Final Exam Review

May 4, 2004

Name:_____

Closed book and notes; calculators not permitted.

1. (20 points) Let T be a linear transformation so that

$$T\begin{bmatrix}1\\0\\0\end{bmatrix} = \begin{bmatrix}0\\1\\0\end{bmatrix}, T\begin{bmatrix}0\\1\\0\end{bmatrix} = \begin{bmatrix}0\\0\\1\end{bmatrix}, T\begin{bmatrix}1\\0\\1\end{bmatrix} = \begin{bmatrix}1\\0\\0\end{bmatrix}$$

- (a) Find a matrix A so that $T(\mathbf{x}) = A\mathbf{x}$. (Hint: $A = [T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3)]$).
- (b) Is the linear transformation T invertible? If yes, what is the matrix of T^{-1} , if no, why not?

2. (20 points) Let $M = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \end{bmatrix}$.

- (a) Find a basis for $\operatorname{Col}(M)$.
- (b) Find a basis for Nul(M).
- (c) What is the dimension of $Nul(M^T)$? the dimension of $Col(M^T)$?

3. (20 points) Let

$$\mathbf{v}_1 = \begin{bmatrix} 4\\2\\1\\2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\4\\1\\4 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1\\2\\0\\-4 \end{bmatrix}.$$

- (a) Find an orthonormal basis for $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2)$.
- (b) Find an orthonormal basis for $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.
- (c) Find the QR factorization for $A = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3]$.
- 4. (20 points) Consider the matrix $A = \begin{bmatrix} 1 & k \\ 1 & 1 \end{bmatrix}$. For what values of k is A invertible?

- 5. (20 points) Let A and B be $n \times n$ matrices, S is an invertible $n \times n$ matrix. $B = S^{-1}AS$.
 - (a) Show that A and B have the same eigenvalues.
 - (b) What is the relation between the eigenvectors of A and B?

6. (20 points)

Sketch the curve defined by

$$Q(x_1, x_2) = 6x_1^2 + 4x_1x_2 + 3x_2^2 = 1$$

by the following steps.

- (a) Rewrite the quadratic form $Q(x_1, x_2)$ as $Q(x_1, x_2) = \mathbf{x}^T A \mathbf{x}$.
- (b) Find out the principal axes and diagonalize A.
- (c) Give the formula of the curve in the coordinate system defined by the principal axes and then sketch the curve $Q(x_1, x_2) = 1$.

7. (20 points) Let

$$A = \left[\begin{array}{cc} 2 & -2 \\ 1 & 1 \end{array} \right].$$

- (a) Find the singular values of A, σ_1 and σ_2 with $\sigma_1 \ge \sigma_2$.
- (b) Find an orthonormal basis $\mathbf{v}_1, \mathbf{v}_2$ for R^2 so that $||A\mathbf{v}_1|| = \sigma_1$, $||A\mathbf{v}_2|| = \sigma_2$ and $A\mathbf{v}_1 \cdot A\mathbf{v}_2 = 0$.
- (c) Show that for any unit vector $\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2, (c_1^2 + c_2^2) = 1,$

$$\sigma_2 \le \|A\mathbf{v}\| \le \sigma_1$$

8. (20 points) Let

$$A = \left[\begin{array}{cc} 2 & 0\\ 6 & -1 \end{array} \right]$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Plot several trajectories of the discrete dynamical system

$$\mathbf{x}_{k+1} = A\mathbf{x}_k$$

(c) Let $\{\mathbf{x}_k\}$ be a solution of the difference equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$, $\mathbf{x}_0 = \begin{bmatrix} 0\\1 \end{bmatrix}$. Compute $\{\mathbf{x}_1\}$ and find a formula for $\{\mathbf{x}_k\}$.

9. (20 points)

Let \mathcal{P}_4 denote the linear space of all polynomials of degree ≤ 4 . Which of the following subsets of \mathcal{P}_4 are subspaces of \mathcal{P}_4 ?

- (a) $\{p(t): \int_0^1 p(t)dt = 0\}.$
- (b) $\{p(t) : p(-t) = p(t), \text{ for all } t\}.$
- (c) $\{p(t) : p'(0) = 4\}$. (' is the derivative.)

10. (20 points)

Let

$$\mathbf{u}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{u}_3 = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}.$$

Note that $\mathbf{u}_1, \mathbf{u}_2$, and \mathbf{u}_3 form an orthonormal basis for \mathbb{R}^3 . Let

$$A = 3\mathbf{u}_1\mathbf{u}_1^T + 7\mathbf{u}_2\mathbf{u}_2^T + 9\mathbf{u}_3\mathbf{u}_3^T.$$

- (a) Show that A is symmetric. (Hint: $(A + B)^T = A^T + B^T)$).
- (b) Find $A\mathbf{u}_1$, $A\mathbf{u}_2$, and $A\mathbf{u}_3$.
- (c) Diagonalize A. That is, write A as

$$A = S \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} S^{-1},$$

for some matrix S.

11. (15 points) Let

$$A = \begin{bmatrix} -1 & 1 & -8 \\ 2 & 0 & 6 \\ 2 & -1 & 11 \end{bmatrix} \text{ and } \mathbf{v} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$$

Is **v** in im(A)?

12. (15 points) Let

$$A = \begin{bmatrix} 1 & -1 & -2 & -10 \\ 0 & 0 & 1 & 7 \\ -2 & 2 & 2 & 6 \end{bmatrix}$$

- (a) Find a basis for the nullspace of A.
- (b) Find the dimension of Nul(A).
- (c) Find the dimension of $\operatorname{Col}(A)$.

13. (20 points) Let

$$\mathbf{v}_1 = \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
. and $\mathbf{v}_2 = \begin{bmatrix} 2\\0\\4 \end{bmatrix}$. and $\mathbf{v}_3 = \begin{bmatrix} 5\\3\\6 \end{bmatrix}$.

- (a) Find the QR factorization of $A = [\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3]$.
- (b) What does det(A) tell you about the vectors \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 .
- (c) In this case what does det(R) tell you about det(A)? Why?

14. (20 points) Consider the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
.

- (a) Find the eigenvalues of A.
- (b) Find a basis for each eigenspace.

(c) What is
$$A \begin{bmatrix} 0\\0\\1 \end{bmatrix}$$
? What is $A^n \begin{bmatrix} 0\\0\\1 \end{bmatrix}$?

(d) Find an explicit formula for $\mathbf{x}_n = A^n \mathbf{x}(0)$, where $\mathbf{x}(0) = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

- 15. (20 points) Let $A = \begin{bmatrix} -3 & 7 \\ 7 & -3 \end{bmatrix}$. Find an orthogonal matrix S and diagonal matrix D such that $A = SDS^{-1}$.
- 16. (10 points) Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$, $\sigma_1 = 3$, and $\sigma_2 = 7$. Note that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthonormal set, as is $\{\mathbf{v}_1, \mathbf{v}_2\}$. Let $A = \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T$.
 - (a) Show that $A^T A = \sigma_1^2 \mathbf{v}_1 \mathbf{v}_1^T + \sigma_2^2 \mathbf{v}_2 \mathbf{v}_2^T$.
 - (b) Show that \mathbf{v}_1 and \mathbf{v}_2 are eigenvectors of $A^T A$ with eigenvalues σ_1^2 and σ_2^2 respectively.
 - (c) Show that $\mathbf{u}_1 = \frac{1}{\sigma_1} A \mathbf{v}_1$, and $\mathbf{u}_2 = \frac{1}{\sigma_2} A \mathbf{v}_2$.
 - (d) Find the singular value decomposition $A = U\Sigma V^T$.