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The topics of this talk are contained in the

following three papers:

1. The rationality of the Poincaré series associ-

ated to the p-adic points on a variety, Jan Denef,

Invent. Math., 77, pp. 1-23, 1984.

2. Uniform p-adic cell decomposition and lo-

cal zeta functions, Johan Pas, J. reine angew.

Math., 399, pp. 137-172, 1989.

3. Rationality of p-adic Poincaré series: uni-

formity in p, Angus MacIntyre, Annals of Pure

and Applied Logic, 49, pp. 31-74, 1990.
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Recall Macintyre’s Theorem (generalized to fi-

nite extensions of Qp by Prestel and Roquette):

Theorem. 1. The theory of p-adically closed

fields of p-rank d admits quantifier elimination

in Macintyre’s language (with d many new con-

stants).

In 1984 Weispfenning gave a primitive recur-

sive QE procedure for this theory, though it

was done in a considerably expanded language.

2



The problem of uniformity: Develop a “nat-

ural” formalism in which the QE procedure is

uniform for all

Q2,Q3,Q5,Q7, . . . ,Q57, . . . ,Q2232582657−1, . . .

that is, independent of the choice of p.

Macintyre published a paper in 1990 that of-

fered a solution to this problem. But the for-

malism there is very complicated. (Verdict:

unnatural.)
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Paul J. Cohen’s Quantifier Elimination Pro-

cedure:

1. A primitive recursive decision procedure for

Qp.

2. Elimination takes place inside a fixed henselian

field, using only Hensel’s Lemma.

3. He gives a procedure for “isolating” the

roots of polynomials, and simultaneously

reducing conditions on the nth root of a

polynomial F to “simple” conditions on the

coefficients of F .
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Inspired by Cohen’s work, Jan Denef subse-

quently developed the technique of p-adic cell

decomposition. He used it to prove the follow-

ing theorem:

Theorem. 2. P (T ) is a rational function of T .
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Let f1(x̄), . . . , fr(x̄) be polynomials in m vari-

ables x̄ = (x1, . . . , xm) with coefficients in Zp.

For n ∈ N let N∗(n) be the number of elements

in the set

{x̄ mod pn : x̄ ∈ Zm
p and∧

i

(fi(x̄) = 0 mod pn)},

and let N(n) be the number of elements in the

set

{x̄ mod pn : x̄ ∈ Zm
p and

∧

i

(fi(x̄) = 0)}.
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Define the Poincaré series

P ∗(T ) =
∞∑

n=0

N∗(n)Tn,

P (T ) =
∞∑

n=0

N(n)Tn.

Igusa proved that P ∗(T ) is a rational function

if r = 1. Meuser proved this for every r. Serre

asked whether P (T ) is a rational function of

T .
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Let |dx̄|p = |dx1|p . . . |dxm|p be the Harr measure

on Qm
p with

∣∣∣Zm
p

∣∣∣
p
= 1. Let

D = {(x̄, w) ∈ Zm
p × Zp :

∃ȳ ∈ Zm
p (x = y mod w ∧

∧

i

fi(ȳ) = 0)}.

For any positive real number s let

Z(s, p) =
∫

D

|w|sp |dx̄|p |dw|p .
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Z(s, p) =
∞∑

n=0

∫

D
ordp(w)=n

p−ns |dx̄|p |dw|p

=
∞∑

n=0

p−ns
∫

(x,pn)∈D
ordp(w)=n

|dx̄|p |dw|p

=
∞∑

n=0

p−ns
∫

(x,pn)∈D

|dx̄|p
∫

ordp(w)=n

|dw|p

=
∞∑

n=0

p−nsN(n)

pnm

(
1

pn
− 1

pn+1

)

=
p− 1

p

∞∑

n=0

N(n)(p−sp−m−1)n.
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So to prove the rationality of P (T ), it is enough

to prove that integrals of the form

Z(s, p) =
∫

D

|h(x̄)|sp |dx̄|p

is a rational function of p−s, where h is a func-

tion and D a subset of Qn
p for some n, both of

which are definable in a suitable language for

Qp. (If h has no zero on Qm
p then s could be

any real, otherwise we have to require s > 0.)

10



A suitable language (a.k.a. the Denef-Pas

language)

We have 3 sorts: a field K, a residue field K,

and a valuation group Γ ∪ {∞}.

• a valuation v : K −→ Γ ∪ {∞}.

• an angular component ac : K −→ K.

Later we shall add more symbols to the lan-

guage. For example, we want the Γ-sort to

have the Presburger language at certain point.
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What is an angular component?

1. ac(x) = 0 iff x = 0;

2. ac : K× −→ K
× is a group homomorphism;

3. acu = u + M for u ∈ O \M .

Lemma. 3. For a 6= b ∈ K with v(a) = v(b),

ac a = ac b iff v(a− b) > v(a) = v(b).
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Axioms

1. char K = 0;

2. char K = 0;

3. K is henselian;

4. v is a valuation, ac is an angular compo-

nent, and all other symbols are axiomatized

in the standard way.

Call this theory V Fac, valued fields with angular

component.
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Definition. 4. A formula ϕ is simple if ϕ does

not contain any K-quantifiers. A subset D of

Km or Km ×K
n is simple if it is defined by a

simple formula.

Definition. 5. A function h : Km ×K
n −→ K

is strongly definable if, for each simple formula

ϕ(t), there is a simple formula ψ(x, ξ) such that

ϕ(h(x, ξ)) ↔ ψ(x, ξ).
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What’s a cell?

Let (x, ξ) ∈ Km×K
n. Let C be a simple subset

of Km × K
n, which we shall call a parameter

set. Let b1, b2, c : C −→ K be strongly definable

functions. Let λ ∈ N. Let ¤1, ¤2 be <,≤ or no

condition.

Definition. 6. For each ξ ∈ K
n, the set

A(ξ) = {(x, t) ∈ Km ×K : (x, ξ) ∈ C,

v b1(x, ξ) ¤1 λ v(t− c(x, ξ)) ¤2 v b2(x, ξ),

ac(t− c(x, ξ)) = ξ1}
is called a fiber.

15



Definition. 7. Suppose that if ξ 6= ξ′ then

A(ξ) ∩A(ξ′) = ∅.

A =
⋃

ξ∈K
n

A(ξ)

is called a cell in Km ×K with center c(x, ξ).
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Cell decomposition

Let f(x, t) be a polynomial of the form

gd(x,∆)td + . . . + g0(x,∆),

where g0(x,∆), . . . , gd(x,∆) are strongly defin-

able functions (∆ are extra parameters which

will be omitted in the sequel).
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Theorem. 8. There is a finite partition of

Km ×K into cells A such that:

Write

f(x, t) =
d∑

i=0

ai(x, ξ)(t− c(x, ξ))i.

Let A(ξ) be a fiber of A. Then for each (x, ξ) ∈
A(ξ) we have

v f(x, t) = v ai0(x, ξ)(t− c(x, ξ))i0

= min
0≤i≤d

v ai(x, ξ)(t− c(x, ξ))i

and

ac f(x, t) = ξj0,

where i0, j0 are fixed (i.e. do not depend on

(x, ξ, t)).
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For polynomials f1, . . . , fr:

Theorem. 9. There is a finite partition of

Km ×K into cells A such that:

Let A(ξ) be a fiber of A. Then for each (x, t) ∈
A(ξ) and each 1 ≤ i ≤ r we have

v fi(x, t) = v hi(x, ξ)(t− c(x, ξ))νi

and

ac fi(x, t) = ξµ(i),

where the hi’s are strongly definable functions

and νi ∈ N and 1 ≤ µ(i) ≤ n are fixed (i.e. do

not depend on (x, ξ, t)).
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Quantifier elimination

Theorem. 10. The theory V Fac admits elim-

ination of K-quantifiers.

Sketch of the proof. Need to consider formu-

las of the forms

r∧

i=1

ac fi(x, t) = ρi ∧
s∧

j=1

v gj(x, t) = lj.

After cell decomposition this is reduced to

(x, t) ∈ A(ξ) ∧
r∧

i=1

ξµ(i) = ρi

∧
s∧

j=1

(
v hj(x, ξ) + νj v (t− c(x, ξ)) = lj

)
.

Introducing a new variable l for v (t − c(x, ξ))

we then add two conjuncts to the above

v (t − c(x, ξ)) = l ∧ ac(t − c(x, ξ)) = ξ1,
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hence reduce the whole thing to

∃t (v (t− c(x, ξ)) = l ∧ ac(t− c(x, ξ)) = ξ1),

which is true.



Compute zeta functions

We now work with Qp. We expand the lan-

guage so that the Γ-sort becomes a model of

Presburger arithmetic.

Theorem. 11. Let D ⊆ Qm
p × Qp be a simple

subset defined by ϕ(x, t). Consider

Z(0, p) =
∫

D

|dx|p |dt|p .

Then there are simple formulas ϕi(1 ≤ i ≤ s)

such that for almost all p

Z(0, p) =
1

p

s∑

i=1

∑

ξi∈Qni
p

∑

l∈Z
p−l

∫

Ei(ξi,l)

|dx|p ,

where Ei(ξi, l) ⊆ Qm
p is the set defined by ϕi(x, ξi, l).
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Lemma. 12. Let E ⊆ Zm+1 be defined by a

formula ψ(l1, . . . , lm, n) that contains only Γ-

variables. Suppose

J(s) =
∑

E

p−ns−l1−...−lm

is convergent for s ∈ S, with S an open sub-

set of R. Then there are polynomials Q, R ∈
Z[X, Y ] such that for almost all P and all s ∈ S

J(s) =
Q(p, p−s)

R(p, p−s)
.
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Lemma. 13 (Meuser’s Lemma). Let L ⊆ Zm

be defined by a finite system of linear inequal-

ities in (k1, . . . , km) with coefficients from Z.
Let A1(X), . . . , Am(X) ∈ Z[X] be linear. Sup-

pose that

J(s) =
∑

L

p−
∑m

i=1 kiAi(s)

is convergent for s ∈ S, with S an open subset

of R. Then J(s) is a rational function of p−s

on S.
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Theorem. 14. Let h(x) be a definable func-

tion and D ⊆ Qm
p ×Qp a definable subset. Then

there is a rational function Q(T )/R(T ) such

that for almost all p

Z(s, p) =
∫

D

|h(x̄)|sp |dx̄|p =
Q(p−s)

R(p−s)
.

By Denef’s theorem which deals with each p

separately, we conclude that Z(s, p) is a ratio-

nal function for all p and the degrees of nu-

merators and denominators of these rational

functions are bounded.
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