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Abstract. Assuming large cardinals we produce a forcing extension of V

which preserves cardinals, does not add reals, and makes the set of points of
countable V cofinality in κ

+ nonstationary. Continuing to force further, we

obtain an extension in which the set of points of countable V cofinality in ν

is nonstationary for every regular ν ≥ κ
+. Finally we show that our large

cardinal assumption is optimal.

The results in this paper were inspired by the following question, posed in a
preprint (http://arxiv.org/abs/math/0509633v1, 27 September 2005) to the paper
Viale [9]: Suppose V ⊂ W and V and W have the same cardinals and the same
reals. Can it be shown, in ZFC alone, that for every cardinal κ, there is in V a
partition {As | s ∈ κ<ω} of the points of κ+ of countable V cofinality, into disjoint
sets which are stationary in W?

In this paper we show that under some assumptions on κ there is a reals and
cardinal preserving generic extension W which satisfies that the set of points of
κ+ of countable V cofinality is nonstationary. In particular, a partition as above
cannot be found for each κ.

Continuing to force further, we produce a reals and cardinal preserving extension
in which the set of points of λ of countable V cofinality is nonstationary for every
regular λ ≥ κ+. All this is done under the large cardinal assumption that for
each α < κ there exists θ < κ with Mitchell order at least α. We prove that this
assumption is optimal.

It should be noted that our counterexample (Theorem 1) leaves open the possi-
bility that a partition as above, but of the points of κ+ of countable W (rather than
V ) cofinality, can be found provably in ZFC. This is enough for Viale’s argument,
and this weaker question is posed in the published paper.

There has been work in the past leading to forcing extensions making the set of
points of κ+ of countable V cofinality nonstationary in the extension, specifically
in the context of making the nonstationary ideal on κ precipitous, see Gitik [1].
But preservation of cardinals was not an issue in that context, and the extensions
involved did not in fact preserve cardinals. There has also been work on forcing to
add clubs consisting of regulars in V , see Gitik [2].

Theorem 1. Suppose that cf(κ) = ω, (∀α < κ)(∃θ < κ)(o(θ) ≥ α), and 2κ = κ+.

Then there is a generic extension W of V such that V and W have the same

cardinals and same reals and W |= A is nonstationary, where A = {α < κ+ |
cfV (α) = ω}.

This material is based upon work supported by the National Science Foundation under Grant

No. DMS-0094174.

1



2 MOTI GITIK, ITAY NEEMAN, AND DIMA SINAPOVA

Proof. First we construct a model M by forcing over V with a restricted product of
the posets defined in Magidor [4]. We get a generic function g∗ : κ → κ in M, such
that the range of g∗ is a club in κ of measurable cardinals of V . Then we construct
W by forcing over M to shoot a club C through the complement of A.

Let θi, i < ω, be a sequence of cardinals, cofinal in κ, so that o(θi+1) > θi for
each i. Let Pi be the forcing of Magidor [4], to change the cofinality of θi+1 to θi.
Let P∗ be the full support product of the posets Pi. Let P consist of all conditions
〈〈gi,Hi〉 | i < ω〉 in P∗ so that gi = ∅ for all but finitely many i < ω.

Let M be obtained by forcing with P over V . Let g∗i : θi → θi+1 be the generic
function added by the part of the forcing corresponding to Pi. The range of g∗i
consists of measurable cardinals of V , and is (see for example Jech [3, §36]) closed
and unbounded in θi+1. Let X =

⋃
i<ω((ran(g∗i ) − θi) ∪ {θi+1}) and let g∗ : κ → κ

enumerate X in increasing order. Then X = ran(g∗) is closed unbounded in κ, and
consists entirely of measurables of V . This fact will be used in the proof of Claim
3 below.

Magidor’s posets do not collapse cardinals, and it is easy to see that they do not
add reals. (Magidor shows that if Hi is Pi-generic, and g∗i is the generic function,
β ∈ dom(g∗i ), a ⊂ δ for some δ ≤ g∗i (β) and a ∈ V [Hi], then a ∈ V [Hβ ], where Hβ =
{〈g ↾ β + 1, G ↾ β + 1〉 | 〈g,G〉 ∈ Hi}. Taking δ = ω, and β = 0, we get that no new
reals are added in M .) An argument similar to the one in Magidor [4] establishes
that the combined poset P does not add reals and does not collapse cardinals. Let
us just comment that the restriction in the definition of P to conditions 〈〈gi,Hi〉 |
i < ω〉 with gi = ∅ for all but finitely many i < ω is used to establish that P does
not collapse cardinals above κ.

Given the model M , force with Q = {p ⊂ Ac | p is closed and bounded in κ+}.
If G is Q-generic over M , then C =

⋃
G is a club in W = M [G] contained in the

complement of A.
It remains to show that the forcing preserves cardinals and reals.

Lemma 2. In M , Q is λ-distributive, for all λ ≤ κ.

Proof. Fix λ ≤ κ, a regular cardinal of M . Jech [3, §23] gives a proof that Q is

ω-distributive. So, we may assume that λ > ω. Let B = {γ < κ+ | cfM (γ) = λ and

there is a normal sequence 〈γα | α < λ〉 s.t. lim(γα) = γ and (∀α < λ) cfV (γα) 6=
ω}.

Claim 3. B is stationary in M .

Proof. Let C ⊂ κ+ be a club in M . Let g = g∗ ↾ λ. We have g : λ → τ , where
τ = sup(ran(g)). The range of g is a club in τ , and cfM (τ) = λ.

Let C be a club subset of κ+ in V , such that C ⊂ C. This is possible since the
forcing to get M satisfies the κ+-chain condition. Now let γ be the τ th point of C;
cfV (γ) = τ , cfM (γ) = cfM (τ) = λ.

Let f : τ → γ be a normal cofinal function in V . Set γα = f(g(α)). Then
〈γα | α < λ〉 is a normal sequence, limα γα = γ, and

cfV (γα) = cfV (f(g(α))

=(1) cfV (g(α))

6=(2) ω.
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Equality (1) follows from the fact that f is normal and belongs to V , and equality
(2) follows since the points in ran(g) are inaccessible (and in fact measurable)
cardinals of V . So, γ ∈ B. �

Now, suppose p is a condition in Q that forces ḟ : λ → Ord. Work in M . By
induction, construct a sequence {Aα | α < κ+} of subsets of Q, such that for each
α, card(Aα) ≤ κ, as follows:

A0 = {p}. For α limit, set Aα =
⋃

β<α Aβ . Now, suppose we have defined Aα.

Let γα = sup{max(q) | q ∈ Aα}. ∀q ∈ Aα, ∀η < λ, fix rq,η ≤ q such that it decides

ḟ(η) and max(rq,η) > γα. Set Aα+1 = Aα ∪ {rq,η | q ∈ Aα, η < λ}.
Let C = {χ < κ+ | α < χ ⇒ γα < χ}. C is a club in κ+. Choose τ ∈

C ∩ B. Using the fact that τ ∈ B fix a normal sequence {αη | η < λ}, such that
limη<λ(αη) = τ , and each αη 6∈ A. Since τ ∈ C, we have τ = limη<λ(γαη

), where
γαη

= sup{max(q) | q ∈ Aαη
}. {η < λ | αη = γαη

} is a club in λ, so we may assume
each αη = γαη

.
Define an increasing sequence of conditions in Q, 〈pη | η < λ〉 by: p0 = p; given

pη, let pη+1 ∈ Aη+1, such that pη+1 ≤ pη, pη+1 decides ḟ(η), and max(pη+1) > γαη

(i.e. pη+1 = rpη,η). For η limit, set pη =
⋃

ρ<η pρ ∪ {γαη
}. Note that pη is a

condition since γαη
= αη ∈ Ac.

Now, since γαη
< max(pη+1) ≤ γαη+1

, we have that sup{max(pη) | η < λ} =
supη<λ γαη

= τ ∈ Ac. Let q =
⋃

η<λ pη ∪ {τ}, then q is a condition, and q ≤ pη for

all η < λ. So, q decides ḟ . �

Let G be Q-generic over M . Let W = M [G]. Recall that M is obtained by
forcing over V using Magidor’s product P. V and M have the same cardinals and
the same reals. Q has size κ+, and is λ-distributive for all λ ≤ κ by the last lemma.
M and W therefore have the same cardinals and the same reals. W has a club
disjoint from A. This completes the proof of Theorem 1. �

Lemma 2 rests on Claim 3, and the claim in turn uses just the following two
properties of V , M , and κ+: (1) every club C ⊂ κ+ in M has a club subset which
belongs to V , and (2) for every λ < κ+ which is regular in M , there is a τ < κ+ so

that cfM (τ) = λ and τ has a club subset in M which completely avoids points of
countable V cofinality. Abstracting from Lemma 2 we therefore obtain the following
claim:

Claim 4. Let V ⊂ N , let ν be regular in N , and suppose that:

(1) Every club C ⊂ ν in N has a club subset which belongs to V .

(2) For every λ < ν which is regular in N , there is τ < ν so that cfN (τ) = λ

and τ has a club subset in N which avoids points of countable V cofinality.

In N let Q = {p ⊂ ν | p is closed and bounded in ν and avoids points of countable

V cofinality}. Then, in N , Q is λ-distributive for every regular λ < ν.

Notice that the assumptions of Claim 4 hold for the model W produced by
Theorem 1 with ν = κ++. (The main condition is (2), which holds for λ ≤ κ using
the generic for Magidor’s forcing, and holds for λ = κ+ directly by the conclusion
of Theorem 1, taking τ = λ = κ+.) This suggests forcing over W with the poset
{p ⊂ ν | p is closed and bounded in ν and avoids points of countable V cofinality}.
More generally it suggests the iteration leading to the following theorem:
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Theorem 5. Suppose that cf(κ) = ω, (∀α < κ)(∃θ < κ)(o(θ) ≥ α), and the GCH

holds from κ upward. Then there is a generic extension W ∗ of V so that V and

W ∗ have the same cardinals and same reals, and so that for each regular ν ≥ κ+,

W ∗ |= A is nonstationary, where A = {α < ν | cfV (α) = ω}.

Proof. Let W be the model given by Theorem 1. Working in W let 〈Pν , Q̇ν |
ν > κ+ regular〉 be the Easton support iteration obtained by letting Q̇ν name the
poset {p ⊂ ν | p is closed and bounded in ν and avoids points of countable V

cofinality} as defined in W Pν .

Pν adds a club disjoint from {α < λ | cfV (α) = ω} for each regular λ ∈ (κ+, ν).

By Claim 4, Q̇ν is forced to be λ-distributive in W Pν for each regular λ < ν. It
follows that the iteration preserves reals and preserves cardinals. The model V P∞

satisfies that {α < ν | cfV (α) = ω} is nonstationary for each regular ν ≥ κ+. �

Remark 6. The conclusion of Theorem 1 can be improved to state that the set
{α < κ+ | cfV (α) is not measurable in V } is nonstationary in W . Similarly the
conclusion of Theorem 5 can be improved to state that for each regular ν ≥ κ+,
the set {α < ν | cfV (α) ≤ κ and cfV (α) is not measurable in V } is nonstationary
in W ∗.

Remark 7. Similar changes to the conclusions of Theorems 1 and 5 are possible
addressing the set {α | cfV (α) = γ} for any fixed γ < κ, and the set {α | cfV (α) ∈
X} for any fixed X bounded in κ, or for that matter any X ⊂ κ which is given
measure zero by enough measures to witness (∀α < κ)(∃θ < κ)(o(θ) ≥ α). Moreover
X need not belong to V but may instead belong to a generic extension of V by a
forcing of size less than κ which does not add reals and does not collapse cardinals.

Remark 8. In a context where preservation of cardinals is not required, Shelah
[8] showed that the following is equiconsistent with a 2-Mahlo cardinal: there is
a generic extension W of V such that V and W have the same reals and the set
{α < ωW

2 | cfV (α) = ω} is nonstationary in W . Using an iteration as in Theorem
5 one can force further and obtain a model W ∗ with the same reals, such that for
each regular ν > ω1 the set {α < ν| cfV (α) = ω} is nonstationary in W ∗.

Theorem 5 produces in particular a set forcing extension of V in which {α < ν |
cfV (α) = ω} is nonstationary for some regular ν. The following theorem shows that
this consequence already requires precisely the large cardinal assumed in Theorem
5.

Theorem 9. Let K be Mitchell’s core model for sequences of measures [7]. Suppose

that there is a forcing extension W of K, and some ν which is regular in W , so

that W and K have the same reals and the same cardinals, and so that {α < ν |
cfK(α) = ω} is nonstationary in W . Then in K there is a cardinal κ < ν so that

(∀α < κ)(∃θ < κ)(o(θ) ≥ α).

Proof. Set ρ0 = ω and define by induction ρn+1 equal to the least cardinal of
Mitchell order ρn in K if there is such a cardinal below ν. Otherwise stop the
construction.

Recall the following result, due to Mitchell: Let θ be regular in K and suppose
that ω < δ = cfW (θ) < θ. Then the Mitchell order of θ in K is at least δ.
(Mitchell [5] proves this for countably closed δ, but the need for countable closure
is eliminated in [6, Remark 4.20] assuming that there is a successor of a regular



CARDINAL PRESERVING EXTENSION MAKING {α < ν | cfV (α) = ω} NONSTATIONARY 5

cardinal in W between δ = cfW (θ) and θ. This assumption always holds in our
case, as K and W have the same cardinals.)

Assume for contradiction that the construction stops at a finite stage. Suppose
for simplicity that only ρ0, ρ1, and ρ2 are defined. By Mitchell’s covering quoted
above, no regular cardinal of K below ν can change its cofinality to ρ+

2 in W .
Similarly no regular cardinal of K below ρ+

2 can change its cofinality to ρ+
1 in W ,

and no regular cardinal of K below ρ+
1 can change its cofinality to ρ+

0 in W . Thus:

(1) ξ < ν and cfW (ξ) = ρ+
2 implies that cfK(ξ) = ρ+

2 .

(2) cfK(ξ) ≤ ρ2 and cfW (ξ) = ρ+
1 implies that cfK(ξ) = ρ+

1 .

(3) cfK(ξ) ≤ ρ1 and cfW (ξ) = ρ+
0 implies that cfK(ξ) = ρ+

0 .

Let C ⊂ ν be a club in W avoiding ordinals of cofinality ω in K. Pick a limit
point ξ of C of cofinality ρ+

2 in W . Then cfK(ξ) = ρ+
2 by (1).

Let D ⊂ ξ be a club in K of order type ρ+
2 , consisting of ordinals of cofinality at

most ρ2 in K. In W (which has the original club C), pick a limit point ζ of D ∩C

of cofinality ρ+
1 . Then cfK(ζ) = ρ+

1 by (2).
Repeating, fix a club E ⊂ ζ in K, of order type ρ+

1 and consisting of ordinals of
cofinality at most ρ1 in K. In W , pick a limit point µ of E ∩ D ∩ C of cofinality
ω1 = ρ+

0 . Then cfK(µ) = ω1 by (3).
Finally, fix a club F ⊂ µ in K, of order type ω1 and consisting of ordinals of

cofinality at most ω in K.
Let α belong to F ∩ E ∩ D ∩ C. Then cfK(α) = ω since α belongs to F , and

cfK(α) 6= ω since α belongs to C. This contradiction completes the proof. �
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