Banach spaces, 1 < p < oo, and 6 € (0,1). There
exists a constant C' € Ry such that

zlly, < C%Eg t=0J(x,t) for all z € XoN X,. (2.3.32)

Proof. Suppose x € Xy N X;. For any m € Z we have that x = ) _, x,, where z, =z if n =m
and z,, = 0 otherwise, so Theorem with » = 2 implies that

—on n J(z,2™)
Collellyy < 427" T 2V hnes ] = S (2339
Consequently,
. J(x,2m)
However, for 2" <t < 2"*! we have that
1., J(=x,2™)  J(x,2™) _ J(z,t)
P T S e < T (2:3.33)
from which we deduce that ) (2.1
2 J(x,t
< i - 3.
el < 2 inf =5 (2:336)
O

In light of the second item of Theorem [2.2.§| and the estimate of Proposition [2.3.4] we are led
to introduce the following idea.
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Definition 2.3.5. Let Xy and X, be compatible Banach spaces and X be intermediate to Xy and
Xl' Let 0 € [O, 1]

1. We say that X is of K—type 6 if there exists a constant C' > 0 such that

supt K (z,t) < C'||z|ly for all z € X. (2.3.37)

>0
2. We say that X s of J—type 0 if there exists a constant C > 0 such that

|z]l < C%gg t=0J(x,t) for allz € XoN X;. (2.3.38)

3. We say that X s of type 6 if X is of K—type 6 and of J—type 6.
Let’s consider a simple example.

Example 2.3.6. Let X, and X; be compatible Banach spaces. If € X+ Xy, then K (z,t) < ||z,
for all ¢ € R, and so X, and X, are of K'—type 0. Similarly, if x € X N Xy, then |z[|, < J(z,1)
for all t € Ry, so Xy and X, are of J—type 0. Consequently, X, and X, are of type 0.

On the other hand, K(z,t) < t|jz||, for all z € Xy + X; and ¢t € Ry, so X; and X, are of
K—type 1. If x € Xy N X; then ¢ ||z||; < J(x,t) for all t € R, and so X; and X, are of J—type 1
as well. Thus, X; is of type 1.

Let 6 € (0,1) and 1 < p < co. We know from Theorem and Proposition that
(Xo, X1)g,p is of type 6. A

It turns out that we can exactly characterize which spaces are of J—type and K —type 6 in terms
of embeddings with familiar spaces. We record this now.

Proposition 2.3.7. Let Xy and X, be compatible Banach spaces and X be intermediate to Xy and
Xi. Then the following hold for every 6 € [0, 1].

1. X is of K—type 8 if and only if X — (Xo, X1)p,c0-
2. X s of J—type 0 if and only if

(2.3.39)

(X(),Xl)g’l — X Zf@ € (0, ].)
X, — X if 0 € {0,1}.

3. The following are equivalent for 6 € (0,1).

(a) X is of type 0.

(b) (Xo, X1)o1 — X — (Xo, X1)6,00-

(c) X is intermediate to (Xo, X1)p1 and (Xo, X1)g.c0-
4. The following are equivalent for 6 € {0,1}.

(a) X is of type 6.

(b) X@ (_) X ;> (X())Xl)e,OO'

(¢) X is intermediate to X,y and (Xo, X1)p,c0-
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Proof. The first item follows directly from the definition of K —type, and the third and fourth items
follow from the first and second together with Theorem [2.2.8, so we only need to prove the second.

Suppose initially that 8 € (0,1). If (Xo, X1)p1 < X, then there is a constant C' > 0 such that
[zllx < Cllzlly, for all z € Xy + Xi, and so X is of J—type ¢ by Proposition [2.3.4f Conversely,
suppose that X is of J—type 6. Let x € (X, X1)p1, and write z = > _, x,, for {z, frez C XoNX;.

nez
Then Jan, 2
T, 2"
D llzlly £CY =505 = Cllally, (2.3.40)
nez neZ
and so Theorem shows that = ), x, with the series converging in X’; moreover,
lzllx <> lzallx < Cllzly, - (2.3.41)
nez

Hence, (Xo, X1)p1 — X, and the second item is proved in the case 6 € (0, 1).

Now assume that § € {0,1}. Suppose X, < X. Then there exists a constant C' > 0 such that
|z|ly < C||z||, since the norm on the space X, is precisely ||-||,. Thus, for z € X,N.X; we have that
lz|lx < Cllz|l, < Ct=0J(x,t) for all t € R, and we deduce that X is of J—type 6. Conversely,
suppose that X is of J—type 6, so that there exists a constant C' > 0 such that ||z, < Ct=0J(z,t)
for all t € Ry and x € Xy N X;. In particular, for a fixed x € Xy N X; we an send ¢t — 0 if
§ =0 and t — oo if # = 1 to see deduce from this that ||z, < C|z|,. Now let z € X, and
pick a sequence {x,}>>, € X, N X; such that x, — x in Xy. For m,n > ¢ we then have that
|Zn — Zmllx < Cl|Tn — ]|y, which implies that {x,}°, is Cauchy in X, and hence convergent in
X to z (thanks to the compatibility of X, and X;). Hence,

|z|ly = lim ||z,||y < C lim ||z,|, = C|z|, for all z € X, (2.3.42)
n—oo n—oo

and we deduce that X, < X. This completes the proof of the second item when 6 € {0, 1}. O

We can make a variant of the diagram to indicate how to think about the location of
the spaces of type 6 € [0, 1] within the collection of interpolation spaces. In the following diagram
we again write 0 < 0y < 6 < 0; < 1 and indicate a generic space X (1)) as a space of type v, which
must lie in the indicated position along the horizontal lines.

Xg— X(0) —— (X0, X1)000 — Xo

A

(Xo, X1)gy,1 — X (00) —— (X0, X1)00,00

T

(X0, X1)o1 — X(0) —— (X0, X1)g.00 —— Xo N X, X0+ X, (2.3.43)

(XOaXI)Ql,l — X(‘91) — (X07X1)91,oo

~

Xl — X(].) —> (XOaXl)l,oo — Xl

The notion of type is exactly what we need to answer the question raised above. We now state
the answer as the important “reiteration theorem.”
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Theorem 2.3.8 (Reiteration theorem). Let Xy and Xy be compatible Banach spaces and Yy and
Y1 be intermediate spaces to Xo and X;. Suppose that 0 < 0y <6, < 1,1 <p<o0,0€(0,1), and
0= (1—0)0y+ 00, € (0,1). Then the following hold.

1. If'Y; is of K—type 0; fori € {0,1}, then

(Y0, Y1)op = (Xo, X1)o,p- (2.3.44)

2. If Y; is of J—type 0; for i € {0,1}, then

(Xo, X1)op = (Yo, Y1)op- (2.3.45)

3. If Y; is of type 0; fori € {0,1}, then
(Xo, X1)op = (Y0, Y1)op (2.3.46)
with equivalence of norms on these spaces.

Proof. First note that the first and second items imply the third, so we must only prove these two.
In order to keep the association between the K and J functions and the pair of spaces clear, we
will write

Fx(a,t) = nf{lall g, + ¢ lolly, [2= 20+ 1}, Jx(o,0) = max{llelly, )} (2347)

and
Ky (z,t) = nf{llally, +tllally, | == 20+ 2, Jy(wt) = maxfllaly, tlely ). (2348)
Note also that o satisfies o0
— 0o
— . 2.3.49
A —s ( )

We begin with the proof of the first item. Suppose that x € (Yy,Y1),p < Yo + Y7 and let
x =y + y1 for y; € Y;. By hypothesis, there is a constant C' > 0 such that

Kx(y,t) < Ct¥ ylly, forally € Xo+ X; and t € R,. (2.3.50)
Thus,
Kx(,t) < Kx(yo. t) + Kx(y1,t) < Ct |lolly, + Ct [lually, = Ct* (llyolly, + " llnlly,) »
(2.3.51)
and since this holds for all such decompositions, we find that
Kx(z,t) < Ot Ky (z,t"7%), (2.3.52)
If p = oo, then this and ([2.3.49)) imply that
K t K t
sup # < Csupt Ky (z,t"~%) = Csup M, (2.3.53)
>0 t >0 >0 to
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while if p < oo this, (2.3.49), and a change of variables show that

</R+ (taKX(x’t))%)l/p <C (/R+ (tf’O"Ky(x,tel%))%)l/p

_ (01—#@0)1@ ( /R + (t_”Ky(x,t))%)l/p. (2.3.54)

We deduce from these that (Yp, Y1), <= (Xo, X1),p, which proves the first item.
We now turn to the proof of the second item. Suppose that z € (X, X1)g, and write z =
> nez Tn for {zn}nez € XoN X and the series converging in X, + X;. Then by Proposition [2.1.18}

Ky (2, 20700 <3 Ky (2, 207%0) <) " min{1, 2000 1y (2, 20007%0m) - (2.3.55)

meZ meZ

For each m € Z we can use the fact that Y; is of J—type 6#; to bound
Sy (@, 20700 = max{[|znly, , 2070 |2 ly b < C27 I (20, 27), (2.3.56)
and we can use ([2.3.49)) to compute

9~ (61—60)on min{1, 2(01790)(n7m)}2*m90 — 9—(0=0bo)n min{1, 2(91790)(n7m)}2*m90

— 9—0(n-—m) min{209o(n—m)7 901 (n—m)}Q_me, (2.3.57)

Thus, we have the estimate

2~ (T gy (3, 20000 < O " dyy 27 T (20, 27) (2.3.58)
meZ
for
d, = 27" min{2%" 2%}, (2.3.59)
Since
ldllp =) 200 4 o700 < oo (2.3.60)
n<0 0<n

we can employ Young’s inequality and Theorem to bound
12l 5,1, < C lllln {277 Tx (@, 27) bimez | - (2.3.61)
This holds for all such decompositions of x, and so again Theorem shows that
120 (v 31)0p < Clldllpn 2l 0,510, - (2.3.62)

We deduce from this that (Xo, X1)g, < (Y0, Y1)s,p, which completes the proof of the second item.
[l

2.4 Examples and applications

We now turn our attention to characterizing the interpolation spaces that arise from various natural
choices of X, and X;.
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2.4.1 Interpolation of Lebesgue spaces

We motivated our construction of the abstract interpolation spaces by examining L'(X;F) and
L>*(X;TF) for a given measure space (X, 9, 1), and so it is natural to begin by studying what
results when we use these in our abstract framework. The key idea is contained in the following
beautiful theorem, which relates the decreasing rearrangement to the K function.

Theorem 2.4.1. Let (X,9M, 1) be a measure space and f € LY(X;F). Then the following are
equivalent.

1. f e LYX;F)+ L>(X;F).
2. There exists t € Ry such that fot f#(s)ds < oc.
3. For each t € Ry we have that f[f f#(s)ds < oc.

Moreover, if any of these (and hence all) holds, we have that

K(f,t)= /Ot f#(s)ds for all t € R,. (2.4.1)

Proof. The third item trivially implies the second. If the second holds for some ¢, then by the
monotonicity of f# we must have that f#(t) < oo or else the integral would be infinite. If 0 < r < ¢,
then [ f#(s)ds < [| f#(s)ds < co. On the other hand, if ¢ < 7 < oo, then

/OTf#(s)ds:/O f#(s)ds—k/trf#(s)dsﬁ/o f#(s)ds + (r —t) f7(t) < oo. (2.4.2)

Thus, the second item implies the third.

Suppose now that the first item holds. Then K(f,t) < oo for every ¢ € Ry by Proposition
2.1.16] Let f =g+ hfor g € LY(X;F) and h € L®(X;F). Then for s € R} and 0 < ¢ < 1 we may
may use Proposition to bound f#(s) < g#((1 —¢)s) + h¥(es). Thus, for t € R, we have the
estimate

/Otf#(S)ds S/ 9#((1_5>3>d5+/0th#(5s)d3 < 1

t
0 — &

/00 g7 (s)ds + th*(0)

1
= 72 gl +EllRl - (24.3)

This holds for all 0 < € < 1 and all such decompositions, so we deduce that

/0 " E(8)ds < K (1), (2.4.4)

Thus, the first item implies the third.
Now suppose the third item holds and let £ € R,. From the above analysis we know that
f#(t) < oo. Define g, h € L°(X;F) via

=t i f > )
g_{o "< (249



and

f it |f] < (). (249)

Define the set F = {z € X | g(z) #0} = {z € X | |f(x)] > f#(t)} and note that if z € E, then
|f(x)| > 0 and |g(z)| = |f(x)| — f#(t). Proposition [1.1.21| then provides the estimate

g {f#(t)ﬁ it [f] > f#(1)

W(E) = dy(F#(1) <t 247
If there exists s such that d;(f#(t)) < s < t, then we can use Proposition again to see that
FR) < f7(s) < fH(ds(F7 (1)) < f7 (1) (2.4.8)

Hence, f#(s) = f#(t) for all s € [u(F),t]. We now have enough information to estimate [|g||,;, and
|1 ;oo Indeed,

ol = [ laldu= [ (71=5#O)u= [ 171 xedn-nEI*0) = [ m(fXE)#(S)dsu(Ezf#(t;
2.4.9
but Lemmaimplies that (fxg)7(s) < f#(s)X(W(E))(s) for s € Ry, and so

wE)
gl < / F#(s)ds — u(E) F4(0). (2.4.10)

On the other hand,

t

LA e < EFF(8) = ()7 () + (¢ — u(E)) 7 (1) = p(E) F7 (1) + 7 (t)ds

w(E)

:,u(E)f#(t)—l—/t f#(s)ds. (2.4.11)

(E)
Thus, f € LY(X;F) + L>®(X;F) and

K(f,8) < llgll + 1Al o S/O f*(s)ds. (2.4.12)

This completes the proof that the third item implies the first and that if any of the three items hold
we have that K(f,1) fo f#(s)ds for all t € R, O

With the previous theorem in hand, we can now characterize the Lorentz spaces as the abstract
interpolation spaces generated by interpolating between L'(X;F) and L*°(X;F).

Theorem 2.4.2. Let (X,9M, 1) be a measure space, 1 < p < 0o, and 1 < g < oo. Then there exists
a constant C > 0 such that

I Wzre < NN g < C SN Lo (2.4.13)
for every f € L°(X;F). Consequently, we have the algebraic and topological identity

(LNX5F), (X)) 1y g = LPUXGTF), (2.4.14)

which in particular means that the Lorentz space LP1(X;TF) admits a norm that generates the same
topology as the quasinorm and makes the space Banach.
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Proof. Suppose that f € LP9(X;F). Then f € LP>®(X;F) and so f#(s) < s~ YP ||| f|ll p., Which
means that f; f#(s)ds < oo for every t € R,. Then the previous theorem implies that

t
PR (f 1) = tl/Pl/ f#(s)ds < oo for all t € R, (2.4.15)
0

and we can use this and Hardy’s inequality when ¢ < oo to deduce that

1l g < C Ao (2.4.16)

for a constant C' = C(p,q) > 0. Thus, LP4(X;F) — (L'(X;F), L®(X;F))1/p 4-
Conversely, suppose f € (L'(X;F), L%(X;F))1/y,q. Then f € L'(X;F)+ L>(X;F), and so the
previous theorem and the fact that f# is nondecreasing imply that

t
P (L) < tl/pl/ f#(s)ds = t"/P 1K (f, 1) < oo for all t € R, (2.4.17)
0
Thus,
W e < ALF 1 g s (2.4.18)
and we deduce that (L'(X;F), L®(X;F))1/y , — LP(X;F). O

Remark 2.4.3. Note that the theorem does apply to the spaces LY4(X;TF) for 1 < q < oo. In fact, it
can be shows that when q > 1 these spaces are not normable, and we are stuck with the quasi-norm.

As a consequence of this theorem and the reiteration theorem, we can interpolate between
Lorentz spaces as well.

Corollary 2.4.4. Let (X,9M, 1) be a measure space, 1 < pg,p1 < 00, and 1 < qo,q1 < 00. Let
1<qg<o0,0€(0,1), and define 1 < py < 0o via

1 1-60 40
— = + = (2.4.19)
Do Po b1
Then
(LPoo (X5 ), P2 (X5 F))gy = LP2U( X F) (2.4.20)
and
(LP(XF), LPY(X;F))gp, = L (X TF). (2.4.21)
Proof. First note that
1 1-60 40
=—+ . (2.4.22)

p_’g N Po Py
We know from Theorem that for i € {0,1}
P (X;F) = (LN(X; F), (X F))1/pt0 (2.4.23)

and is thus of type 1/p.. Then Theorems [2.3.8 and [2.4.2| combine to show that

(LPo® (X ), L0 (X)) = (LH(XGF), L°(X;F)) LP(X; ). (2.4.24)

1/ph.a —

In particular, if we set ¢; = p; and ¢ = pg, then we find the Lebesgue interpolation result

(L7 (X;F), L (X F))gp, = L (X F). (2.4.25)
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2.4.2 Interpolating between L? and W1?

We now aim to interpolate between LP(R™;F) and and the Sobolev space W'?(R™;F). To do this,
we first need to recall the one definition of the Besov spaces (there are many available with different
degrees of usefulness, depending on the area of intended use - Chapter 17 of Leoni’s book [4] does
a nice job of clarifying the relations among these definitions).

Definition 2.4.5. We define the following.

1. Gwen a function f : R" = F and y € R" define the difference quotient A,f : R" = F via
Ayf(z) = flz+y) — f(z) (2.4.26)

2. For1 <p<oo0,1<qg< o0, ands € (0,1) the Besov space of reqularity s and integrability
parameters p, q is the space

ByP(R™ F) ={[f] | f : R" = F is measurable and | f||gs» < 00}, (2.4.27)
where
1fllgge = 1fll o + [f]Bg»s (2.4.28)
and »
[flpgr = (/R %dy) < o0 (2.4.29)

when 1 < g < oo and

Ay Sl
lae = sup 1207l

. 2.4.30
0#y€R" ’3/| ( )

when q = o0.

The space B;P(R"™;F) is a Banach space when endowed with this norm, a fact that we leave as
an exercise to verify. Note that when p = ¢ < 0o, we may use a change of variables to see that

_ f@) =Sl N
[f]B;’p — (/RnXRn dedy> s (2431)

which shows that ByP(R™F) = W*P(R"F), where the latter is the fractional Sobolev space of
regularity s and integrability p. We now prove that the Besov spaces are the interpolation spaces
between LP and WhP,

Theorem 2.4.6. Now let 1 <p <oo,1<qg<o0, andf € (0,1). Then
(L?(R"; F), WP (R F)),, = BY#(R";F) (2.4.32)
with equivalence of norms.

Proof. Suppose first that f € BYP(R";F). Let n € C2°(R™) be such that supp(n) € B(0,1), n > 0
is radial, and [;,n = 1. For t € Ry write n,(z) = t~"n(z/t). Then we write

== f*n)+fxm= g+ h. (2.4.33)
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Since 7 is radial, we can compute

@) = [ (@) = fla =) "nlw/)dy = [ (£~ o)t nlo /)y
— [ =A@ty (2430

From this and Minkowski’s integral inequality, we have that

lgtll o < / 1Al £ 0y /) dy. (2.4.35)
If ¢ = 0o, then
—0 < A —n—~0 d < HAnyLP 0,—n d
gy < | NAfN ot n(y/t)dy < sup ——5= [ |y/t|"t "n(y/t)dy
R" w0yl R"

<l [ 100" 00y = COM - (2430

On the other hand, if ¢ < oo, then we may use the normalization [ 7 = 1 together with Holder’s
inequality (or Jensen’s inequality) to bound

1g:ll70 < i 1A, fIIT " n(y/t)dy, (2.4.37)

which implies, thanks to Fubini-Tonelli, that

e} q 0
Gtll v 11—
/O Hﬂﬂ'e@ dt < /R 1Ay FIIZs /0 ¢ (y /1) didy. (2.4.38)

Since supp(n) € B(0,1) we then see from this that

> HgthLp dt < A q oot—n—l—ethd _ O 9 ”Any%Pd
t146q — HT]HL‘X’ || y.f”LP Y= (777Q7 7”) T n+0q Yy
0 Rr 1y Ry

<Y, (2439)

For the term h; we begin by bounding

el o < 1 F 1l (2.4.40)

with Young’s inequality. We know that [;, Vn(z)dz = 0 and Vn(z) = —=Vn(—z), so we can compute

Vi) = [ ~(rla+ )~ F@) Tty (2.4.41)
in order to bound, again with the help of Minkowski,
VAl < [ 18 (90(u /o] dy (24.42)
If ¢ = 0o, then
Ol < Wl [ 161 1900001y = O 1l (24.43)
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On the other hand, g < oo, then we us Holder’s inequality on ([2.4.42)) to bound
IVhellF, < CEYE | A FII, 677 [Vn(y/t)] dy, (2.4.44)
R'I’L

where we have used the computation

1/q
</ " Vn(y/t)] dy) =t~V | Vy|}a" = OtV when 1 < q. (2.4.45)

This and Fubini-Tonelli then show us that
o0 dt e 1 e
| Il < o [ e [ s, e (wat)n)]
0 0 n

<C [ a1 [Tl day <© [ 181G, [ ety
R™ 0 Rn

ly]

1Ay f1I7

<0 [ A< OISy, (2449

Now, if ¢ = oo, then we may combine (2.4.36]), (2.4.40), and (2.4.43) with Theorem [2.2.16| to
bound

1 llge = F N + sup e K (£, 8) < 1 f Nl + sup (677 llgell o + 677 el o + 7" [V Pl )
0<t<1 0<t<1

<CNfllgge - (2447)

On the other hand, if ¢ < oo, then we instead use (2.4.39)), (2.4.40)), and (2.4.43]) with Theorem
2.2.16 to bound

1 1
dt dt
18, 115 + | (KO0 55 < I+ [ ol + 101l + 0 IVB )

<C ||f||‘]132,p . (2.4.48)
Thus, in either case we deduce that
BIP(R™F) < (LP(R™F); WP (R™ F))p,q. (2.4.49)

To conclude, it remains to prove the reverse inclusion.
Suppose that f € (LP(R™;F); W'P(R";F))y, and write f = g+ h for g € LP(R™;F) and h €
WHP(R™; F). From the triangle inequality we have that

1A ze < glle + 1120 e < llgllo + [[Plwee < K(f,1) < Clifllg, (2.4.50)

where in the last inequality we have used Theorem [2.2.8 On the other hand, for y € R"™ we may
write A, f = Ayg + Ayh and use the translation invariance of Lebesgue measure to estimate

1Ay fllze < 18yl + 18R L < 219l + 1AL - (2.4.51)

Next note that if ¢» € C'(R™;F) N WP(R"; F), then by the fundamental theorem of calculus,
1
Ayp(z) = / y - V(z + ty)dt, (2.4.52)
0
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and so Minkowski’s inequality shows that

1
1Ayl < |y|/O IVl Lo dt = [yl IVl L - (2.4.53)

However, basic Sobolev theory shows that smooth functions are dense in W1P(R"™;F), so this esti-
mate continues to hold for general ) € W!?(R™; F) by an approximation argument.

Using ([2.4.53)) on h, we find that

HAyh”LP S ’Z/‘ ”h”Wl,pa (2.4.54)
and so ([2.4.51)) shows that
1Ay flle < 2(llglle + Lyl 1Allw0) (2.4.55)

for all decompositions f = g+ h with g € L?(R™;F) and h € W'?(R™; F). Thus, for y # 0 we have
that

1Ay fll e < 2K(f lyl)- (2.4.56)
If ¢ = 0o, this implies that
Ayfllw K(f,t
[ go.r :sup% < 2sup¥ =2fllp - (2.4.57)
> y#£0 |y t>0 0 ’

On the other hand, if ¢ < oo, it instead implies that

A q q 00 q
[0 = /R Mdy < 2/n Mdy = Qan/O Mdr <C|fllg,- (24.58)

o N |y|n+9q |y|n+0q rl+0q

Then ([2.4.57) and (2.4.58) combine with (2.4.50]) to show that

1150 < C Ul (2.4.59)
and we deduce that
(LP(R™; F); WH(R™; F))g,, — BIP(R™;F), (2.4.60)
which completes the proof.
O

Theorem allows us to deduce some simple properties of Besov spaces with minimal effort.
We consider two examples of this now.

Example 2.4.7. Using Corollary [2.2.10] and Theorem in conjunction, we derive the interpo-
lation estimate

1Fllgsr < C " 1y for all f € WH(R™F), (2.4.61)

where C' € R, is a constant depending on the parameters. A

Example 2.4.8. Suppose that 1 < p < n. Then by the Gagliardo-Nirenberg-Sobolev inequality,
we know that W1P(R™; F) — LP"(R™; F), where

1
- —. 2.4.62
. (2.4.62)



This tells us that the identity map I : LP(R™; F) + WIP(R™ F) — LP(R™;F) + L*" (R™; F) satisfies
I € L(LP; LP) and L(W'P; LP). Then Theorem [2.2.12| shows that I is a bounded linear map from
(LP(R"™; F), W' (R F)), , = Bs?(R™ F) to (LP(R™; F), L (R™; F))s,, = L"9(R"; F) for

1 1- 1
_ Sy i _>_5 (2.4.63)
r p P p n

This and Theorems [2.4.2| and [2.4.6| then provide a constant C' > 0 such that
N fllfre < C HfHBs,p for all f € B)P(R™;[F). (2.4.64)

In other words, we have the subcritical embedding of the Besov spaces into the Lorentz spaces:
ByP(R™F) — L™(R™F). Since we trivially have the embedding B;?(R™;F) — LP(R™;F), we
have that B;P(R™;F) — LP(R™F) N L™(R";F), and we can can then use Theorem to
further deduce that Bi?(R"™;F) < L' (R™F) for all p <t <.
In particular, if we take ¢ = p and note that p < r, then we get the fractional Sobolev embedding
WeP(R™, F) — L"P(R™;F) N LP(R™; F) — L"(R™F) N LP(R™; F).
JAN

Our final example computes the interpolation spaces between Besov and fractional Sobolev
spaces.

Example 2.4.9. Let 1 < p < 00,1 < qo,q1 < 00, and 0 < 59,51 < 1. We know from Theorem

that for ¢ € {0, 1},

BP(R™ F) = (LP(R™; F), WP (R™F))s. (2.4.65)
and is thus of type s;. Let 1 < ¢ < o0, 0 € (0,1), and define 1 < sy < 1 via
sg = (1 —6)sp+ 0sy. (2.4.66)
Then Theorems [2.3.8] and [2.4.2| combine to show that
(B# (R F), B3P (R F))g,, = (LP(R™ ), W (R F)),, , = B (R"; F). (2.4.67)

Thus, when we interpolate between Besov spaces with the same first integrability index we get
another Besov space with the same first integrability index. Note that ¢y and ¢; play no role in
determining the type, so if we set ¢g = ¢; = p, then we find the fractional Sobolev space interpolation
result

(WP (R F), W2 (R™ )y, = B *(R™F), (2.4.68)
which in particular means that
(WP (R™ F), WP (R™ F))g,, = WP (R F). (2.4.69)

The above results extend also to the endpoints since LP(R™;F) is of type 0 and WP(R™; F) is
of type 1. Indeed, we have that

(LP(R™F), B # (R F))o,, = BI"P(RF) and (LR F), WP (R F)),, = WO P(R'F)

(2.4.70)
as well as
(Byo? (R F), W (R F))g,g = Bil™#(R™; F) (2.4.71)
and
(WP (R F), WH (R F))p,, = W00 (R )., (24.72)
A
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2.4.3 Interpolating between C° and C!

It turns out that the technique we used above works equally well with LP(R™;F) replaced by
CP(R™; F) and W'P(R"™; F) replaced by C{(R";F). Here we recall that

CHR™F) = {f:R" = F| f is continuous and bounded}, and
CFR™F) = {f :R" = F| f is k-times differentiable and 0°f € CP(R™;F) for all |a| < k}

(2.4.73)
are Banach spaces with the norms
1lleg = sup [ ()] and [1f]l¢ = max [0y (2.4.74)
z€R™ lo| <k b
For 0 < o <1 and k € N we also define
Cy*(R™;F) = {f € CF(R™F) | [flona < oo}, (2.4.75)
where oo oo

e
|| <k ay |z -y

and we define Hf”c{j“ = Hfﬂcé + [f]eke. The spaces Cp*(R™; F) are Banach when endowed with
these norms.

Theorem 2.4.10. For 0 € (0,1) we have that
(COR™;F), G} (R™; F))g o0 = (CR(R™; ), CO (R™; F)) 0 = CL¥ (R F) (2.4.77)
with equivalence of norms.

Proof. We will only prove that (C2(R"; F), C}(R"; F))g0e = C?(R™; F). The second identity follows
from essentially the same argument; we leave it as an exercise to check the details.
First note that C} (R™;F) < CP(R™;F), so according to Theorem [2.2.16] we can use the equiv-

alent norm
1fllco + sup t°K(f,t) (2.4.78)
b oo<t<l

in place of the usual one. We will do so, and by abuse of notation, continue to refer to this quantity
as || f1lp -
Let f € CYY(R™; C) and let n € C=°(R™) be a standard mollifier. For 0 < ¢ < 1 write

f=(—f*n)+fxmp=g+h (2.4.79)

Then
o) = [ (10 = 1o = )ty (2.4:80

and we can estimate this via

lgllco < [f]coe /Rn lyl”t "y /t) < O, 0)° | fll oo (2.4.81)

for
Cn,0) = [ |z|°n(z)dz < . (2.4.82)
Rn
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On the other hand, since 0 <t < 1,

Iilley < [1Fllgs < £ [ Fll oo

Since

Om(x)dx =0 for all 1 <i < n,
Rn

we have that

n

dih(x) = . f)t " om((x —y)/t)dy = / (fy) = fla)t ™ om((x — y)/t)dy,
and so

max [|9;hl[co < [f]cos max /R o = yI" 7 Oom((x = y) /6 dy < C' (0,0t (| f | oo

1<i<n 1<i<n
for

C'(n,0) = sup 2| [pin(z)| dv < oo.

1<i<n JR»
Hence, for 0 <t < 1 we have that
K(£.) < lglleg +t Il ey < O [1f] oo

for some constant C' = C(n,0) > 0. From this we deduce that

1 llg.00 < WFllco + Cllfllcoe < Cllfll oo -

(2.4.83)

(2.4.84)

(2.4.85)

(2.4.86)

(2.4.87)

(2.4.88)

(2.4.89)

On the other hand, suppose now that f € (CY(R™F), C}(R™;F))go and write f = g + h for

g € CQ(R™;F) and h € C{(R™;F). Then
[f (@) = fW)l < lglx) = gW)] + [h(x) = h(y)| < 2[lgllco + 1Mllcp 2 =yl
and since this holds for all such decompositions we deduce that

|[f(2) = f(y)| < 2K(f, & = yl).

Thus, for 0 < |z — y| < 1 we have that

1f(z) = f(y)l <2 sup t 'K(f,1),

lz —y[° 0<t<1
while for 1 < |z — y| < oo we have that

f(x) = f(y)]

S <@ -T2l

Hence,

I£leg + Ulo <3 (Iflleg + 310 K (7.0)) <31l
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(2.4.90)

(2.4.91)

(2.4.92)

(2.4.93)

(2.4.94)



Let’s consider an example based on this result and reiteration.

Example 2.4.11. Let 0 < 6y, 01,0 < 1 and write 0, = (1 — )0y + 06;. From Theorems [2.4.10| and
2.3.8 we have the identities

(CO%(R™F), CO% (R™ F))g0 = CO% (R F), (2.4.95)
(CO(R™; TF), CO1 (R™; F)) .00 = C¥1(R™ ), (2.4.96)
and
(CO%(R™F), CH(R"; F))go0 = CHIF7 (R F). (2.4.97)
A
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