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1 Fundamentals of continuum mechanics

Continuum mechanics is concerned with the dynamics of a continuous body such as a fluid (gas,
liquid) or an elastic body. Our goals here are:

1. to clearly elaborate a mathematical description of a continuum,

2. to describe the kinematics of a continuum,

3. to derive the equations of motion that govern the dynamics of a continuum.

1.1 Kinematics

To describe a continuum we assume the following.

1. At the reference time t0 = 0 (others could be used, but t0 = 0 is no loss of generality) the
continuum occupies an open set Ω0 ⊆ R3. We will typically assume that ∂Ω0 is at least
Lipschitz (locally the graph of a Lipschitz function) whenever ∂Ω0 6= ∅. However, in deriving
the equations of motion it is often convenient to assume ∂Ω0 is more regular. Throughout
section 1 we will be a bit vague about the precise regulartiy assumptions, but this has no
real impact on the results. The set Ω0 is often called a reference configuration or a material
configuration in the material, i.e. y ∈ Ω0 corresponds to a material point/particle.

2. For times t ≥ 0 the continuum occupies a set Ω(t) ⊆ R3 that is given as a deformation
of the reference configuration Ω0 by a map η(·, t) : Ω0 → R3. We assume that for each
t ≥ 0 the continuum does not self-penetrate, which means that we assume that η(·, t) is
injective. Thus η(·, t) : Ω0 → η(Ω0, t) = Ω(t) ⊆ R3 is a bijection for all t ≥ 0. Then the map
R+ 3 t 7→ η(y, t) ∈ R3 gives the trajectory of the material point y ∈ Ω0. We will call η the
flow map.

3. We will assume that actually η is differentiable and that for all t ≥ 0, η(·, t) : Ω0 → Ω(t) is a
C1 diffeomorphism that preserves orientation.

We now turn to one of the most important examples of flow maps.

Definition. Let z : R+ → R3, R : R+ → SO(3) = {M ∈ R3×3 | M> = M−1, detM = 1} be maps
with z(0) = 0, R(0) = I. We say that the map η : R3 × R+ → R3 given by η(y, t) = z(t) + R(t)y is
a rigid motion.

Clearly if η is a rigid motion, then |η(y1, t)− η(y2, t)| = |R(t)(y1 − y2)| = |y1 − y2| for all t ∈
R+, y1, y2 ∈ R3. This is what justifies the name. In fact, this characterizes these maps.

Proposition 1.1. Suppose f : Rn → Rn is a bijection. Then the following are equivalent:

1. |f(x)− f(y)| = |x− y| for all x, y ∈ Rn

2. There exists z ∈ Rn, R ∈ O(n) such that f(x) = z +Rx for all x ∈ Rn.
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Proof. The direction from item 2 to item 1 is trivial. To prove the other direction, we will first
prove a modified result: if f(0) = 0 and |f(x)− f(y)| = |x− y| for all x, y ∈ Rn, then f(x) = Rx
for some R ∈ SO(n). Indeed, in this case we know

x · y =
|x|2 + |y|2 − |x− y|2

2
=
|x− 0|2 + |y − 0|2 − |x− y|2

2

=
|f(x)− f(0)|2 + |f(y)− f(0)|2 − |f(x)− f(y)|2

2
= f(x) · f(y)

for all x, y ∈ Rn. Since f is a bijection we can choose y1, . . . , yn ∈ Rn such that f(yi) = ei for
i = 1, . . . , n. Then for x ∈ Rn,

f(x) =
n∑
i=1

(f(x) · ei)ei =
n∑
i=1

(f(x) · f(yi))ei =
n∑
i=1

(x · yi)ei = Rx

R ∈ Rn×n is the matrix with yi in the ith row. Thus f is linear and x · y = Rx ·Ry for all x, y ∈ Rn

and thus R>R = I =⇒ R ∈ O(n). This proves the modified result.
Now, in the general case we set z = f(0) and consider the map g : Rn → Rn given by g(x) =

f(x) − z. This is clearly a bijection and satisfies g(0) = 0 and |g(x)− g(y)| = |x− y| for all x, y.
Thus there exists R ∈ O(n) such that g(x) = Rx, and so f(x) = z +Rx.

Remark 1.2. In general we can’t show R ∈ SO(3) without postulating that η preserves orientation.

Definition. The velocity of a material particle y ∈ Ω0 at time t ∈ R+ is given by ∂tη(y, t) ∈ R3.
We define the velocity as v : Ω0 × R+ → R3 given by v(y, t) = ∂tη(y, t). We similarly define the
acceleration a : Ω0 × R+ → R3 via a(y, t) = ∂2

t η(y, t) = ∂tv(y, t) ∈ R3.

Those definitions are consistent with the usual meaning in the context of the kinematics of
particles. Indeed if we set x(t) = η(y, t) ∈ R3 for some fixed y ∈ Ω0, then v(y, t) = ẋ(t), a(y, t) =
ẍ(t).

The description of the velocity and acceleration in Ω0 is called the Lagrangian description and
the coordinates (y, t) ∈ Ω0 × R+ are called Lagrangian coordinates. It turns out that it is often
more convenient to work in Eulerian (or sometimes laboratory) coordinates, which are given by
x = η(y, t) ∈ Ω(t). In other words, (x, t) ∈ R3 × R are coordinates relative to a fixed frame (the
laboratory) through which the continuum moves.

Let’s examine the velocity and acceleration in Eulerian coordinates. We write u(·, t) : Ω(t)→ R3

via
v(y, t) = u(η(y, t), t) = u ◦ η or u(x, t) = v(η−1(x, t), t) = v ◦ η−1.

Next we compute:

a(y, t) = ∂tv(y, t) = ∂tu(η(y, t), t) +Du(η(y, t), t)∂tη(y, t)

= ∂tu(η(y, t), t) +Du(η(y, t), t)v(y, t)

= ∂tu(η(y, t), t) +Du(η(y, t), t)u(η(y, t), t).

Now, (Du · u)i =
∑3

j=1(Du)ijuj =
∑3

j=1 ∂juiuj = u · ∇ui, which leads us to define u · ∇u ∈ R3 via
(u · ∇u)i = uj∂jui. Thus

a(y, t) = ∂tu(η(y, t), t) + (u · ∇u)(η(y, t), t),
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and so the Eulerian description of the acceleration is the field ∂tu(x, t)+u(x, t)·∇u(x, t) for x ∈ Ω(t).
Given η or v we can compute u and Ω(t), but we can also go the other way! Say we know Ω(t)

and u(·, t) : Ω(t)→ R3 for t ≥ 0, i.e. we know the Eulerian velocity. We find η by solving{
∂tη(y, t) = u(η(y, t), t)

η(y, 0) = y ∈ Ω(0) = Ω0

.

Assuming u is sufficiently regular, there exists a unique η solving the ODE, and the basic theory of
ODE tells us that {η(·, t)}t≥0 is a 1-parameter family of diffeomorphisms. Moreover,{

∂t detDη(y, t) = div u(η(y, t), t) detDη(y, t)

detDη(y, 0) = det I = 1
, (1)

so

detDη(y, t) = exp

(∫ t

0

div u(η(y, s)) ds

)
.

This has an important consequence: detDη > 0 for all t ≥ 0, i.e. η is orientation-preserving. Thus
we guarantee that η is a flow map.

The formula (1) has other important consequences.

Definition. Let Ω ⊆ Rn be open and f : Ω → f(Ω) ⊆ Rn be a C1 diffeomorphism. We say f
is locally volume-preserving if |U | = |f(U)| for every measurable set U ⊆ Ω, where |·| denotes the
n-dimensional Lebesgue measure.

Theorem 1.3. Let η : Ω0 × R+ → R3 be a flow map. Then the following are equivalent:

1. For all t ∈ R+ the map η(·, t) : Ω0 → Ω(t) is locally volume-preserving.

2. detDη(y, t) = 1 for all y ∈ Ω0, t ∈ R+

3. If u(·, t) : Ω(t) → R3 is the Eulerian velocity associated to η, then div u(x, t) = 0 for all
x ∈ Ω(t) for all t ∈ R+.

Proof. We first show the first and second items are equivalent. We know from measure theory that
if U ⊆ Ω0 is measurable, then η(U, t) is measurable, and

|η(U, t)| =
∫
U

detDη(y, t) dy.

If |U | = |η(U, t)| for all U , then ∫
U

[detDη(y, t)− 1] dy = 0

for all U ⊆ Ω0 measurable, and hence detDη(y, t) = 1 for all y ∈ Ω0, t ∈ R+. The converse is
trivial.

Next, suppose the second item. Since detDη(y, t) = 1 we have that

0 = ∂t detDη(y, t) = div u(η(y, t), t) detDη(y, t) = div u(η(y, t), t)

for all y ∈ Ω0, t ∈ R+. Since η(·, t) : Ω0 → Ω(t) is a diffeomorphism, we deduce that div u(x, t) = 0
for all t ∈ R+, x ∈ Ω(t).
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Finally, suppose the third item. We know{
∂t detDη(y, t) = div u(η(y, t), t) detDη(y, t) = 0

detDη(y, 0) = 1

and thus detDη(y, t) = 1 for all y, t.

This suggests some notation.

Definition. The Eulerian velocity u is called incompressible if div u(·, t) = 0 for all t ∈ R+.

The theorem then says: η(·, t) is locally volume-preserving for all t if and only if u is incom-
pressible. Note, though that this does not mean that divy v(y, t) = 0.

Now we use the evolution of detDη to construct an essential tool.

Theorem 1.4 (Transport theorem). Let U0 ⊆ Ω0 be open and set U(t) = η(U0, t) ⊆ Ω(t) for
t ∈ R+. Let f(·, t) : Ω(t)→ R for t ≥ 0. Then

d

dt

∫
U(t)

f(x, t) dx =

∫
U(t)

∂tf(x, t) + div(f(x, t)u(x, t)) dx.

Proof. We have that η(·, t) : U0 → U(t) ⊆ Ω(t) is a diffeomorphism, so∫
U(t)

f(x, t) dx =

∫
U0

f(η(y, t), t) detDη(y, t) dy

for t ∈ R+. Thus

d

dt

∫
U(t)

f(x, t) dx =
d

dt

∫
U0

f(η(y, t), t) detDη(y, t) dy

=

∫
U0

[∂tf(η(y, t), t) +∇f(η(y, t), t) · ∂tη(y, t)] detDη(y, t)

+ f(η(y, t), t)∂t detDη(y, t) dy

=

∫
U0

[∂tf(η(y, t), t) +∇f(η(y, t), t) · u(η(y, t), t)

+f(η(y, t), t) div u(η(y, t), t)] detDη(y, t) dy

=

∫
U(t)

[∂tf(x, t) +∇f(x, t) · u(x, t) + f(x, t) div u(x, t)] dx

=

∫
U(t)

∂tf + div(fu).

Remark 1.5. The theorem trivially extends to f(·, t) : Ω(t)→ Rm for m ≥ 2. In this case

d

dt

∫
U(t)

f =

∫
U(t)

∂tf + div(f ⊗ u)

where f⊗u ∈ Rm×3 is given by (f⊗u)ij = fiuj for i = 1, . . . ,m and j = 1, . . . , 3 and if M : U(t)→
Rm×n then divM ∈ Rm is given by (divM)i =

∑n
j=1 ∂jMij. In other words, divergence acts on

matrix functions along each row.
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Remark 1.6. If ∂U(t) is Lipschitz for t ∈ R+, then

d

dt

∫
U(t)

f =

∫
U(t)

∂tf +

∫
∂U(t)

f ⊗ u · ν,

and the latter term is interpreted as the “flux of f” across the surface ∂U(t). Note: f⊗u·ν = f(u·ν).

We will apply the transport theorem very often, so we introduce some notation.

Definition. We say {U(t)}t∈R+ is a flow if U0 = U(0) ⊆ Ω0 is open with ∂U0 either ∅ or else
Lipschitz, and U(t) = η(U0, t) for t > 0. We say a flow is interior if U(t) b Ω(t) for all t ≥ 0.

Remark 1.7. Here we have that U(t) is open with ∂U(t) either empty or Lipschitz. We do this
so that U(t) is always measurable and ∂U(t) has a H2-a.e. defined unit normal ν (if ∂U(t) 6= ∅)
and the divergence theorem holds! This could possibly be improved, but we will settle for this, as it
already allows for a very large class of flows.

1.2 Mass and the continuity equation

Continuum mass assumptions:

1. We assume that one of the defining characteristics of a continuum is that it has mass. This
is analogous to the concept of mass for point particles, except that we assume that the mass
is distributed throughout Ω(t) with a C1 density distribution ρ(·, t) : Ω(t)→ (0,∞).

2. For any U ⊆ Ω(t) measurable we say that the mass contained in U is

M(U) =

∫
U

ρ(x, t) dx.

Note that if U is open then M(U) > 0, i.e. all open subsets of Ω(t) carry mass.

With this notion in hand we can state the third mass assumption.

3. We assume the principle of mass conservation: if {U(t)} is a flow thenM(U(t)) =M(U0) for
all t ∈ R+, i.e. the mass is constant along a flow. In particular this means that M(Ω(t)) =
M(Ω0), i.e. the total mass of the flow does not change.

Let’s now combine these assumptions with the transport theorem.

Theorem 1.8 (Continuity equation derivation). The density function ρ(·, t) : Ω(t)→ (0,∞) satis-
fies the PDE ∂tρ+ div(ρu) = 0 in Ω(t) for all t ≥ 0.

Proof. Let {U(t)} be a flow. SinceM(U(t)) =M(U0) for all t ≥ 0 we have that d/dtM(U(t)) = 0
for all t ≥ 0. Thus

0 =
d

dt
M(U(t)) =

d

dt

∫
U(t)

ρ =

∫
U(t)

∂tρ+ div(ρu)

for all t ≥ 0. Since this holds for every flow {U(t)} we deduce that ∂tρ+ div(ρu) = 0 in Ω(t) for all
t ≥ 0.

Definition. The equation ∂tρ+ div(ρu) = 0 is called the continuity equation or the conservation of
mass equation.
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Remark 1.9. Two remarks on the equation ∂tρ+ div(ρu) = 0:

1. The PDE is first order and linear in ρ if we know u.

2. Transport:

∂tρ+ u · ∇ρ︸ ︷︷ ︸
transport by u

+ ρ div u︸ ︷︷ ︸
div u acts as a sourcediv u > 0 =⇒ density decreases along characteristic curve

div u < 0 =⇒ density increases along characteristic curve

It turns out that something interesting happens to the density in Lagrangian coordinates. To
see this, we make a few definitions.

Definition. The Lagrangian mass density is α : Ω0×R+ → (0,∞) given by α(y, t) = ρ(η(y, t), t) ⇐⇒
ρ(x, t) = α(η−1(x, t), t). The Lagrangian Jacobian is J : Ω0 × R+ → (0,∞) given by J = detDη.

Theorem 1.10. ∂t(αJ) = 0 in Ω0 × R+.

Proof. We know ∂tJ(y, t) = div u(η(y, t), t)J(y, t) and

∂tα(y, t) =
d

dt
ρ(η(y, t), t) = ∂tρ(η(y, t), t) +∇ρ(η(y, t), t) · ∂tη(y, t)

= ∂tρ(η(y, t), t) +∇ρ(η(y, t), t) · u(η(y, t), t)

= − div u(η(y, t), t)ρ(η(y, t), t)

= − div u(η(y, t), t)α(y, t).

Thus
∂t(αJ) = ∂tαJ + α∂tJ = (div u ◦ η − div u ◦ η)αJ = 0.

Corollary 1.11.

ρ(η(y, t), t)J(y, t) = α(y, t)J(y, t) = α(y, 0) = ρ(y, 0) =⇒ ρ(η(y, t), t) =
ρ(y, 0)

J(y, t)
.

In particular, the flow is locally volume-preserving if and only if ρ(η(y, t), t) = ρ(y, 0) for all t ≥ 0.

The upshot of this is that the local volume distortion and mass are inversely proportional.

1.3 Momentum, force, torque, and momentum balance

1.3.1 Newton’s laws – 1687

Let’s begin recalling Newton’s laws:

1. An object in motion remains in the state of motion until acted upon by a force.

2. The rate of change of an object’s momentum equals the force acting on it.

3. The force one object exerts on another is equal to the opposite of the force the other exerts
on it.

Math translation: the first and second items state that ṗ = F where p = mv = mẋ, and the third
items states that F12 = −F21. Note: the angular momentum measure with respect to x0 ∈ R3 is
L = (x− x0)× p, and L̇ = (x− x0)× F is the torque.

Newton’s laws are formulated for particles and so don’t quite work for rigid bodies or continua.
Newtonian mechanics was extended to rigid bodies by Euler.
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1.3.2 Euler’s laws – 1750

A rigid body is given by Ω(t) = η(Ω0, t), where η is a rigid motion. We define the linear and angular
momentum by

p(t) =

∫
Ω(t)

ρu, L(t) =

∫
Ω(t)

x× ρu.

1. The total force acting on Ω(t) is
d

dt
p(t) = F(t)

2. The total torque acting on Ω(t) is
d

dt
L(t) = T (t)

We delay a specification of F , T for a moment. Rigid body mechanics is more complicated than
particle mechanics because of L and the inertia (which we don’t define) related to the distribution of
mass through a body. Euler was able to deduce his laws by idealizing the rigid body as a collection
of point particles and passing to the limit. Actually, we can go the other way and derive particle
mechanics from Euler by considering shrinking rigid bodies and assuming something called “Euler’s
cut principle”. So in some sense the Newtonian and Eulerian laws are the same.

To specify the dynamics of a (non-rigid) continuum we will employ a version of Euler’s laws
expanded upon by Cauchy.

1.3.3 Cauchy-Euler Laws – 1822

Let {U(t)}t be a flow. The linear/angular momenta are

P(U(t)) =

∫
U(t)

ρu, L(U(t)) =

∫
U(t)

x× ρu.

Note: we could also define Lx0(U(t)) =
∫
U(t)

(x− x0)× ρu.

We will also assume that to each flow we can specify the force and torque acting on U(t)
by F(U(t)) and T (U(t)), respectively. Furthermore, we assume that there are two types of
forces/torques:

1. Body/bulk: these are long-range forces/torques that act on the interior of U(t), e.g. gravity,
electromagnetism. These are given by a bulk force density f(·, t) : Ω(t)→ R3.

2. Surface: these are short-range forces/torques that act on ∂U(t). They are of two subtypes:

(a) Contact: these occur only on ∂U(t) \ ∂Ω(t) and are caused by the contact between U(t)
and U(t)c = Ω(t) \ U(t).

(b) Boundary: these occur only on ∂Ω(t)∩ ∂U(t) and are due to things like surface tension.
This is given by a density ψ(◦, t) : ∂Ω(t)→ R3.

Then the Cauchy-Euler laws are as follows:

1. For any flow {U(t)}t we have that

d

dt
P(U(t)) = F(U(t)).
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2.
d

dt
L(U(t)) = T (U(t)).

For these to be useful we must specify F and T . This is done in the third law.

3. (Cauchy’s hypothesis) Let {U(t)} be a flow. Then we have that

F(U(t)) = Fb(U(t)) + Fs(U(t))

T (U(t)) = Tb(U(t))︸ ︷︷ ︸
bulk

+ Ts(U(t))︸ ︷︷ ︸
surface

where

Fb(U(t)) =

∫
U(t)

f(x, t) dx, Tb(U(t)) =

∫
U(t)

x× f(x, t) dx

and

Fs(U(t)) =

∫
∂U(t)∩∂Ω(t)

ψ(x, t) dx+

∫
∂U(t)\∂Ω(t)

T (ν, x, t) dx

Ts(U(t)) =

∫
∂U(t)∩∂Ω(t)

x× ψ(x, t) dx+

∫
∂U(t)\∂Ω(t)

x× T (ν, x, t) dx

for ν the outward unit normal and T (·, ·, t) : S2×Ω(t)→ R3 a map called the Cauchy traction.
We assume T is at least C1.

Where does the traction come from? Heuristics: suppose {U(t)} is an interior flow. Then

Fs(U(t)) =

∫
∂U(t)

Ψ

where Ψ is the contact force on ∂U(t). Since Ψ is supposed to be short-range, it’s reasonable to
assume S = T (ν, x, t). Indeed by zooming in on x, we see that Ψ should on depend on x, t, and
the local geometry of ∂U(t) near x.

Since U(t) is just an abstract splitting of Ω(t) we further expect Ψ to only depend on the tangent
space, since all reasonable ways of probing Ψ at x have the same tangent space. Since the tangent
is determined by ν, we’re led to Cauchy’s hypothesis: S = T (ν, x, t).

Let’s now explore the implications of our assumptions.
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Lemma 1.12 (Balance of momentum, version 1). Let {U(t)}t∈R+ be an interior flow. Then∫
U(t)

∂t(ρu) + div(ρu⊗ u) =

∫
U(t)

f +

∫
∂U(t)

T (ν, ·, ·).

Proof. We simply combine the transport theorem and Cauchy-Euler 1 and Cauchy-Euler 3:∫
U(t)

∂t(ρu) + div(ρu⊗ u) =
d

dt

∫
U(t)

ρu =
d

dt
P(U(t)) = F(U(t)) =

∫
U(t)

f +

∫
∂U(t)

T (ν, ·, ·).

Now we derive an important property of T .

Lemma 1.13 (Cauchy’s lemma / Newton’s 3rd for contact forces). We have that T (ν, x, t) =
−T (−ν, x, t) for all t ∈ R+, x ∈ Ω(t), ν ∈ S2.

Proof. Fix t0 ∈ R+ and x0 ∈ Ω(t0), and consider ν ∈ S2. Let Γ ∈ R2 be a hyperplane such that
x ∈ Γ with ν normal to Γ. Let W b Ω(t0) be open with ∂W Lipschitz. Set U = W ∩ H+,
V = W ∩H− where H+, H− are the open half-spaces related to Γ, with ν pointing into H+. Then
∂U, ∂V are Lipschitz, x ∈ ∂U ∩ ∂V , and Σ = ∂U ∩ ∂V ⊂ Γ is relatively open in Γ. Assume ν
points into U . Set U0 = η−1(U, t0), V0 = η−1(V, t0), W0 = η−1(W, t0) which are open with Lipschitz
boundaries. Then for the flows {U(t)}, {V (t)}, {W (t)}, we know

d

dt
P(U(t)) = F(U(t)),

d

dt
P(V (t)) = F(V (t)),

d

dt
P(W (t)) = F(W (t)).

Clearly, P(U(t)) + P(V (t)) = P(W (t)), so F(U(t)) + F(V (t)) = F(W (t)), and hence∫
U(t0)

f +

∫
V (t0)

f +

∫
∂U(t0)

T +

∫
∂V (t0)

T =

∫
W (t0)

f +

∫
∂W (t0)

T

=⇒
∫
W (t0)

f +

∫
∂W (t0)

T +

∫
Σ

T (ν, ·, t0) + T (−ν, ·, t0) =

∫
W (t0)

f +

∫
∂W (t0)

T

=⇒
∫

Σ

T (ν, ·, t0) + T (−ν, ·, t0) = 0.

The above construction can be carried out such that Σ = B(x0, r) ∩ Γ for any r > 0, and so

1

πr2

∫
B(x0,r)∩Γ

T (ν, ·, t0) + T (−ν, ·, t0) = 0

for all r > 0 and thus

T (ν, x0, t0) + T (−ν, x0, t0) = lim
r→0

1

πr2

∫
B(x0,r)∩Γ

T (ν, ·, t0) + T (−ν, ·, t0) = 0.

With the previous two lemmas in hand we can now prove an extremely important result.

Theorem 1.14 (Cauchy’s stress tensor theorem). For t ∈ R+ there exists a tensor field S(·, t) :
Ω(t) → R3×3 such that T (ν, x, t) = −S(x, t)ν for all ν ∈ S2, x ∈ Ω(t). S is called the (Cauchy)
stress tensor. Moreover, Sj(x, t) = −T (ej, x, t) · ej and so S is as regular as T .
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Proof.

• Step 1

We claim that if t ∈ R+, x ∈ Ω(t), {zi}3
i=1 is an orthonormal basis of R3 and ν ∈ S2 is such

that zi · ν > 0 for i = 1, 2, 3, then

T (ν, x, t) = (ν · zi)T (zi, x, t).

Let ε > 0 and consider the tetrahedron Wε ⊂ Ω(t) such that

1. x is a vertex of Wε

2. Three sides have normal vectors −zi, i = 1, 2, 3 : Γiε

3. The fourth side has normal vector ν : Γνε

4. We have that x+ εν ∈ Γνε .

Now, by balance of momentum version 1, we know that∫
Wε

∂t(ρu) + div(ρu⊗ u)− f =

∫
∂Wε

T.

We leave as an exercise for the reader to show that∫
∂Wε

T = [T (−zi, x, t)(zi · ν) + T (ν, x, t)]H2(Γνε) + o(ε2).

Then since H2(Γνε) = Θ(ε2) we have that

o(1) =
1

H2(Γνε)

∫
Wε

∂t(ρu) + div(ρu⊗ u) = T (ν, x, t) + T (−zi, x, t)(zi · ν) + o(1)

and thus by sending ε→ 0, we find that

T (ν, x, t) = −T (−zi, x, t)(zi · ν) = T (zi, x, t)(zi · ν)

by Cauchy’s lemma. This proves the claim.

• Step 2

Let t ∈ R+, x ∈ Ω(t), ν ∈ S2 and choose {zi}3
i=1 ⊆ R3 an orthonormal basis such that ν ·zi 6= 0

for i = 1, 2, 3. Set wi = sgn(ν · zi)zi, and note that {wi} is still an orthonormal basis. Then
step 1 implies that

T (ν, x, t) = T (wi, x, t)(wi · ν) = T (sgn(ν · zi)zi, x, t) sgn(ν · zi)(zi · ν) = T (zi, x, t)(zi · ν)

by Cauchy’s lemma. Define S(·, t) : Ω(t)→ R3×3 by

Sij(x, t) = −T (ej, x, t) · ei

and consider S2
∗ = S2 \ {±e1,±e2,±e3}. The above analysis shows that if ν ∈ S2

∗ then

T (ν, x, t) = T (ei, x, t)(ei · ν) = (T (ei, x, t) · ej)(ei · ν)ej = −Sji(x, t)νiej = −S(x, t)ν.

Since T is continuous and S2
∗ ⊆ S2 is dense, we deduce that in fact T (ν, x, t) = −S(x, t)ν for

all ν ∈ S2.
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We can now use the stress tensor to refine balance of momentum.

Theorem 1.15 (Balance of momentum, version 2). We have that

∂t(ρu) + div(ρu⊗ u) + divS = f

in Ω(t) for t ∈ R+.

Proof. Let {U(t)}t be an interior flow. Then balance of mass version 1 says∫
U(t)

∂t(ρu) + div(ρu⊗ u) =

∫
U(t)

f +

∫
∂U(t)

T (ν, ·, t) =

∫
U(t)

f −
∫
∂U(t)

S(·, t)ν =

∫
U(t)

f − divS,

and hence
∂t(ρu) + div(ρu⊗ u) + divS = f

in Ω(t).

Remark 1.16. We compute

∂t(ρu) + div(ρu⊗ u) = [∂tρ+ div(ρu)]u+ ρ(∂tu+ u · ∇u),

so {
∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρu⊗ u) + divS = f
⇐⇒

{
∂tρ+ div(ρu) = 0

ρ(∂tu+ u · ∇u) + divS = f
.

Thus far we have not used Cauchy-Euler 2. Let’s use it now.

Theorem 1.17. For t ∈ R+ and x ∈ Ω(t) we have that S(x, t) = S>(x, t), i.e. S is symmetric.

Proof. Let {U(t)}t be an interior flow. Then Cauchy-Euler 2 says that

d

dt

∫
U(t)

x× ρu =

∫
U(t)

x× f +

∫
∂U(t)

x× T =

∫
U(t)

x× f −
∫
∂U(t)

x× Sν.

We leave as an exercise to show that
d

dt

∫
U(t)

x× ρu =

∫
U(t)

x× [∂t(ρu) + div(ρu⊗ u)] + u× ρu =

∫
U(t)

x× [∂t(ρu) + div(ρu⊗ u)]

and ∫
∂U(t)

x× S(x, t)ν =

∫
U(t)

x× divS(x, t) +

∫
U(t)

εijkSjk(x, t)ei

where

εijk =


+1 if (ijk) is an even permutation

−1 if (ijk) is an odd permutation

0 otherwise

.

Then∫
U(t)

x×[∂t(ρu) + div(ρu⊗ u)] =

∫
U(t)

x×(f−divS)−
∫
U(t)

εijkSjkei =⇒
∫
U(t)

εijkSjk(x, t)ei dx = 0.

Since {U(t)} was arbitrary, we deduce that εijkSjkei = 0 in Ω(t) for t ∈ R+. Then εijkSjk = 0 for
i = 1, 2, 3 and thus S23 = S32, S13 = S31, S12 = S21 =⇒ S = S>.

Remark 1.18. A modification of the above argument shows that the conditions Cauchy-Euler 1,
Cauchy-Euler 3, and S = S>, are equivalent to Cauchy-Euler 1, Cauchy-Euler 2, and Cauchy-
Euler 3. Thus, Cauchy-Euler 2 does not contribute a new PDE (balance of angular momentum) but
instead yields the structural result that S = S>.
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1.4 Energy and dissipation

In this course we will only consider continua evolving through purely mechanical processes. This
means that we will neglect temperature and heat dependent effects and thereby avoid the need to
develop thermodynamics.

We assume the following:

1. The continuum possesses mechanical energy that is distributed via E(·, t) : Ω(t)→ R. More-
over, we have that E = ρ |u|2 /2 + ρε, where ρ |u|2 /2 is the kinetic energy and ρε is the “free
energy density” given with ε(·, t) : Ω(t)→ R.

2. If {U(t)}t is a flow we define

E(U(t)) =

∫
U(t)

E(x, t) dx

to be the energy,

W(U(t)) =

∫
U(t)

f · u−
∫
∂U(t)\∂Ω(t)

Sν · u+

∫
∂U(t)∩∂Ω(t)

ψ · u

to be the external power.

3. Dissipation hypothesis: if {U(t)} is a flow then

d

dt
E(U(t)) ≤ W(U(t)).

This means that not all of the power goes to changing the energy: some is dissipated. We
could set D(U(t)) =W(U(t))− Ė(U(t)) ≥ 0.

Theorem 1.19 (Energy dissipation inequality). We have that for t ∈ R+

∂tE + div(Eu) ≤ f · u− div(Su).

Proof. Let {U(t)}t be an interior flow. Then∫
U(t)

∂tE + div(Eu) =
d

dt

∫
U(t)

E ≤
∫
U(t)

f · u−
∫
∂U(t)

Sν · u

=

∫
U(t)

f · u−
∫
∂U(t)

Su · ν =

∫
U(t)

f · u− div(Su).

This holds for all flows, so ∂tE + div(Eu) ≤ f · u− div(Su).

Remark 1.20. A simple computation (exercise!) shows that

∂t

(
ρ |u|2

2

)
+ div

(
ρ |u|2

2
u

)
= f · u− div(Su) + S : Du,

and hence
ρ(∂tε+ u · ∇ε) = ∂t(ρε) + div(ρεu) ≤ −S : Du

is equivalent to the energy dissipation inequality.
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Proof. We first check the second equality. Indeed, write

∂t(ρε) + div(uρε) = (∂tρ)ε+ ρ(∂tε) + [ε div(ρu) + (ρu) · ∇ε]
= ρ[∂tε+ u · ∇ε] + ε[∂tρ+ div(ρu)] = ρ(∂tε+ u · ∇ε).

It thus remains to prove the simple computation. To do this, we will show that both sides are equal
to (ρu) · ∂tu+ ρ|u|2∇u. We first demonstrate this with the left hand side. To begin, recall that

∂t|u|2 = ∂t(u · u) = 2u · ∂tu.

This means that

∂t(ρ|u|2) = |u|2∂tρ+ ρ · ∂t|u|2 = |u|2 · ∂tρ+ 2(ρu) · ∂tu,

and so

∂t

(
ρ|u|2

2

)
=
∂tρ · |u|2

2
+ (ρu) · ∂tu.

For the second term, we do something similar: write

div(ρ|u|2u) = div((ρu)|u|2) = |u|2 div(ρu) + ρu · ∇(|u|2) = |u|2 div(ρu) + 2ρ|u|2 · ∇u,

which means in turn that

div

(
ρ|u|2

2
u

)
=
|u|2 div(ρu)

2
+ ρ|u|2 · ∇u.

Thus adding yields

∂t

(
ρ|u|2

2

)
+ div

(
ρ|u|2

2
u

)
=
|u|2

2
[∂tρ+ div(ρu)] + (ρu) · ∂tu+ ρ|u|2 · ∇u

= (ρu) · ∂tu+ ρ|u|2 · ∇u,

proving the left hand side of the equality.
We now turn to the right hand side. Our first goal is to remove the presence of S. To do this,

recall (i.e. guess) that since S is a tensor field we have div(Su) = u · divS + S : Du. Thus, with
the aide of Balance of Momentum II, we have

f · u− div(Su) + S : Du = f · u− u · divS = u · ∂t(ρu) + u · div(ρu⊗ u).

It remains to simplify this expression. To do this, first recall that

div(ρu⊗ u) = u div(ρu) + (∂ρuu)|ρu| = u div(ρu) +∇u · ρu = u div(ρu) + ρ(u · ∇u).

Further, note that u · ∂t(ρu) = |u|2(∂tρ) + (ρu) · ∂tu by product rule. Thus, we have

u · ∂t(ρu) + u · div(ρu⊗ u) = |u|2[∂tρ+ div(ρu)] + (ρu) · ∂tu+ ρ|u|2 · ∇u
= (ρu) · ∂tu+ ρ|u|2 · ∇u,

and so the right hand side of the equality has been established as well. We are done.
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1.5 Synthesis

We record the equations of motion:
∂tρ+ div(ρu) = 0

ρ(∂tu+ u · ∇u) + divS = f

ρ(∂tε+ u · ∇ε) ≤ −S : Du

S = S>

.

These are the equations of purely mechanical continuum mechanics. Note that this is far from a
closed system. We need to specify the form of S and ε. This specification depends on the material
the comprises the continuum. For example S is quite different in an elastic solid from S in a gas.
We will focus exclusively on fluid flow. Before moving on, we turn to a discussion that will help us
determine S and ε.

1.6 Frame indifference

Let’s say an observer (A) sees Ω(t) evolve in Eulerian coordinates (x, t). Suppose now that a second
observer (B) sees the evolution of Ω(t) but utilizes a different spatial coordinate system. Further
suppose A and B have the same measuring systems, which means for t ∈ R+ there exists an isometry
Ψ(·, t) : R3

A → R3
B between the coordinate systems. Then there exists z : R+ → R3, R : R+ → O(3)

such that Ψ(x, t) = z(t) + R(t)x. Let’s write x̃ = Ψ(x, t). Then (x̃, t) is B-coordinates and A-
coordinates are (x, t). Extending this notation, we put a ∼ on quantities measured by B, e.g.
ũ, ρ̃, Ω̃(t), etc.

Definition.

1. We say a scalar ϕ(·, ·) if frame-indifferent if ϕ̃ = ϕ, i.e. if ϕ̃(x̃, t) = ϕ(x, t) for t ∈ R+, x ∈
Ω(t), x̃ = Ψ(x, t) ⊂ Ω̃(t).

2. Note that x̃ − ỹ = R(t)(x, y), so displacement transforms by R(t) multiplication. We say a
vector w ∈ R3 is frame-indifferent if w̃ = R(t)w, i.e. w̃(x̃, t) = R(t)w(x, t).

3. Say that w(x, t), v(x, t) ∈ R3 are frame-indifferent and that v = Mw for a tensor field M(·, t) :
Ω(t)→ R3×3. Then

ṽ = ˜(Mw) = RMw = RMR>Rw = RMR>w̃ =: M̃w̃.

A 2-tensor M ∈ R3×3 is frame-indifferent if M̃(x̃, t) = R(t)M(x, t)R>(t).

As an example, velocity is not frame-indifferent:

ũ(x̃, t) = R(t)u(x, t) + Ṙ(t)R−1(t)(x̃− z(t)) + ż(t)

nor its derivative:
Dx̃ũ(x̃, t) = R(t)Dxu(x, t)R−1(t) + Ṙ(t)R−1(t).

Proof. Set η̃(y, t) = z(t) +R(t)η(y, t). Then ṽ(y, t) = R(t)v(y, t) + Ṙ(t)η(y, t) + ż(t). Note that

x̃ = η̃(y, t) = R(t)η(y, t) + z(t) =⇒ x = η(y, t) = R−1(t)(x̃− z(t))

=⇒ η̃−1(x̃, t) = y = η−1(R−1(t)x̃−R−1(t)z(t), t).
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Then

ũ(x̃, t) = ṽ(η̃−1(x̃, t), t) = R(t)u
(
R−1(t)(x̃− z(t)), t

)
+ Ṙ(t)R−1(t)(x̃− z(t)) + ż(t).

We make the following frame-indifference assumptions:

1. The scalars ρ and ε are frame-indifferent.

2. The vector force f is frame-indifferent.

3. The 2-tensor S is frame-indifferent.

We now discuss the differential geometry interpretation of frame-indifference. Let T be a 2-tensor
field on Ω0. Since η is a diffeomorphism, we can push it forward:

η∗T (x)(v, w) = T (η−1(x))(Dη−1(x)v,Dη−1(x)w)

= TijAikvkAj`w` =
(
A>kiTijAj`

)
vkw`

=
(
A>TA

)
k`
vkw` =

(
A>TA

)
(v, w),

where we write A for Dη−1, and so S(x) = η∗T := Dη−>(x)T (η−1(x))Dη−1(x). Now suppose we
also have η̃, Ω̃(t), where η, η̃ are related by x̃ = z +Rx. Then

η̃−1(x̃) = y = η−1(x) = η−1(R>(x̃− z)) =⇒ Dx̃η̃
−1(x̃) = Dxη

−1(R>(x̃− z))R> = Dxη
−1(x)R>.

So,
S̃(x̃) = Dx̃η̃

−>(x̃)T (y)Dx̃η̃
−1(x̃) = RDxη

−>(x)T (y)Dxη
−1(x)R> = RS(x)R>

and
ũ(x̃) =

(
Dx̃η

−1(x̃)
)−1

v(y) = R
(
Dxη

−1(x)
)−1

v(y) = Ru(x).

We can play a similar game with scalar fields, i.e. 0-tensors.
Note that the equations of motion are not frame-indifferent. They are only indifferent with

respect to Galilean transformations: z̈ = 0, Ṙ = 0.

Remark 1.21. The above shows that rules for frame-indifference follow naturally from notions in
differential geometry, namely pushforward and pushbackward maps.

2 Fundamentals of fluid mechanics

2.1 Constitutive relations in compressible fluids

In order to close the equations of motion we must assume constitutive laws: equations relating ε
and S to ρ, η, and u.

Informally, a fluid is a continuum that experiences stress due to density and local spatial varia-
tions in the velocity. The latter we can imagine as a sort of friction: u = λρ.

Definition. A compressible fluid is a continuum for which there exist functions β : (0,∞) ×
R3×3 → R,Γ : (0,∞) × R3×3 → Sym(3) such that ε(x, t) = β (ρ(x, t), Du(x, t)) and S(x, t) =
Γ (ρ(x, t), Du(x, t)).
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To determine β and Γ we will enforce the frame-indifference: β(ρ̃, Dũ) = ε̃ = ε = β(ρ,Du) for all
frame changes. Similarly, Γ(ρ̃, Dũ) = S̃ = RSR> = R(t)Γ(ρ,Du)R>(t). We previously computed
Dũ = R(t)DuR>(t) + Ṙ(t)R>(t), and by assumption ρ̃ = ρ. Thus,

β(ρ,Du) = β
(
ρ,R(t)DuR>(t) + Ṙ(t)R>(t)

)
R(t)Γ(ρ,Du)R>(t) = Γ

(
ρ,R(t)DuR>(t) + Ṙ(t)R>(t)

)
.

These must hold for all possible fluid motions, and so we require that

β(r,M) = β
(
r, R(t)MR>(t) + Ṙ(t)R>(t)

)
R(t)Γ(r,M)R>(t) = Γ

(
r, R(t)MR>(t) + Ṙ(t)R>(t)

)
for all r ∈ (0,∞) and M ∈ R3×3.

Let A,R ∈ R3×3 be such that R0 ∈ O(3), A> = −A and set R(t) = etAR0 ∈ O(3). Note that
Ṙ(t) = AetAR0, and so R(0) = R0, Ṙ(0)R>(0) = AR0R

>
0 = A. Hence

β(r,M) = β(r, RMR> + A)

RΓ(r,M)R> = Γ(r, RMR> + A)

for all r ∈ (0,∞), M ∈ R3×3, and all R ∈ O(3) such that A = −A>.
Choose R = I, A = (M> −M)/2. Then

β(r,M) = β(r,M + A) = β

(
r,
M +M>

2

)
Γ(r,M) = Γ(r,M + A) = Γ

(
r,
M +M>

2

)
.

Thus, β and Γ only depend on the symmetric part of M , so by abuse of notation and rearranging
things, we then have that

ε(x, t) = β(ρ(x, t),Du(x, t)), S(x, t) = Γ(ρ(x, t),D(x, t))

where Du = Du + Du> and β : (0,∞) × Sym(3) → R,Γ(0,∞) × Sym(3) → R3×3 are such that
β(r, RMR>) = β(r,M), RΓ(r,M)R> = Γ(r, RMR>) for all r ∈ (0,∞),M ∈ Sym(3), R ∈ O(3),
and A = −A>.

Note that if we set M = 0, then

Γ(r, 0) = RΓ(r, 0)R>

for all R ∈ O(3), which implies (exercise) that Γ(r, 0) = p(r)I for p : (0,∞) → R, called the
pressure. We can then decompose Γ as

Γ(r,M) = Γ(r, 0) + Γ(r,M)− Γ(r, 0) := p(r)I + Γ0(r,M).

Frame-indifference then requires that

RΓ0(r,M)R> = Γ0(r, RMR>)
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for all r,M,R.
Next we examine the energy-dissipation inequality:

ρ(∂tε+ u · ∇ε) ≤ −S : Du.

We compute

∂tε = ∂tβ(ρ(x, t),Du(x, t)) = ∂rβ(ρ,Du)∂tρ+
∂β

∂Mij

(ρ,Du)∂tDuij + u · ∇Duij

and similarly
−S : Du = −(pI + Γ0) : Du = −p(ρ) div u− Γ0(ρ,Du) : Du,

so

ρ
∂β

∂Mij

(ρ,Du) [∂tDuij + u · ∇Duij] +
[
−∂rβ(ρ,Du)ρ2 + p(ρ)

]
div u+

Γ0(ρ,Du) : Du
2

≤ 0.

This holds for all possible flows, and we then can specify ∂tDu+ u · ∇Du = N arbitrarily. Then,

r
∂β

∂Mij

(r,M)Nij +
[
p(r)− r2∂rβ(r,M)

]
trL+ Γ0(ρ,M) : L ≤ 0

for all r,N,M , where L = M +M>. Since N appears linearly, we can contradict the inequality by
scaling N appropriately, unless ∂β/∂Mij(r,M) = 0 for all i, j. Then ∂β/∂Mij(r,M) = 0 for all i, j
and hence β = β(r).

Now
p(r)− r2β′(r)) trM + Γ0(r,M +M>) : M ≤ 0

for all r,M . Let M = αM0 for some M0 ∈ Sym(3). Then (p(r)−r2β′(r)) trM0+Γ0(r, α(M0+M>
0 )) :

M0 ≤ 0 for all α. Sending α→ 0 and using Γ0(r, 0) = 0 shows that

(p(r)− r2β′(r)) trM0 ≤ 0 for all M0 =⇒ p(r)− r2β′(r) = 0.

Thus

β(r) = β0 +

∫ r

1

p(s)

s2
ds

for some β0 ∈ R. In turn we find that Γ0(r,M) : M ≤ 0 for all M ∈ Sym(3). We’ve proved the
following theorem.

Theorem 2.1. For compressible fluids, we must have

S(x, t) = p(ρ(x, t))I + Γ(ρ(x, t)Du(x, t)), ε(x, t) = β0 +

∫ ρ(x,t)

1

ρ(s)

s2
ds

for p : (0,∞) → R, and Γ0 : (0,∞) × Sym(3) → Sym(3) such that Γ0(r,M) : M ≤ 0 for all
r,M ∈ Sym(3) and RΓ0(r,M)R> = Γ0(r,M) for all r,M,R.

We now quote two important linear algebra results without proof. For proofs, see, e.g., Gurtin’s
Introduction to Continuum Mechanics [Gur82], section 37.

18



Theorem 2.2. Define the “invariant map” (J(RMR>) = J(M) for all M ∈ R3×3, R ∈ O(3))
J : R3×3 → R3 via

J1(M) = trM, J2(M) =
(trM)2 − tr(M2)

2
, J3(M) = detM.

Then the following are equivalent for F : Sym(3)→ Sym(3):

1. RF (M)R> = F (RMR>) for all M ∈ Sym(3), R ∈ O(3).

2. There exist ϕ0, ϕ1, ϕ2 : R3 → R such that

F (M) = ϕ0(J(M))I + ϕ1(J(M))M + ϕ2(J(M))M2.

Theorem 2.3. Suppose F : Sym(3)→ Sym(3) is linear. Then the following are equivalent:

1. RF (M)R> = F (RMR>) for all M ∈ Sym(3), R ∈ O(3).

2. There exist λ, µ ∈ R such that F (M) = µM + λ(trM)I.

These two theorems completely characterize the possible forms of Γ0. We will focus on a special
type.

Definition. A compressible fluid is Newtonian if for each r ∈ (0,∞) the map Γ0(r, ·) : Sym(3) →
Sym(3) is linear.

Theorem 2.4. For a Newtonian fluid we have that there exist µ, λ : (0,∞)→ R such that

Γ0(r,M) = −µ(r)M − λ(r)

2
(trM)I

and µ(r) ≥ 0, λ(r) ≥ −2
3
M(R) for all r ∈ (0,∞).

Proof. Since the fluid is Newtonian we may write Γ0(r,M) = −µ(r)M − 1
2
λ(r)(trM)I. However,

we must have that Γ0(r,M +M>) : M ≤ 0 for all m, r if and only if

−µ(r)(M +M>) : M − 1

2
λ(r) tr(M +M>) trM ≤ 0

for all M, r. Choose M = I:

−µ(r)2I : I − λ(r)
1

2
tr(2I) tr I ≤ 0 =⇒ −6µ(r)− 9λ(r) ≤ 0 =⇒ λ(r) ≥ −2

3
µ(r).

Also, if trM = 0, then

−µ(r)
∣∣M +M>∣∣2 ≤ 0

and hence µ(r) ≥ 0.

Corollary 2.5. In a compressible Newtonian fluid we have

S(x, t) = p(ρ(x, t))I − µ(ρ(x, t))Du(x, t)− λ(ρ(x, t))(div u)I.
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We now have the full equations of motion:{
∂tρ+ div(ρu) = 0

ρ(∂tu+ u · ∇u) +∇p(ρ)− div (µ(ρ)Du+ λ(p)(div u)I) = f

where p, µ, λ : (0,∞) → R with µ ≥ 0, λ ≥ −2
3
µ. We typically assume p ≥ 0 and increasing. We

call µ ≥ 0 the shear viscosity, and λ+ 2
3
µ ≥ 0 the bulk viscosity. We assume{

µ = λ = 0 ⇐⇒ inviscid flow ⇐⇒ compressible Euler

µ > 0, λ+ 2
3
µ ≥ 0 ⇐⇒ viscous flow ⇐⇒ compressible Navier-Stokes

.

Note: µ, λ constant =⇒ div(µDu+ λ div uI) = µ∆u+ (λ+ µ)∇ div u.

2.2 Incompressible fluids

Now we assume that the flow is incompressible, i.e. locally volume preserving. Then div u = 0 and
so ∂tρ + u · ∇ρ = 0. This means that ρ a constant solves this equation trivially. We will assume
this, which means we should resally say incompressible, homogeneous fluids, but this is a standard
abuse of notation.

The procedure we used for compressible fluids was

1. Assume constitutive equations.

2. Plug into energy-dissipation inequality to deduce structure.

Let’s look at this under the incompressibility assumption. Write S = (trS/3)I + S0. Then

ρ(∂tε+ u · ∇ε) ≤ −S : Du = −S0 : Du− trS

3
trDu = −S0 : Du.

This means that we have no hope of computing trS; we can only hope to determine S0.

Definition. An incompressible fluid is a continuum in which we assume

1. div u = 0, ρ is constant.

2. There exists a “pressure function” p(·, t) : Ω(t)→ R and functions β : R3×3 → R,Γ : R3×3 →
Sym0(3) = {M ∈ Sym(3) : trM = 0}, S(x, t) = p(x, t)I+ Γ(Du(x, t)) (i.e. 3p = trS, S0 = Γ),
ε(x, t) = β(Du(x, t)).

Frame-indifference again says that β(Du) = β(Du),Γ(Du) = Γ(Du). Then energy-dissipation
says

ρ
∂β

∂Mij

(Du) (∂tDuij + u · ∇Duij) + Γ(Du) : Du ≤ 0,

from which we again deduce that

ρ
∂β

∂Mij

(M +M>)Nij + Γ(M +M>) : M ≤ 0 for all N,M ∈ R3×3

=⇒ ∂β

∂Mij

(M +M>) = 0 for all i, j, Γ(M +M>) : M ≤ 0 for all M

=⇒ β constant,Γ(M +M>) : M ≤ 0

Frame-indifference also says that RΓ(M)R> = Γ(RMR>), so we know all possible Γ.
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Definition. An incompressible Newtonian fluid is an incompressible fluid for which Γ is linear.

Theorem 2.6. In a Newtonian incompressible fluid we have that S(x, t) = p(x, t)I − µDu(x, t) for
some µ ≥ 0.

Proof. We can use the frame-indifference to find that Γ(M) = −µM for all M ∈ Sym0(3), and then
energy-dissipation requires −µ(M +M>) : M ≤ 0 for all M ∈ Sym0(3) and thus µ ≥ 0.

The full equations of motion are:{
ρ(∂tu+ u · ∇u) +∇p− div(µDu) = f

div u = 0
.

Here, {
µ = 0 ⇐⇒ inviscid ⇐⇒ incompressible Euler

µ > 0 ⇐⇒ viscous ⇐⇒ incompressible Navier-Stokes
.

Remark 2.7.

1. div(µDu) = µ∆u

2. We have 4 scalar unknowns and 4 equations, so we can hope to “solve for p”:

ρ(∂tu+ u · ∇u) +∇p = f + µ∆u, div u = 0

=⇒ ρ∂t div u+ div(u · ∇u) + ∆p = div f + µ∆ div u = 0

=⇒ −∆p = div(u · ∇u)− div f = ∂i(uj∂jui)− div f = tr(Du2)− div f

so in some sense we should be able to compute p from u, f .

2.3 Boundary conditions

We will focus on two types of boundaries: rigid and moving/free.

2.3.1 Rigid

In this case we assume that ∂Ω(t) meets a rigid solid for all t ∈ R+. In this case the fluid cannot
penetrate the solid, so we must have that

u · ν = vsol · ν

on ∂Ω(t), where vsol is the velocity of the rigid solid. In particular, if the solid is stationary, then
vsol = 0 and u · ν = 0.

If the fluid is viscous then we typically assume that actually

u = vsol

on ∂Ω(t) since otherwise slipping should generate “too much friction”. In the stationary case u = 0.
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2.3.2 Moving

For simplicity, let’s only consider the case of two distinct fluids evolving together:

R3 = Ω1(t) t Ω2(t), ∂Ω1(t) ∩ ∂Ω2(t) = Σ(t).

1. We assume the fluids remain in contact for all times.

2. The boundary force is ψ(·, t) : Σ(t)→ R3.

3. Write JgK = g2 − g1.

The first item is enforced via {
Ju · νK = 0 inviscid

JuK = 0 viscous
.

Now consider U0 ⊆ Ω1(0) such that ∂U0 ∩ Σ(0) 6= ∅. By Cauchy-Euler 1, we have

d

dt

∫
U(t)

ρ1u1 =

∫
U(t)

f1 +

∫
∂U(t)∩Σ(t)

−S2ν + ψ +

∫
∂U(t)\Σ(t)

−S1ν

=

∫
U(t)

f1 +

∫
∂U(t)

−S1ν +

∫
∂U(t)∩Σ(t)

−JSνK + ψ.

and

0 =

∫
U(t)

∂t(ρ1u1) + div(ρ1u1 ⊗ u1) + divS1 − f1 =

∫
−∂U(t) ∩ Σ(t)− JSνK + ψ.

Because U0 was arbitrary, we find that JSνK = ψ on Σ(t). Therefore, the inviscid free boundary
conditions are {

Ju · νK = 0

JpKν = ψ

the viscous free boundary conditions are {
JuK = 0

JSνK = ψ

on Σ(t), where ν points from domain 1 to domain 2. We can apply similar arguments to find that∫
U(t)

x× (∂t(ρ1u1) + div(ρ1u1 ⊗ u1) + divS1 − f1) =

∫
∂U(t)∩Σ(t)

x× (−JSνK + ψ)∫
U(t)

∂tE + div(Eu)− f · u+ div(Su) ≤
∫
∂U(t)∩Σ(t)

−JSu · νK + ψ · u.

However,

viscous : JSνK− ψ, JuK = 0 =⇒

{
x× (J−SνK + ψ) = 0

JSu · νK = Jν · uK = JSνK · u = ψ · u

inviscid : JpKν = ψ, Ju · νK = 0 =⇒

{
x× (J−pKν + ψ) = 0

JSu · νK = JpKu · ν = ψ · u

and so in either case we gain no new info.
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2.4 Scaling and the Reynold’s number

Frame-indifference is about rigid changes of measuring frame, but we could also consider changes
given by switching the units of measurement. This is related to scalings of the equations.

Consider a viscous incompressible fluid:{
ρ(∂tu+ u · ∇u) +∇p− µ∆u = f in Ω(t)

div u = 0
.

Fix L, T > 0 and consider

v(x, t) =
T

L
u(Lx, T t), q(x, t) =

T 2

L2ρ
p(Lx, T t), g(x, t) =

T 2

Lρ
f(Lx, T t).

A simple computation shows that{
∂tv + v · ∇v +∇q − 1

R∆v − g = T 2

Lρ
(ρ (∂tu+ u · ∇u) +∇p− µ∆u− f) = 0

div v = 0

in Ω̃(t) = L−1Ω(Tt), where

R =
L2ρ

µT
> 0

is called Reynold’s number.
The math upshots:

1. By rescaling we can reduce to a single parameter R.

2. If we choose L, T > 0 we can force R = 1, so there’s no real loss of generality in studying{
∂tu+ u · ∇u+∇p ·∆u = f

div u = 0
.

Actually, the Reynolds number R has an important physical meaning. To see why, we have to
recall the physical idea of units: mass (m), length (`), time (τ). Write [·] for the units of something.
Then

[u] =
`

τ
, [ρ(∂tu+ u · ∇u)] = [f ] =

1

R3

m`

τ 2
, [p] =

1

`2

m`

τ 2
, [µ] =

1

`3

m`2

τ
.

Therefore, R = L2ρ/(µT ) is unitless because [L] = `, [ρ] = m/`3, [T ] = τ . The physical interpreta-
tion is that the rescaled problem{

∂tv + v · ∇v +∇q − 1
R∆v = g

div v = 0

is unitless, and that all of the physics of scale is encoded in R. In particular, any two flows with
the same R are identical, up to rescaling.
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