Cell decomposition in valued fields

Yimu Yin Department of Philosophy Carnegie Mellon University

October 31, 2006

The topics of this talk are contained in the following three papers:

1. The rationality of the Poincaré series associated to the *p*-adic points on a variety, Jan Denef, Invent. Math., 77, pp. 1-23, 1984.

2. Uniform *p*-adic cell decomposition and local zeta functions, Johan Pas, J. reine angew. Math., 399, pp. 137-172, 1989.

3. Rationality of p-adic Poincaré series: uniformity in p, Angus MacIntyre, Annals of Pure and Applied Logic, 49, pp. 31-74, 1990. Recall Macintyre's Theorem (generalized to finite extensions of \mathbb{Q}_p by Prestel and Roquette):

Theorem. 1. The theory of *p*-adically closed fields of *p*-rank *d* admits quantifier elimination in Macintyre's language (with *d* many new constants).

In 1984 Weispfenning gave a primitive recursive QE procedure for this theory, though it was done in a considerably expanded language.

The problem of uniformity: Develop a "natural" formalism in which the QE procedure is uniform for all

 $\mathbb{Q}_2, \mathbb{Q}_3, \mathbb{Q}_5, \mathbb{Q}_7, \dots, \mathbb{Q}_{57}, \dots, \mathbb{Q}_{2^{232582657}-1}, \dots$ that is, independent of the choice of p.

Macintyre published a paper in 1990 that offered a solution to this problem. But the formalism there is very complicated. (Verdict: unnatural.)

Paul J. Cohen's Quantifier Elimination Procedure:

- 1. A primitive recursive decision procedure for \mathbb{Q}_p .
- 2. Elimination takes place inside a fixed henselian field, using only Hensel's Lemma.
- 3. He gives a procedure for "isolating" the roots of polynomials, and simultaneously reducing conditions on the nth root of a polynomial F to "simple" conditions on the coefficients of F.

Inspired by Cohen's work, Jan Denef subsequently developed the technique of *p*-adic cell decomposition. He used it to prove the following theorem:

Theorem. 2. P(T) is a rational function of T.

Let $f_1(\bar{x}), \ldots, f_r(\bar{x})$ be polynomials in m variables $\bar{x} = (x_1, \ldots, x_m)$ with coefficients in \mathbb{Z}_p . For $n \in \mathbb{N}$ let $N^*(n)$ be the number of elements in the set

and let N(n) be the number of elements in the set

$$\{\bar{x} \mod p^n : \bar{x} \in \mathbb{Z}_p^m \text{ and } \bigwedge_i (f_i(\bar{x}) = 0)\}.$$

Define the Poincaré series

$$P^*(T) = \sum_{n=0}^{\infty} N^*(n)T^n,$$
$$P(T) = \sum_{n=0}^{\infty} N(n)T^n.$$

Igusa proved that $P^*(T)$ is a rational function if r = 1. Meuser proved this for every r. Serre asked whether P(T) is a rational function of T. Let $|d\bar{x}|_p = |dx_1|_p \dots |dx_m|_p$ be the Harr measure on \mathbb{Q}_p^m with $\left|\mathbb{Z}_p^m\right|_p = 1$. Let

$$D = \{ (\bar{x}, w) \in \mathbb{Z}_p^m \times \mathbb{Z}_p : \\ \exists \bar{y} \in \mathbb{Z}_p^m \ (x = y \mod w \land \bigwedge_i f_i(\bar{y}) = 0) \}.$$

For any positive real number s let

$$Z(s,p) = \int_{D} |w|_{p}^{s} |d\bar{x}|_{p} |dw|_{p}.$$

$$Z(s,p) = \sum_{n=0}^{\infty} \int_{D} p^{-ns} |d\bar{x}|_{p} |dw|_{p}$$

$$= \sum_{n=0}^{\infty} p^{-ns} \int_{\substack{(x,p^{n}) \in D \\ \text{ord}_{p}(w) = n}} |d\bar{x}|_{p} |dw|_{p}$$

$$= \sum_{n=0}^{\infty} p^{-ns} \int_{\substack{(x,p^{n}) \in D \\ \text{ord}_{p}(w) = n}} |d\bar{x}|_{p} \int_{\substack{ord_{p}(w) = n \\ \text{ord}_{p}(w) = n}} |dw|_{p}$$

$$= \sum_{n=0}^{\infty} p^{-ns} \frac{N(n)}{p^{nm}} \left(\frac{1}{p^{n}} - \frac{1}{p^{n+1}}\right)$$

$$= \frac{p-1}{p} \sum_{n=0}^{\infty} N(n) (p^{-s}p^{-m-1})^{n}.$$

So to prove the rationality of P(T), it is enough to prove that integrals of the form

$$Z(s,p) = \int_{D} |h(\bar{x})|_{p}^{s} |d\bar{x}|_{p}$$

is a rational function of p^{-s} , where h is a function and D a subset of \mathbb{Q}_p^n for some n, both of which are definable in a suitable language for \mathbb{Q}_p . (If h has no zero on \mathbb{Q}_p^m then s could be any real, otherwise we have to require s > 0.)

A suitable language (a.k.a. the Denef-Pas language)

We have 3 sorts: a field K, a residue field \overline{K} , and a valuation group $\Gamma \cup \{\infty\}$.

- a valuation $v: K \longrightarrow \Gamma \cup \{\infty\}$.
- an angular component $\overline{\mathrm{ac}}: K \longrightarrow \overline{K}$.

Later we shall add more symbols to the language. For example, we want the Γ -sort to have the Presburger language at certain point.

What is an angular component?

1.
$$\overline{\operatorname{ac}}(x) = 0$$
 iff $x = 0$;

2. $\overline{ac}: K^{\times} \longrightarrow \overline{K}^{\times}$ is a group homomorphism;

3. $\overline{\operatorname{ac}} u = u + M$ for $u \in O \setminus M$.

Lemma. 3. For $a \neq b \in K$ with v(a) = v(b), $\overline{ac} a = \overline{ac} b$ iff v(a - b) > v(a) = v(b).

Axioms

- 1. char K = 0;
- 2. char $\overline{K} = 0$;
- 3. K is henselian;
- 4. v is a valuation, \overline{ac} is an angular component, and all other symbols are axiomatized in the standard way.

Call this theory $VF_{\overline{ac}}$, valued fields with angular component.

Definition. 4. A formula φ is simple if φ does not contain any *K*-quantifiers. A subset *D* of K^m or $K^m \times \overline{K}^n$ is simple if it is defined by a simple formula.

Definition. 5. A function $h : K^m \times \overline{K}^n \longrightarrow K$ is strongly definable if, for each simple formula $\varphi(t)$, there is a simple formula $\psi(x,\xi)$ such that

 $\varphi(h(x,\xi)) \leftrightarrow \psi(x,\xi).$

What's a cell?

Let $(x,\xi) \in K^m \times \overline{K}^n$. Let *C* be a simple subset of $K^m \times \overline{K}^n$, which we shall call a parameter set. Let $b_1, b_2, c : C \longrightarrow K$ be strongly definable functions. Let $\lambda \in \mathbb{N}$. Let \Box_1, \Box_2 be $<, \le$ or no condition.

Definition. 6. For each $\xi \in \overline{K}^n$, the set

$$A(\xi) = \{(x,t) \in K^m \times K : (x,\xi) \in C, \\ v b_1(x,\xi) \Box_1 \lambda v(t - c(x,\xi)) \Box_2 v b_2(x,\xi), \\ \overline{\mathsf{ac}}(t - c(x,\xi)) = \xi_1\}$$

is called a fiber.

Definition. 7. Suppose that if $\xi \neq \xi'$ then $A(\xi) \cap A(\xi') = \emptyset$.

$$A = \bigcup_{\xi \in \overline{K}^n} A(\xi)$$

is called a cell in $K^m \times K$ with center $c(x,\xi)$.

Cell decomposition

Let f(x,t) be a polynomial of the form

$$g_d(x,\Delta)t^d + \ldots + g_0(x,\Delta),$$

where $g_0(x, \Delta), \ldots, g_d(x, \Delta)$ are strongly definable functions (Δ are extra parameters which will be omitted in the sequel).

Theorem. 8. There is a finite partition of $K^m \times K$ into cells A such that:

Write

$$f(x,t) = \sum_{i=0}^{d} a_i(x,\xi)(t - c(x,\xi))^i.$$

Let $A(\xi)$ be a fiber of A. Then for each $(x,\xi) \in A(\xi)$ we have

$$v f(x,t) = v a_{i_0}(x,\xi)(t - c(x,\xi))^{i_0}$$

= $\min_{0 \le i \le d} v a_i(x,\xi)(t - c(x,\xi))^i$

and

 $\overline{\operatorname{ac}} f(x,t) = \xi_{j_0},$

where i_0, j_0 are fixed (i.e. do not depend on (x, ξ, t)).

For polynomials f_1, \ldots, f_r :

Theorem. 9. There is a finite partition of $K^m \times K$ into cells A such that:

Let $A(\xi)$ be a fiber of A. Then for each $(x,t) \in A(\xi)$ and each $1 \le i \le r$ we have

$$v f_i(x,t) = v h_i(x,\xi)(t-c(x,\xi))^{\nu_i}$$

and

$$\overline{\operatorname{ac}} f_i(x,t) = \xi_{\mu(i)},$$

where the h_i 's are strongly definable functions and $\nu_i \in \mathbb{N}$ and $1 \leq \mu(i) \leq n$ are fixed (i.e. do not depend on (x, ξ, t)).

Quantifier elimination

Theorem. 10. The theory $VF_{\overline{ac}}$ admits elimination of K-quantifiers.

Sketch of the proof. Need to consider formulas of the forms

$$\bigwedge_{i=1}^{r} \overline{\operatorname{ac}} f_{i}(x,t) = \rho_{i} \wedge \bigwedge_{j=1}^{s} v g_{j}(x,t) = l_{j}.$$

After cell decomposition this is reduced to

$$(x,t) \in A(\xi) \land \bigwedge_{i=1}^{r} \xi_{\mu(i)} = \rho_i$$
$$\land \bigwedge_{j=1}^{s} \left(v h_j(x,\xi) + \nu_j v \left(t - c(x,\xi) \right) = l_j \right).$$

Introducing a new variable l for $v(t - c(x, \xi))$ we then add two conjuncts to the above

$$v(t - c(x,\xi)) = l \wedge \overline{\operatorname{ac}}(t - c(x,\xi)) = \xi_1,$$

20

hence reduce the whole thing to

 $\exists t \ (v \ (t - c(x, \xi)) = l \land \overline{ac}(t - c(x, \xi)) = \xi_1),$ which is true.

Compute zeta functions

We now work with \mathbb{Q}_p . We expand the language so that the Γ -sort becomes a model of Presburger arithmetic.

Theorem. 11. Let $D \subseteq \mathbb{Q}_p^m \times \mathbb{Q}_p$ be a simple subset defined by $\varphi(x,t)$. Consider

$$Z(0,p) = \int_{D} |dx|_p \, |dt|_p \, .$$

Then there are simple formulas $\varphi_i (1 \le i \le s)$ such that for almost all p

$$Z(0,p) = \frac{1}{p} \sum_{i=1}^{s} \sum_{\xi_i \in \overline{\mathbb{Q}}_p^{n_i}} \sum_{l \in \mathbb{Z}} p^{-l} \int_{E_i(\xi_i,l)} |dx|_p,$$

where $E_i(\xi_i, l) \subseteq \mathbb{Q}_p^m$ is the set defined by $\varphi_i(x, \xi_i, l)$.

Lemma. 12. Let $E \subseteq \mathbb{Z}^{m+1}$ be defined by a formula $\psi(l_1, \ldots, l_m, n)$ that contains only Γ -variables. Suppose

$$J(s) = \sum_{E} p^{-ns-l_1-\dots-l_m}$$

is convergent for $s \in S$, with S an open subset of \mathbb{R} . Then there are polynomials $Q, R \in \mathbb{Z}[X, Y]$ such that for almost all P and all $s \in S$

$$J(s) = \frac{Q(p, p^{-s})}{R(p, p^{-s})}.$$

Lemma. 13 (Meuser's Lemma). Let $L \subseteq \mathbb{Z}^m$ be defined by a finite system of linear inequalities in (k_1, \ldots, k_m) with coefficients from \mathbb{Z} . Let $A_1(X), \ldots, A_m(X) \in \mathbb{Z}[X]$ be linear. Suppose that

$$J(s) = \sum_{L} p^{-\sum_{i=1}^{m} k_i A_i(s)}$$

is convergent for $s \in S$, with S an open subset of \mathbb{R} . Then J(s) is a rational function of p^{-s} on S. **Theorem. 14.** Let h(x) be a definable function and $D \subseteq \mathbb{Q}_p^m \times \mathbb{Q}_p$ a definable subset. Then there is a rational function Q(T)/R(T) such that for almost all p

$$Z(s,p) = \int_{D} |h(\bar{x})|_{p}^{s} |d\bar{x}|_{p} = \frac{Q(p^{-s})}{R(p^{-s})}.$$

By Denef's theorem which deals with each p separately, we conclude that Z(s,p) is a rational function for all p and the degrees of numerators and denominators of these rational functions are bounded.