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1. Introduction

A more accurate title for the present paper would be ‘Set theory and
C*-algebras’ but this title was already taken by the excellent Weaver’s sur-
vey ([58]). Apart from C*-algebras, set theory (both combinatorial and
descriptive) has strong connections to the theory of von Neumann algebras,
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and in particular to II1 factors (but see §1.2 and §1.3 below). This sub-
ject will not be touched upon in the present paper. A very intuitive and
approachable introduction to von Neumann algebras can be found in [37].

The fact that there were very few interactions between set theory and
theory of operator algebras may be somewhat surprising, not only because
John von Neumann played a role in the development of both subjects. Apart
from the work of Joel Anderson in the 1970’s and some attempts at develop-
ing ‘noncommutative’ set theory, there was virtually no interaction between
the two areas until recently.

This situation has dramatically changed in the last decade to the extent
that we will not even be able to outline the entire subject in the present
paper. Let us instead outline what is covered here. A set-theorist-friendly
introduction to operators on Hilbert spaces, continuous function calculus,
C*-algebras, and their representation theory is given in sections §1–4. In
§5 we consider the Calkin algebra as a quantized version of P(N)/Fin and
consider some problems about the former which are direct translations of
theorems (and problems) about the latter. In §6 we return to the repre-
sentation theory of C*-algebras and consider two of the most interesting
recent applications of set theory to C*-algebras, both due to Akemann and
Weaver. These are the construction of a counterexample to Naimark’s prob-
lem using Jensen’s ♦ and a construction of a pure state on B(H) that is not
diagonalizable, using Continuum Hypothesis. In the latter case we present
an unpublished result of the first author and Weaver, showing that a sub-
stantial weakening of the Continuum Hypothesis suffices. It is not known
whether either of these two results can be proved from ZFC alone. In §7
we give a very brief outline of the solution to the problem whether Calkin
algebra has an outer automorphism, due to Phillips–Weaver and the first
author.

Applications of set theory to the theory of operator algebras fall into sev-
eral categories, and we shall now describe (a part of) what is being omitted.

1.1. Nonseparable C*-algebras. Some long-standing open problems in
theory of C*-algebras were recently solved in ZFC, by using rather elemen-
tary set theory to construct nonseparable C*-algebras with properties not
present in separable C*-algebras. We should mention Weaver’s construction
of a prime C*-algebra that is not primitive ([57], see also [17] and [39] for
simpler constructions). In [28] and [25] it was demonstrated that even direct
limits of full matrix C*-algebras (the nonseparable analogues of UHF alge-
bras, see §3.4.2) can have rather exotic properties. Curiously, all of these
results answer long-standing open problems posed by Jacques Dixmier.

1.2. Ultrapowers. Ultrapowers are an indispensable tool both in model
theory and in operator algebras, yet until [30] the two theories were de-
veloped essentially independently. This can be contrasted to the fact that
ultraproducts of Banach spaces were well-studied by logicians. Largely mo-
tivated by some questions of Eberhard Kirchberg, a few papers appeared
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recently showing that the structure of ultrapowers and relative commutants
of C*-algebras and II1 factors can depend on the choice of the ultrafilter
([29], [24], [26]). A model-theoretic logic suitable for study of C*-algebras
and II1 factors, adapted from [10], was developed in [27].

1.3. Classification and descriptive set theory. While the present sur-
vey is exclusively concerned with applications of combinatorial set theory,
some of the most exciting interactions between operator algebras and set
theory were purely descriptive. The abstract classification theory was re-
cently applied to prove determine lower bounds of classification problems for
von Neumann algebras, of spectra of C*-algebras. Also, Popa superrigidity
developed in the context of II1 factors was indispensable in proving some of
the most interesting recent results on countable Borel equivalence relations.
But this is an another story.

2. Hilbert spaces and operators

We begin with a review of the basic properties of operators on a Hilbert
space. Throughout we let H denote a complex infinite-dimensional sepa-
rable Hilbert space, and we let (en) be an orthonormal basis for H (see
Example 2.1). For ξ, η ∈ H, we denote their inner product by (ξ|η). We
recall that

(η|ξ) = (ξ|η)
and the norm defined by

‖ξ‖ =
√

(ξ|ξ).
The Cauchy–Schwartz inequality says that

|(ξ|η)| ≤ ‖ξ‖‖η‖.

Example 2.1. The space

`2(N) =
{

(αk)k∈N : αk ∈ C, ‖α‖2 =
∑
|αk|2 <∞

}
(sometimes denoted simply by `2) is a Hilbert space under the inner product
(α|β) =

∑
αkβk. If we define en ∈ `2(N) by enk = δnk (the Kronecker’s δ),

then (en) is an orthonormal basis for `2. For any α ∈ `2, α =
∑
αne

n.

Any Hilbert space has an orthonormal basis, and this can be used to prove
that all separable infinite-dimensional Hilbert spaces are isomorphic. More-
over, any two infinite-dimensional Hilbert spaces with the same character
density (the minimal cardinality of a dense subset) are isomorphic.

Example 2.2. If (X,µ) is a measure space,

L2(X,µ) =
{
f : X → C measurable :

∫
|f |2dµ <∞

}
/{f : f = 0 a.e.}

is a Hilbert space under the inner product (f |g) =
∫
fgdµ and with the

norm defined by ‖f‖2 =
∫
|f |2dµ.
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We will let a, b, . . . denote linear operators H → H. We recall that

‖a‖ = sup{‖aξ‖ : ξ ∈ H, ‖ξ‖ = 1}.
If ‖a‖ <∞, we say a is bounded. An operator is bounded if and only if it is
continuous. We denote the algebra of all bounded operators on H by B(H)
(some authors use L(H)), and throughout the paper all of our operators
will be bounded. We define the adjoint a∗ of a to be the unique operator
satisfying

(aξ|η) = (ξ|a∗η)
for all ξ, η ∈ H. Note that since an element of H is determined by its inner
products with all other elements of H (e.g., take an orthonormal basis), an
operator a is determined by the values of (aξ|η) for all ξ, η or even by the
values (eem|en) for m and n in N.

Lemma 2.3. For all a, b we have
(1) (a∗)∗ = a
(2) (ab)∗ = b∗a∗

(3) ‖a‖ = ‖a∗‖
(4) ‖ab‖ ≤ ‖a‖ · ‖b‖
(5) ‖a∗a‖ = ‖a‖2

Proof. These are all easy calculations. For example, for (5), for ‖ξ‖ = 1,

‖aξ‖2 = (aξ|aξ) = (ξ|a∗aξ) ≤ ‖ξ‖ · ‖a∗aξ‖ ≤ ‖a∗a‖,
the first inequality holding by Cauchy–Schwartz. Taking the sup over all ξ,
we obtain ‖a‖2 ≤ ‖a∗a‖. Conversely,

‖a∗a‖ ≤ ‖a∗‖‖a‖ = ‖a‖2

by (3) and (4). �

The first four parts of this say that B(H) is a Banach *-algebra (or a
Banach algebra with involution * ) and (5) (sometimes called the C∗-equality)
says that B(H) is a C∗-algebra.

Definition 2.4. An (abstract) C*-algebra is a Banach *-algebra satisfying
the C*-equality, ‖a∗a‖ = ‖a‖2 for all a.

2.1. Normal operators and the spectral theorem. In this section we
introduce some distinguished classes of operators in B(H), such as normal
and self-adjoint operators (cf. §3.0.1).

Example 2.5. Assume (X,µ) is a probability measure space. If H0 =
L2(X,µ) and f : X → C is bounded and measurable, then

H0 3 g
mf7−→ fg ∈ H0

is a bounded linear operator. We have ‖mf‖ = ‖f‖∞ and

m∗f = mf̄ .
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Hence m∗fmf = mfm
∗
f = m|f |2 . We call operators of this form multiplication

operators.

An operator a is normal if aa∗ = a∗a. Clearly, all multiplication oper-
ators are normal. Normal operators have a nice structure theory, which is
summarized in the following theorem.

Theorem 2.6 (Spectral Theorem). If a is a normal operator then there is
a probability measure space (X,µ), a measurable function f on X, and a
Hilbert space isomorphism Φ: L2(X,µ)→ H such that ΦaΦ−1 = mf .

Proof. For an elegant proof using Corollary 3.13 see [9, Theorem 2.4.5]. �

That is, every normal operator is a multiplication operator for some iden-
tification of H with an L2 space. Conversely, every multiplication operator
is clearly normal. If X is discrete and µ is counting measure, the character-
istic functions of the points of X form an orthonormal basis for L2(X,µ) and
the spectral theorem says that a is diagonalized by this basis. In general,
the spectral theorem says that normal operators are “measurably diagonal-
izable”.

If Φ: H1 → H2 is an isomorphism between Hilbert spaces, then

a 7→ Ad Φ(a) = ΦaΦ−1

is an isomorphism between B(H1) and B(H2). The operator Ad Φ(a) is just
a with its domain and range identified with H2 via Φ.

Our stating of the Spectral Theorem is rather premature in the formal
sense since we are going to introduce some of the key notions used in its
proof later on, in §2.2 and §3.2. This was motivated by the insight that the
Spectral Theorem provides to theory of C∗-algebras.

An operator a is self-adjoint if a = a∗. Self-adjoint operators are obviously
normal. For any b ∈ B(H), the “real” and “imaginary” parts of b, defined by
b0 = (b+ b∗)/2 and b1 = (b− b∗)/2i, are self-adjoint and satisfy b = b0 + ib1.
Thus any operator is a linear combination of self-adjoint operators. It is
easy to check that an operator is normal if and only if its real and imaginary
parts commute, so the normal operators are exactly the linear combinations
of commuting self-adjoint operators.

Example 2.7. The real and imaginary parts of a multiplication operator
mf are mRe f and mIm f . A multiplication operator mf is self-adjoint if and
only if f is real (a.e.). By the spectral theorem, all self-adjoint operators
are of this form.

It is easy to verify that for any a ∈ B(H) and ξ, η ∈ H the following
so-called polarization identity holds

(aξ|η) =
1
4

3∑
k=0

ik(a(ξ + ikη)|ξ + ikη).
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Proposition 2.8. An operator a is self-adjoint if and only if (aξ|ξ) is real
for all ξ.

Proof. First, note that

((a− a∗)ξ|ξ) = (aξ|ξ)− (a∗ξ|ξ) = (aξ|ξ)− (ξ|aξ) = (aξ|ξ)− (aξ|ξ).

Thus (aξ|ξ) is real for all ξ if and only if ((a − a∗)ξ|ξ) = 0 for all ξ. But
by polarization, the operator a − a∗ is entirely determined by the values
((a− a∗)ξ|ξ), so this is equivalent to a− a∗ = 0. �

A self-adjoint operator b is called positive if (bξ|ξ) ≥ 0 for all ξ ∈ H. In
this situation we write b ≥ 0. By Proposition 2.8, positive operators are
self-adjoint. For instance, a multiplication operator mf is positive if and
only if f ≥ 0 (a.e.). By the spectral theorem, all positive operators are of
the form mf for f ≥ 0 a.e.

Exercise 2.9. For any self-adjoint a ∈ B(H) we can write a = a0 − a1 for
some positive operators a0 and a1. (Hint: Use the spectral theorem.)

Proposition 2.10. An operator b is positive if and only if b = a∗a for some
(non-unique) a. This a may be chosen to be positive.

Proof. For the converse implication note that (a∗aξ|ξ) = (aξ|aξ) = ‖aξ‖2 ≥
0. For the direct implication, assume b is positive. By the spectral theorem
we may assume b = mf for f ≥ 0. Let a = m√f . �

We say that p ∈ B(H) is a projection if p2 = p∗ = p.

Lemma 2.11. p is a projection if and only if it is the orthogonal projection
onto a closed subspace of H.

Proof. Any linear projection p onto a closed subspace of H satisfies p =
p2, and orthogonal projections are exactly those that also satisfy p = p∗.
Conversely, suppose p is a projection. Then p is self-adjoint, so we can write
p = mf for f : X → C, and we have f = f2 = f̄ . Hence f(x) ∈ {0, 1} for
(almost) all x. We then set A = f−1({1}), and it is easy to see that p is the
orthogonal projection onto the closed subspace L2(A) ⊆ L2(X). �

If E ⊆ H is a closed subspace, we denote the projection onto E by projE .
We denote the identity operator on H by I (some authors use 1). An

operator u is unitary if uu∗ = u∗u = I. This is equivalent to u being
invertible and satisfying

(ξ|η) = (u∗uξ|η) = (uξ|uη)

for all ξ, η ∈ H. That is, an operator is unitary if and only if it is a
Hilbert space automorphism of H. Unitary operators are obviously normal.
For instance, a multiplication operator mf is unitary if mf (mf )∗ = I, or
equivalently, if |f |2 = 1 (a.e.). By the spectral theorem, all unitaries are of
this form.
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An operator v is a partial isometry if

p = vv∗ and q = v∗v

are both projections. Partial isometries are essentially isomorphisms (isome-
tries) between closed subspaces of H: For every partial isometry v there is
a closed subspace H0 of H such that v�H0 is an isometry into a closed sub-
space of H and v�H⊥0 ≡ 0. (As usually, H⊥0 is the orthogonal complement
of H0, {ξ : (ξ|η) = 0 for all η ∈ H0}.) However, as the following example
shows, partial isometries need not be normal.

Example 2.12. Let (en) be an orthonormal basis of H. We define the
unilateral shift S by S(en) = en+1 for all n. Then S∗(en+1) = en and
S∗(e0) = 0. We have S∗S = I but SS∗ = projspan{en}n≥1

.

Any complex number z can be written as z = reiθ for r ≥ 0 and |eiθ| = 1.
Considering C as the set of operators on a one-dimensional Hilbert space,
there is an analogue of this on an arbitrary Hilbert space.

Theorem 2.13 (Polar Decomposition). Any a ∈ B(H) can be written as
a = bv where b is positive and v is a partial isometry.

Proof. See e.g., [45, Theorem 3.2.17 and Remark 3.2.18]. �

However, this has less value as a structure theorem than than one might
think, since b and v may not commute. While positive operators and partial
isometries are both fairly easy to understand, polar decomposition does not
always make arbitrary operators easy to understand. For example, it is easy
to show that positive operators and partial isometries always have nontrivial
closed invariant subspaces, but it is a famous open problem whether this is
true for all operators.

2.2. The spectrum of an operator. The spectrum of an operator a is

σ(a) = {λ ∈ C : a− λI is not invertible}.
For a finite-dimensional matrix, the spectrum is the set of eigenvalues.

Example 2.14. A multiplication operator mf is invertible if and only if
there is some ε > 0 such that |f | > ε (a.e.). Thus since mf − λI = mf−λ,
σ(mf ) is the essential range of f (the set of λ ∈ C such that for every
neighborhood U of λ, f−1(U) has positive measure).

Lemma 2.15. If ‖a‖ < 1 then I − a is invertible in B(H).

Proof. The series b =
∑∞

n=0 a
n is convergent and hence in B(H). By con-

sidering partial sums one sees that (I − a)b = b(I − a) = I. �

The following Lemma is an immediate consequence of the Spectral Theo-
rem. However, since its part (1) is used in the proof of the latter, we provide
its proof.

Lemma 2.16. Let a ∈ B(H).
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(1) σ(a) is a compact subset of C.
(2) σ(a∗) = {λ : λ ∈ σ(a)}.
(3) If a is normal, then a is self-adjoint if and only if σ(a) ⊆ R.
(4) If a is normal, then a is positive if and only if σ(a) ⊆ [0,∞).

Proof of (1). If |λ| > ‖a‖ then a − λ · I = λ( 1
λa − I) is invertible by

Lemma 2.15, and therefore σ(a) is bounded.
We shall now show that the set of invertible elements is open. Fix an

invertible a. Since the multiplication is continuous, we can find ε > 0 such
that for every b in the ε-ball centered at a there is c such that both ‖I −
bc‖ < 1 and ‖I − cb‖ < 1. By Lemma 2.15 there are d1 and d2 such that
bcd1 = d2cb = I. Then we have

cd1 = I · cd1 = d2cbcd1 = d2c · I = d2c

and therefore cd1 = d2c is the inverse of b.
Let a be an arbitrary operator. If λ /∈ σ(a) then by the above there is

an ε > 0 such that every b in the ε-ball centered at a − λI is invertible. In
particular, if |λ′ − λ| < ε then λ′ /∈ σ(a), concluding the proof that σ(a) is
compact. �

3. C∗-algebras

We say that a concrete C∗-algebra is a norm-closed *-subalgebra of B(H).
For X ⊆ B(H) by C∗(X) we denote the C*-algebra generated by X, i.e., the
norm-closure of the algebra of all *-polynomials in elements of X. Equiva-
lently, C∗(X) is the intersection of all C*-subalgebras of B(H) including X.

When talking about C∗-algebras, everything is ‘starred’: subalgebras
are *-subalgebras (i.e. closed under involution), homomorphisms are *-
homomorphisms (i.e. preserve the involution), etc.

Definition 3.1. An (abstract) C∗-algebra is a Banach algebra with involu-
tion that satisfies the C*-equality ‖aa∗‖ = ‖a‖2 for all a. That is, it is a
Banach space with a product and involution satisfying Lemma 2.3.

A C∗-algebra is unital if it has a unit (multiplicative identity). For unital
C∗-algebras, we can talk about the spectrum of an element.

Lemma 3.2. Every C∗-algebra A is contained in a unital C∗-algebra Ã ∼=
A⊕ C.

Proof. On A × C define the operations as follows: (a, λ)(b, ξ) = (ab + λb +
ξa, λξ), (a, λ)∗ = (a∗, λ̄) and ‖(a, λ)‖ = sup‖b‖≤1 ‖ab + λb‖ and check that
this is still a C∗-algebra.

A straightforward calculation shows that (0, 1) is the unit of Ã and that
A 3 a 7→ (a, 0) ∈ Ã is an isomorphic embedding of A into Ã. �

Exercise 3.3. Work out the details of the proof of Lemma 3.2.
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We call Ã the unitization of A. By passing to the unitization, we can talk
about the spectrum of an element of a nonunital C∗-algebra. The unitization
retains many of the properties of the algebra A, and many results are proved
by first considering the unitization. However, some caution is advised; for
example, the unitization is never a simple algebra. (Recall that an algebra
is simple if it has no nontrivial (two-sided) ideals. In case of C*-algebras,
an algebra is simple if it has no nontrivial closed ideals. Such ideals are
automatically self-adjoint.)

If A and B are unital and A ⊆ B we say A is a unital subalgebra of B if
the unit of B belongs to A (that is, B has the same unit as A).

3.0.1. Types of operators in C*-algebras. We import all of our terminology
for distinguished classes of operators in B(H) (normal, self-adjoint, projec-
tions, etc.) to describe elements of any C∗-algebra (cf. §2.1). More precisely,
for an operator a in a C*-algebra A we say that

(1) a is normal if aa∗ = a∗a,
(2) a is self-adjoint (or Hermitian) if a = a∗,
(3) a is a projection if a2 = a∗ = a,
(4) a is positive (or a ≥ 0) if a = b∗b for some b,
(5) If A is unital then a is unitary if aa∗ = a∗a = I.

Note that a positive element is automatically self-adjoint. For self-adjoint
elements a and b write a ≤ b if b− a is positive.

3.1. Some examples of C∗-algebras. Let us consider several important
C*-algebras and classes of C*-algebras (see also [18]).

3.1.1. C0(X). Let X be a locally compact Hausdorff space. Then

C0(X) = {f : X → C : f is continuous and vanishes at ∞}

is a C∗-algebra with the involution f∗ = f . Here “vanishes at ∞” means
that f extends continuously to the one-point compactification X ∪ {∞} of
X such that the extension vanishes at ∞. Equivalently, for any ε > 0, there
is a compact set K ⊆ X such that |f(x)| < ε for x 6∈ K. In particular,
if X itself is compact, all continuous functions vanish at ∞, and we write
C0(X) = C(X).
C0(X) is abelian, so in particular every element is normal. C0(X) is unital

if and only if X is compact (iff the constant function 1 vanishes at ∞). The
unitization of C0(X) is C(X∗), where X∗ is the one-point compactification
of X. For f ∈ C0(X), we have:

f is self-adjoint if and only if range(f) ⊆ R.
f is positive if and only if range(f) ⊆ [0,∞).

f is a projection if and only if f2(x) = f(x) = f(x)
if and only if range(f) ⊆ {0, 1}
if and only if f = χU for a clopen U ⊆ X.

For any f ∈ C0(X), σ(f) = range(f).
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3.1.2. Full matrix algebras. Mn(C), the set of n × n complex matrices is a
unital C∗-algebra. In fact, Mn(C) ∼= B(Cn), where Cn is the n-dimensional
complex Hilbert space.

adjoint, unitary: the usual meaning.
self-adjoint: Hermitian.

positive: positive semidefinite.
σ(a): the set of eigenvalues.

The spectral theorem on Mn(C) is the spectral theorem of elementary
linear algebra: normal matrices are diagonalizable.

3.1.3. L∞(X,µ). If (X,µ) is a measure space, then the space L∞(X,µ) of
all essentially bounded µ-measurable functions on X can be identified with
the space of all multiplication operators (see Example 2.5). Then L∞(X,µ)
is a concrete C∗-algebra acting on L2(X,µ). It is easy to see that ‖mf‖ is
equal to the essential supremum of f ,

‖f‖∞ = sup{t ≥ 0 : µ{x : |f(x)| > t} > 0}.

3.1.4. The algebra of compact operators. It is equal to1

K(H) = C∗({a ∈ B(H) : a[H] is finite-dimensional})
= {a ∈ B(H) : a[unit ball] is precompact}
= {a ∈ B(H) : a[unit ball] is compact}.

(Note that K(H) is denoted by C(H) in [44] and by B0(H) in [45], by
analogy with C0(X).) We write rn = projspan{ej |j≤n} for a fixed basis {en}
of H. Then for a ∈ B(H), the following are equivalent:

(1) a ∈ K(H),
(2) limn ‖a(I − rn)‖ = 0,
(3) limn ‖(I − rn)a‖ = 0.

Note that if a is self-adjoint then

‖a(I − rn)‖ = ‖(a(I − rn))∗‖ = ‖(I − rn)a‖.
In the following exercises and elsewhere, ‘ideal’ always stands for a two-sided,
closed, self-adjoint ideal. Actually, the las property follows from the previous
ones since every two-sided closed ideal in a C*-algebra is automatically self-
adjoint.

Exercise 3.4. Prove K(H) is an ideal of B(H). That is, prove that for
a ∈ K(H) and b ∈ B(H) both ab and ba belong to K(H), that K(H) is
norm-closed and that b ∈ K(H) if and only if b∗ ∈ K(H).

Exercise 3.5. (1) Prove that K(H) is the unique ideal of B(H) when
H is a separable Hilbert space.

(2) Assume κ is an infinite cardinal. Show that the number of proper
ideals of B(`2(κ)) is equal to the number of infinite cardinals ≤ κ.

1The third equality is a nontrivial fact specific to the Hilbert space; see [45, Theo-
rem 3.3.3 (iii)]
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3.1.5. The Calkin algebra. This is an example of an abstract C∗-algebra.
The quotient C(H) = B(H)/K(H) is called the Calkin algebra. It is some-
times denoted by Q or Q(H). We write π : B(H) → C(H) for the quotient
map. The norm on C(H) is the usual quotient norm for Banach spaces:

‖π(a)‖ = inf{‖b‖ : π(b) = π(a)}

The Calkin algebra turns out to be a very “set-theoretic” C∗-algebra, anal-
ogous to the Boolean algebra P(N)/Fin.

We shall give more examples of C*-algebras in §3.4, after proving a fun-
damental result.

3.2. Automatic continuity and the Gelfand transform. In this section
we prove two important results. First, any *-homomorphism between C*-
algebras is norm-decreasing (Lemma 3.9) and second, every unital abelian
C*-algebra is of the form C(X) for some compact Hausdorff space X (The-
orem 3.10).

Lemma 3.6. If a is normal then ‖a2n‖ = ‖a‖2n for all n ∈ N.

Proof. Repeatedly using the C∗-equality and normality of a we have

‖a2‖ = (‖(a∗)2a2‖)1/2 = (‖(a∗a)∗(a∗a)‖)1/2 = ‖a∗a‖ = ‖a‖2.

The Lemma now follows by a straightforward induction. �

Exercise 3.7. Find a ∈ B(H) such that ‖a‖ = 1 and a2 = 0. (Hint:
Choose a to be a partial isometry.)

It can be proved that a C∗-algebra is abelian if and only if it contains no
nonzero element a such that a2 = 0 (see [12, II.6.4.14]).

The spectral radius of an element a of a C∗-algebra is defined as

r(a) = max{|λ| : λ ∈ σ(a)}.

Lemma 3.8. Let A be a C∗-algebra and a ∈ A be normal. Then ‖a‖ = r(a).

Sketch of a proof. It can be proved (see [9, Theorem 1.7.3], also the first line
of the proof of Lemma 2.16) that for an arbitrary a we have

lim
n
‖an‖1/n = r(a),

in particular, the limit on the left hand side exists. By Lemma 3.6, for a
normal a this limit is equal to ‖a‖. �

Lemma 3.9. Any *-homomorphism Φ : A → B between C∗-algebras is
a contraction (in particular, it is continuous). Therefore, any (algebraic)
isomorphism between C*-algebras is an isometry.

Proof. By passing to the unitizations, we may assume A and B are unital
and Φ is unital as well (i.e., Φ(IA) = IB).
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Note that for any a ∈ A, σ(Φ(a)) ⊆ σ(a) (by the definition of the spec-
trum). Thus for a normal, using Lemma 3.8,

‖a‖ = sup{|λ| : λ ∈ σ(a)}
≥ sup{|λ| : λ ∈ σ(Φ(a))}
= ‖Φ(a)‖.

For general a, aa∗ is normal so by the C∗-equality we have

‖a‖ =
√
‖aa∗‖ ≥

√
‖Φ(aa∗)‖ = ‖Φ(a)‖.

�

The reader may want to compare the last sentence of Lemma 3.9 with the
situation in Banach space theory, where isomorphism and isometry drasti-
cally differ—even in the case of the Hilbert space (see [43]).

For a unital abelian C∗-algebra A consider its spectrum

Â = {φ : A→ C : φ is a nonzero algebra homomorphism}.

It is not difficult to see that every homomorphism from A into C is a *-
homomorphism. By Lemma 3.9 each φ ∈ Â is a contraction. Also φ(I) = 1,
and therefore Â is a subset of the unit ball of the Banach space dual A∗ of
A. Since it is obviously closed, it is weak*-compact by the Banach–Alaoglu
theorem.

Theorem 3.10 (Gelfand–Naimark). If A is unital and abelian C∗-algebra
and Â is its spectrum, then A ∼= C(Â).

Proof. For a ∈ A the map fa : Â→ C defined by

fa(φ) = φ(a)

is continuous in the weak*-topology. The transformation

A 3 a 7−→ fa ∈ C(X)

is the Gelfand transform of a. An easy computation shows that the Gelfand
transform is a *-homomorphism, and therefore by Lemma 3.9 continuous.
We need to show it is an isometry.

For b ∈ A we claim that b is not invertible if and only if φ(b) = 0 for
some φ ∈ Â. Only the forward direction requires a proof. Fix a non-
invertible b. The Jb = {xb : x ∈ A} is a proper (two-sided since A is
abelian) ideal containing b. Let J ⊇ Jb be a maximal proper two sided
(not necessarily closed and not necessarily self-adjoint) ideal. Lemma 2.15
implies that ‖I − b‖ ≥ 1 for all b ∈ J . Hence the closure of J is still proper,
and by maximality J is a closed ideal. Every closed two-sided ideal in a C∗-
algebra is automatically self-adjoint (see [8, p.11]). Therefore the quotient
map φJ from A to A/J is a *-homomorphism. Since A is abelian, by the
maximality of J the algebra A/J is a field. For any a ∈ A/J , Lemma 3.8
implies that σ(a) is nonempty, and for any λ ∈ σ(a), a− λI = 0 since A/J
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is a field. Thus A/J is generated by I and therefore isomorphic to C, so
φJ ∈ X. Clearly φJ(b) = 0.

Therefore range(fa) = σ(a) for all a. Lemma 3.8 implies

‖a‖ = max{|λ| : λ ∈ σ(a)} = ‖fa‖.

Thus the algebra B = {fa : a ∈ A} is isometric to A. Since it separates the
points in X, by the Stone–Weierstrass theorem (e.g., [45, Theorem 4.3.4])
B is norm-dense in C(X). Being isometric to A, it is closed and therefore
equal to C(X). �

The following exercise shows that the category of abelian unital C*-
algebras is contravariantly equivalent to the category of compact Hausdorff
spaces.

Exercise 3.11. AssumeX and Y are compact Hausdorff spaces and Φ: C(X)→
C(Y ) is a *-homomorphism.

(1) Prove that there exists a unique continuous f : Y → X such that
Φ(a) = a ◦ f for all a ∈ C(X).

(2) Prove that Φ is a surjection if and only if f is an injection.
(3) Prove that Φ is an injection if and only if f is a surjection.
(4) Prove that for every f : Y → X there exists a unique Φ: C(X) →

C(Y ) such that (1)–(3) above hold.

The following exercise provides an alternative construction of a Čech–
Stone compactification βX of a completely regular space X. (Recall that a
topological space is completely regular if it is homeomorphic to a subspace
of some Hilbert cube, [0, 1]J .)

Exercise 3.12. Let X be a completely regular space and let A be the
*-algebra Cb(X,B) of all continuous bounded functions from X into C,
equipped with the sup norm.

(1) Prove that A is a C*-algebra.
(2) Let γX denote the compact Hausdorff space such that C(γX) is

isomorphic to Cb(X,B). Show that there is a homeomorphic embed-
ding f : X → γX such that Φ(a) = a◦ f represents the isomorphism
of C(γX) and Cb(X,B).

(3) Prove that f [X] is dense in γX.
(4) Prove that every continuous real-valued function on f [X] has unique

continuous extension with domain γX.

3.3. Continuous functional calculus. Recall that σ(a) is always a com-
pact subset of C (Lemma 2.16). Theorem 2.6 (Spectral Theorem) is a con-
sequence of the following Corollary and some standard manipulations; see
[9, Theorem 2.4.5].

Corollary 3.13. If a ∈ B(H) is normal then C∗(a, I) ∼= C(σ(a)).
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Proof. We first prove that C∗(a, I) is isomorphic to C(σ0(a)), where σ0(a)
denotes the spectrum of a as defined in C∗(a, I). Let C∗(a, I) ∼= C(X) as
in Theorem 3.10. For any λ ∈ σ(a), a − λI is not invertible so there exists
φλ ∈ X such that φλ(a−λI) = 0, or φλ(a) = λ. Conversely, if there is φ ∈ X
such that φ(a) = λ, then φ(a − λI) = 0 so λ ∈ σ(a). Since any nonzero
homomorphism to C is unital, an element φ ∈ X is determined entirely
by φ(a). Since X has the weak* topology, φ 7→ φ(a) is thus a continuous
bijection from X to σ(a), which is a homeomorphism since X is compact.

It remains to show that σ0(a) = σ(a). Since an element invertible in the
smaller algebra is clearly invertible in the larger algebra, we only need to
check that σ(a) ⊇ σ0(a). Pick λ ∈ σ0(a). We need to prove that a − λI
is not invertible in B(H). Assume the contrary and let b be the inverse of
a − λI. Fix ε > 0 and let U ⊆ σ0(a) be the open ball around λ od radius
ε. Let g ∈ C(σ0(a)) be a function supported by U such that ‖g‖ = 1. Then
g = b(a−λI)g, hence ‖b(a−λI)g‖ = 1. On the other hand, (a−λI)g = f ∈
C(σ0(a)) so that f vanishes outside of U and ‖f(x)‖ < ε for x ∈ U , hence
‖(a− λI)g‖ < ε. Thus ‖b‖ > 1/ε for every ε > 0, a contradiction. �

A spectrum σA(a) of an element a of an arbitrary C*-algebra A can be
defined as

σA(a) = {λ ∈ C|a− λI is not invertible in A}.

Lemma 3.14. Suppose A is a unital subalgebra of B and a ∈ A is normal.
Then σA(a) = σB(a), where σA(a) and σB(a) denote the spectra of a as an
element of A and B, respectively.

Proof. See e.g., [45, Corollary 4.3.16] or [9, Corollary 2 on p. 49]. �

Note that the isomorphism above is canonical and maps a to the identity
function on σ(a). It follows that for any polynomial p, the isomorphism
maps p(a) to the function z 7→ p(z). More generally, for any continuous
function f : σ(a) → C, we can then define f(a) ∈ C∗(a, I) as the preimage
of f under the isomorphism. For example, we can define |a| and if a is
self-adjoint then it can be written as a difference of two positive operators
as

a =
|a|+ a

2
− |a| − a

2
.

If a ≥ 0, then we can also define
√
a. Here is another application of the

“continuous functional calculus” of Corollary 3.13.

Lemma 3.15. Every a ∈ B(H) is a linear combination of unitaries.

Proof. By decomposing an arbitrary operator into the positive and negative
parts of its real and imaginary parts, it suffices to prove that each positive
operator a of norm ≤ 1 is a linear combination of two unitaries, u = a +
i
√
I − a2 and v = a − i

√
I − a2. Clearly a = 1

2(u + v). Since u = v∗ and
uv = vu = I, the conclusion follows. �
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Exercise 3.16. For a ∈ B(H) let a = bu be its polar decomposition (see
Theorem 2.13).

(1) Show that b ∈ C∗(a, I).
(2) Give an example of a such that u /∈ C∗(a, I).

(Hint: For (1) use b =
√
aa∗. For (2) take a which is compact, but not of

finite rank.)

3.4. More examples of C*-algebras. We are now equipped to describe
another construction of C*-algebras and more examples.

3.4.1. Direct limits. We now return to giving examples of C*-algebras.

Definition 3.17. If Ω is a directed set, Ai, i ∈ Ω are C∗-algebras and

ϕi,j : Ai → Aj for i < j

is a commuting family of homomorphisms, we define the direct limit (also
called the inductive limit) A = lim−→i

Ai by taking the algebraic direct limit
and completing it. We define a norm on A by saying that if a ∈ Ai,

‖a‖A = lim
j
‖ϕi,j(a)‖Aj .

This limit makes sense because the ϕi,j are all contractions by Lemma 3.9.

3.4.2. UHF (uniformly hyperfinite) algebras. For each natural number n,
define a *-homomorphism Φn : M2n(C)→M2n+1(C) by

Φn(a) =
(
a 0
0 a

)
.

We then define the CAR (Canonical Anticommutation Relations) algebra
(aka the Fermion algebra, aka M2∞ UHF algebra) as the direct limit M2∞ =
lim−→(M2n(C),Φn). Alternatively, M2∞ =

⊗
n∈NM2(C), since M2n+1(C) =

M2n(C)⊗M2(C) for each n and Φn(a) = a⊗ 1M2(C).
Note Φn maps diagonal matrices to diagonal matrices, so we can talk

about the diagonal elements of M2∞ . These turn out to be isomorphic to
the algebra C(K), where K is the Cantor set. Thus we can think of M2∞

as a “noncommutative Cantor set.”
It is not difficult to see that for m and n in N there is a unital homomor-

phism from Mm into Mn(C) if and only if m divides n. If it exists, then
this map is unique up to conjugacy. Direct limits of full matrix algebras are
called UHF algebras and they were classified by Glimm (the unital case) and
Dixmier (the general case) in the 1960s. This was the start of the Elliott
classification program of separable unital C∗-algebras (see [48], [19]).

The following somewhat laborious exercise is intended to introduce rep-
resentation theory of the CAR algebra.

Exercise 3.18. Fix x ∈ 2N and let Dx = {y ∈ 2N : (∀∞n)y(n) = x(n)}.
Enumerate a basis of a complex, infinite-dimensional separable Hilbert space
H as ξy, y ∈ Dx. Let s, t range over functions from a finite subset of N into
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{0, 1}. For such s define a partial isometry of H as follows. If y(m) 6= s(m)
for some m ∈ dom(s) then let us(ξy) = 0. Otherwise, if y� dom(s) = s, then
let z ∈ 2N be such that z(n) = 1− y(n) for n ∈ dom(s) and z(n) = y(n) for
n /∈ dom(s) and set us(ξy) = ξz.

(1) Prove that u∗s = us̄, where dom(s̄) = dom(s) and s̄(n) = 1− s(n) for
all n ∈ dom(s).

(2) Prove that usu∗s is the projection to span{ξy : y� dom(s) = s̄} and
u∗sus is the projection to span{ξy : y� dom(s) = s}.

(3) Let Ax be the C∗-algebra generated by us as defined above. Prove
that Ax is isomorphic to M2∞ .

(4) Show that the intersection of Ax with the atomic masa (see §5.1)
diagonalized by ξy, y ∈ Dx, consists of all operators of the form∑

y αyξy where y 7→ αy is a continuous function.
(5) Show that for x and y in 2N there is a unitary v of H such that

Ad v sends Ax to Ay if and only if (∀∞n)x(n) = y(n). (Hint: cf.
Example 4.24.)

3.4.3. AF (approximately finite) algebras. Let us start with an exercise. A
direct sum of C*-algebras A and B is the algebra A⊕B whose elements are
sums a+b for a ∈ A and b ∈ B (assuming A∩B = {0}), with the convention
that ab = ba = 0 whenever a ∈ A and b ∈ B. One similarly defines a direct
sum of a family of C*-algebras.

Exercise 3.19. Show that a C*-algebra A is a finite-dimensional vector
space if and only if it is the direct sum of finitely many full matrix algebras.

A C*-algebra is AF, or approximately finite, if it is a direct limit of finite-
dimensional C*-algebras. This class of C*-algebras is much more extensive
than the class of UHF algebras. Elliott’s classification of unital separable
AF algebras by K-theoretic invariant K0 (see [48]) marked the beginning of
Elliott program for classification of C*-algebras.

Exercise 3.20. Show that an abelian C*-algebra is AF if and only if it is of
the form C0(X) for a zero-dimensional, locally compact, Hausdorff, space X.

3.4.4. Even more examples. Giving an exhaustive treatment of techniques
for building C*-algebras is beyond the scope of this article. Tensor products,
group algebras, and crossed products are indispensable tools in theory of
C*-algebras. Some of these constructions were blended with set-theoretic
methods in [28] to construct novel examples of nonseparable C*-algebras.

4. Positivity, states and the GNS construction

The following is a generalization of the spectral theorem to abstract C∗-
algebras.

Theorem 4.1 (Gelfand–Naimark). Every abelian C∗-algebra is isomorphic
to C0(X) for a unique locally compact Hausdorff space X. The algebra is
unital if and only if X is compact.



SET THEORY AND OPERATOR ALGEBRAS 17

Proof. By Theorem 3.10, the unitization B of A is isomorphic to C(B̂) for
a compact Hausdorff space B̂, the spectrum of A. If φ ∈ B̂ is the unique
map whose kernel is equal to A, then A ∼= C0(B̂ \ {φ}). The uniqueness of
X = B̂ \ {φ} follows from Theorem 4.17 below. �

In fact, the Gelfand–Naimark theorem is functorial: the category of
abelian C∗-algebras is contravariantly isomorphic to the category of locally
compact Hausdorff spaces (cf. Exercise 3.11). The space X is a natural
generalization of the spectrum of a single element of a C∗-algebra.

Exercise 4.2. (1) If C∗(a) is unital and isomorphic to C(X), then 0 /∈
σ(a) and σ(a) is homeomorphic to X.

(2) If C∗(a) is not unital and it is isomorphic to C0(X), then 0 ∈ σ(a)
and σ(a) \ {0} is homeomorphic to X.

Recall that an element a of a C*-algebra A is positive if a = b∗b for some
b ∈ A. It is not difficult to see that for projections p and q we have p ≤ q if
and only if pq = p if and only if qp = p (see Lemma 5.5).

Exercise 4.3. Which of the following are true for projections p and q and
positive a and b?

(1) pqp ≤ p?
(2) a ≤ b implies ab = ba?
(3) p ≤ q implies pap ≤ qaq?
(4) p ≤ q implies prp ≤ qrq for a projection r?
(5) prp ≤ p for a projection r?

(Hint 1: Only one of the above is true. Hint 2: Formula (1) is easy to prove.
Hint 3: For (2) note that a ≥ 0 implies a ≤ a + c for every c ≥ 0. Hint 4:
There is a counterexample for (5) on the two-dimensional Hilbert space.)

Definition 4.4. Let A be a C∗-algebra. A continuous linear functional
ϕ : A → C is positive if ϕ(a) ≥ 0 for all positive a ∈ A. It is a state if it is
positive and of norm 1. We denote the space of all states on A by S(A).

Exercise 4.5. Assume φ is a positive functional on a C∗-algebra. Show
that φ(a) is a real whenever a is self-adjoint and show that φ(b∗) = φ(b) for
all b . (Hint: Use the continuous function calculus.)

Example 4.6. If ξ ∈ H is a unit vector, define a functional ωξ on B(H) by

ωξ(a) = (aξ|ξ).

Then ωξ(a) ≥ 0 for a positive a and ωξ(I) = 1; hence it is a state. We call
a state of this form a vector state.

Lemma 4.7. Each positive functional φ satisfies a Cauchy–Schwartz in-
equality:

|ϕ(b∗a)|2 ≤ ϕ(a∗a)ϕ(b∗b).
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Proof. The proof is similar to the proof of the standard Cauchy–Schwartz
inequality. Let λ be a complex number. Since (λa+ b)∗(λa+ b) is positive,
we have

0 ≤ φ((λa+ b)∗(λa+ b)) = |λ|2φ(a∗a) + λ̄φ(a∗b) + λφ(b∗a) + φ(b∗b).

We may assume |φ(b∗a)| 6= 0 since the inequality is trivial otherwise. Let
λ = tφ(a∗b)/|φ(b∗a)| for a real t. Noting that φ(a∗b) = φ(b∗a) (Exercise 4.5),
we obtain

0 ≤ t2 |φ(a∗b)|2

|φ(b∗a)|2
φ(a∗a) + t

φ(a∗b)
|φ(b∗a)|

φ(a∗b) + t
φ(a∗b)
|φ(b∗a)|

φ(b∗a) + φ(b∗b)

or equivalently
0 ≤ t2φ(a∗a) + 2t|φ(b∗a)|+ φ(b∗b).

The discriminant of this equation is nonpositive, and the inequality follows.
�

Lemma 4.8. If ϕ is a state on A and 0 ≤ a ≤ I is such that ϕ(a) = 1, then
ϕ(b) = ϕ(aba) for all b.

Proof. By the Cauchy–Schwartz inequality for states (Lemma 4.7)

|ϕ((I − a)b)| ≤
√
ϕ(I − a)ϕ(b∗b) = 0.

Since b = ab + (I − a)b, we have ϕ(b) = ϕ(ab) + ϕ((I − a)b) = ϕ(ab). By
applying the same argument to ab and multiplying by I−a on the right one
proves that ϕ(ab) = ϕ(aba). �

The basic reason we care about states is that they give us representations
of abstract C∗-algebras as concrete C∗-algebras.

Theorem 4.9 (The GNS construction). Let ϕ be a state on A. Then there
is a Hilbert space Hϕ, a representation πϕ : A → B(Hϕ), and a unit vector
ξ = ξϕ in Hϕ such that ϕ = ωξ ◦ πϕ.

Skecth of the proof. We define an “inner product” on A by (a|b) = ϕ(b∗a).
We let J = {a : (a|a) = 0}, so that Lemma 4.7 implies (·|·) is actually an
inner product on the quotient space A/J . We then define Hϕ to be the
completion of A/J under the induced norm. For any a ∈ A, πϕ(a) is then
the operator that sends b+ J to ab+ J , and ξϕ is I + J . �

4.1. Irreducible representations and pure states. In this section we
introduce a particularly important class of states called pure states. The
following exercise focuses on a state that is not pure.

Exercise 4.10. Assume ψ1 and ψ2 are states on A and 0 < t < 1 and let

φ = tψ1 + (1− t)ψ2.

(1) Show that φ is a state.
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(2) Show that Hφ
∼= Hψ1 ⊕ Hψ2 , with πφ(a) = πψ1(a) + πψ2(a), and

ξφ =
√
tξψ1 +

√
1− tξψ2 . In particular, projections to Hψ1 and Hψ2

commute with πϕ(a) for all a ∈ A.

Hence states form a convex subset of A∗. We say that a state is pure if it
is an extreme point of S(A). That is, ϕ is pure iff

ϕ = tψ0 + (1− t)ψ1, 0 ≤ t ≤ 1

for ψ0, ψ1 ∈ S(A) implies ϕ = ψ0 or ϕ = ψ1. We denote the set of all pure
states on A by P(A).

Exercise 4.11. Prove the following.
(1) If φ is a pure state on Mn(C) then there is a rank one projection p

such that φ(a) = φ(pap) for all a.
(2) Identify Mn(C) with B(`n2 ). Show that all pure states of Mn(C) are

vector states.

Recall that the Krein–Milman theorem states that every compact convex
subset of a locally convex topological vector space is the closed convex hull
of its extreme points. Since the dual space of a C*-algebra is locally convex
and since the convex hull of S(A) ∪ {0} is compact, we conclude that S(A)
is the weak* closure of the convex hull of P(A). Since one can show that a
C*-algebra has an ample supply of states (see Lemma 4.25) the same is true
for pure states.

The space P(A) is weak*-compact only for a very restrictive class of C∗-
algebras, including K(H) and abelian algebras (see Definition 6.8). For
example, for UHF algebras the pure states form a dense subset in the com-
pactum of all states ([33, Theorem 2.8]).

Exercise 4.12. Let A be a separable C*-algebra. Prove that P(A) is Polish
in the weak*-topology.

(Hint: Show that P(A) is a Gδ subset of S(A).)

Definition 4.13. A representation π : A → B(H) of a C∗-algebra is irre-
ducible (sometimes called an irrep) if there is no nontrivial subspace H0 ⊂ H
such that π(a)H0 ⊆ H0 for all a ∈ A. Such a subspace is said to be invariant
for π[A] or reducing for π.

Theorem 4.14. A state ϕ is pure if and only if πϕ is irreducible. Every
irreducible representation is of the form πϕ for some pure state ϕ.

Proof. The easy direction is Exercise 4.10. For the other direction see e.g.,
[8, Theorem 1.6.6] or [44, (i) ⇔ (vi) of Theorem 3.13.2]. �

Example 4.15. If A = C(X), then by the Riesz representation theorem
states are in a bijective correspondence with the Borel probability measures
on X (writing µ(f) =

∫
fdµ).

Exercise 4.16. For a state ϕ of C(X) the following are equivalent:
(1) ϕ is pure,
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(2) for a unique xϕ ∈ X we have ϕ(f) = f(xϕ)
(3) ϕ : C(X)→ C is a homomorphism (ϕ is “multiplicative”).

(Hint: Use Example 4.15 and see the proof of Theorem 3.10.)

Theorem 4.17. If X is a compact Hausdorff space then P(C(X)) with
respect to the weak*-topology is homeomorphic to X.

Proof. By (2) in Exercise 4.16, there is a natural map F : P(C(X))→ X. By
(3), it is not hard to show that F is surjective, and it follows from Urysohn’s
lemma that F is a homeomorphism. �

Proposition 4.18. For any unit vector ξ ∈ H the vector state ωξ ∈ S(B(H))
is pure.

Proof. Immediate from Theorem 4.14. �

Definition 4.19. We say ϕ ∈ S(B(H)) is singular if ϕ[K(H)] = {0}.

Exercise 4.20. Prove that a nonsingular state on B(H) is pure if and only
if it is a vector state. (Hint: First show that a nontrivial linear combination
of vector states is never pure.)

By factoring through the quotient map π : B(H) → C(H), the space
of singular states is isomorphic to the space of states on the Calkin alge-
bra C(H).

Theorem 4.21. Each state of B(H) is a weak*-limit of vector states. A
pure state is singular if and only if it is not a vector state.

Proof. The first sentence is a special case of [31, Lemma 9] when A = B(H).
The second sentence is trivial (modulo Exercise 4.20). �

We now take a closer look at the relationship between states and repre-
sentations of a C∗-algebra.

Definition 4.22. Let A be a C∗-algebra and πi : A → B(Hi) (i = 1, 2) be
representations of A. We say π1 and π2 are (unitarily) equivalent and write
π1 ∼ π2 if there is a unitary (Hilbert space isomorphism) u : H1 → H2 such
that the following commutes:

B(H1)

Adu

��

A

π1

<<zzzzzzzzz

π2 ""DD
DD

DD
DD

D Adu(a) = uau∗

B(H2)
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Similarly, if ϕi ∈ P(A), we say ϕ1 ∼ ϕ2 if there is a unitary u ∈ Ã such
that the following commutes:

A

Adu

��

ϕ1

��?
??

??
??

C

A

ϕ2

??�������

Proposition 4.23. For ϕi ∈ P(A), ϕ1 ∼ ϕ2 if and only if πϕ1 ∼ πϕ2.

Proof. The direct implication is easy and the converse is a consequence of
the remarkable Kadison’s Transitivity Theorem. For the proof see e.g., [44,
the second sentence of Proposition 3.13.4]. �

4.2. On the existence of states. States on an abelian C∗-algebra C(X)
correspond to probability Borel measures on X (see Example 4.15).

Example 4.24. On M2(C), the following are pure states:

ϕ0 :
(
a11 a12

a21 a22

)
7→ a11

ϕ1 :
(
a11 a12

a21 a22

)
7→ a22

For any f ∈ 2N, ϕf =
⊗

n ϕf(n) is a pure state on
⊗
M2(C) = M2∞ .

Furthermore, one can show that ϕf and ϕg are equivalent if and only if f
and g differ at only finitely many points, and that ‖ϕf −ϕg‖ = 2 for f 6= g.
See [44, §6.5] for a more general setting and proofs.

Lemma 4.25. If φ is a linear functional of norm 1 on a unital C∗-algebra
then φ is a state if and only if φ(I) = 1.

Proof. First assume φ is a state. Since ‖φ‖ ≤ 1 and since φ is positive we
have 0 ≤ φ(I) ≤ 1. For positive operators a ≤ b we have φ(a) ≤ φ(b). Since
for a positive operator a we have a ≤ ‖a‖ · I, we must have φ(I) = 1.

Now assume φ(I) = ‖φ‖ = 1 and fix a ≥ 0. The algebra C∗(a, I) is
abelian, and by the Riesz representation theorem the restriction of φ to this
algebra is given by a Borel measure µ on σ(a). The assumption that φ(I) =
‖φ‖ translates as |µ| = µ, hence µ is a positive probability measure. Since a
corresponds to the identity function on σ(a) ⊆ [0,∞) we have φ(a) ≥ 0. �

Lemma 4.26. If A is a subalgebra of B then every state of B restricts to a
state of A. Also, every (pure) state of A can be extended to a (pure) state
of B.

Proof. The first statement is trivial. Now assume φ is a state on A ⊆ B.
We shall extend φ to a state of B under an additional assumption that A is
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a unital subalgebra of B; the general case is then a straightforward exercise
(see Lemma 3.2).

By the Hahn–Banach theorem we can extend φ to a functional ψ on B of
norm 1. By Lemma 4.25, ψ is a state of B.

Note that the (nonempty) set of extensions of φ to a state of B is weak*-
compact and convex. If we start with a pure state ϕ, then by Krein–Milman
the set of extensions of ϕ to B has an extreme point, which can then be
shown to be a pure state on B. �

Lemma 4.27. For every normal a ∈ A there is a pure state φ such that
|φ(a)| = ‖a‖.
Proof. The algebra C∗(a) is by Corollary 3.13 isomorphic to C(σ(a)). Con-
sider its state φ0 defined by φ0(f) = f(λ), where λ ∈ σ(a) is such that
‖a‖ = |λ|. This is a pure state and satisfies |φ(a)| = ‖a‖.

By Lemma 4.25 extend φ0 to a pure state φ on A. �

Exercise 4.28. Show that there is a C∗-algebra A and a ∈ A such that
|φ(a)| < ‖a‖ for every state φ of A.

(Hint: First do Exercise 4.11. Then consider
(

0 1
0 0

)
in M2(C).)

Theorem 4.29 (Gelfand–Naimark–Segal). Every C∗-algebra A is isomor-
phic to a concrete C∗-algebra.

Proof. By taking the unitization, we may assume A is unital. Each state ϕ
on A gives a representation πϕ on a Hilbert space Hϕ, and we take the prod-
uct of all these representations to get a single representation π =

⊕
ϕ∈S(A) πϕ

on H =
⊕
Hϕ.

We need to check that this representation is faithful. By Lemma 3.9 this
is equivalent to π being an isometry. By the same Lemma 3.9 we have
‖π(a)‖ ≤ ‖a‖. By Lemma 4.27 for every self-adjoint a we have |φ(a)| = ‖a‖.

We claim that a 6= 0 implies π(a) 6= 0. We have that a = b + ic for
self-adjoint b and c, at least one of which is nonzero. Therefore π(a) =
π(b) + iπ(c) is nonzero. Thus A is isomorphic to its image π(A) ⊆ B(H), a
concrete C∗-algebra. �

Exercise 4.30. Prove that a separable abstract C∗-algebra can be faithfully
represented on a separable Hilbert space. (Hint for logicians: Löwenheim–
Skolem.)

Note that the converse of last exercise is false, since B(H) itself is non-
separable in norm topology.

Exercise 4.31. (1) Prove that for every C*-algebra A and every a ∈ A
we have

‖a‖2 = sup
ϕ

sup
b
ϕ(b∗a∗ab)

where the supremum is taken over all (pure) states φ and over all
b ∈ A of norm 1.
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(2) If a C*-algebra A is simple, then for every state φ and every a ∈ A
we have

‖a‖2 = sup
b
ϕ(b∗a∗ba)

where the supremum is taken over all b ∈ A of norm 1.

5. Projections in the Calkin algebra

Recall that K(H) (see Example 3.1.4) is a (norm-closed two-sided) ideal of
B(H), and the quotient C(H) = B(H)/K(H) is the Calkin algebra (see §3.1.5).
We write π : B(H)→ C(H) for the quotient map.

Many instances of the question whether an element in a quotient C*-
algebra can be lifted to an element with similar properties are well-studied.
We shall now consider some of them.

Lemma 5.1. If a ∈ C(H) is self-adjoint, then there is a self-adjoint a ∈
B(H) such that a = π(a).

Proof. Fix any a0 such that π(a0) = a. Let a = (a0 + a∗0)/2. Then a is
self-adjoint and a− a0 is compact. Therefore a is as required. �

Exercise 5.2. Assume f : A→ B is a *-homomorphism between C∗-algebras
and p is a projection in the range of f . Is there necessarily a projection
q ∈ A such that f(q) = p? (Hint: Consider the natural *-homomorphism
from C([0, 1]) to C([0, 1/3] ∪ [2/3, 1]).)

The following lemma, showing that the answer to question in Exercise 5.2
is sometimes positive, is taken from [58].

Lemma 5.3. If p ∈ C(H) is a projection, then there is a projection p ∈
B(H) such that p = π(p).

Proof. Fix a self-adjoint a such that p = π(a). Represent a as a multiplica-
tion operator mf . Since π(mf ) is a projection, mf2−f ∈ K(H) Let

h(x) =

{
1, f(x) ≥ 1/2
0, f(x) < 1/2.

Then mh is a projection. Also, if (xα) is such that f(xα)2 − f(xα) → 0,
then h(xα)− f(xα) → 0. One can show that this implies that since mf2−f
is compact, so is mh−f . Hence π(mh) = π(mf ) = p. �

Thus self-adjoints and projections in C(H) are just self-adjoints and pro-
jections in B(H) modded out by compacts. However, the same is not true
for unitaries.

Example 5.4. Let S ∈ B(H) be the unilateral shift (Example 2.12). Then
S∗S = I and SS∗ = I−projspan({e0}) = I−p. Since p has finite-dimensional
range, it is compact, so π(S)∗π(S) = I = π(S)π(S∗). That is, π(S) is
unitary.
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If π(a) is invertible, one can define the Fredholm index of a by

index(a) = dim ker a− dim ker a∗.

The Fredholm index is (whenever defined) invariant under compact pertur-
bations of a ([45, Theorem 3.3.17]). Since index(u) = 0 for any unitary u
and index(S) = −1, there is no unitary u ∈ B(H) such that π(u) = π(S).

For a C*-algebra A we write P(A) for the set of projections in A. We
partially order P(A) by saying p ≤ q if pq = p. This agrees with the
restriction of the ordering on positive operators. If they exist, we denote
joins and meets under this ordering by p ∨ q and p ∧ q. Note that every
p ∈ P(A) has a canonical (orthogonal) complement q = I − p such that
p ∨ q = I and p ∧ q = 0.

Lemma 5.5. Let p, q ∈ A be projections. Then pq = p if and only if qp = p.

Proof. Since p = p∗ and q = q∗, if pq = p then pq = (pq)∗ = q∗p∗ = qp. The
converse is similar. �

Lemma 5.6. Let p, q ∈ A be projections. Then pq = qp if and only if pq is
a projection, in which case pq = p ∧ q and p+ q − pq = p ∨ q.

Proof. If pq = qp, (pq)∗ = q∗p∗ = qp = pq and (pq)2 = p(qp)q = p2q2 = pq.
Conversely, if pq is a projection then qp = (pq)∗ = pq. Clearly then pq ≤ p
and pq ≤ q, and if r ≤ p and r ≤ q then rpq = (rp)q = rq = r so r ≤ pq.
Hence pq = p ∧ q. We similarly have (1 − p)(1 − q) = (1 − p) ∧ (1 − q);
since r 7→ 1− r is an order-reversing involution it follows that p+ q − pq =
1− (1− p)(1− q) = p ∨ q. �

For A = B(H), note that p ≤ q if and only if range(p) ⊆ range(q). Also,
joins and meets always exist in B(H) and are given by

p ∧ q = the projection onto range(p) ∩ range(q),

p ∨ q = the projection onto span(range(p) ∪ range(q)).

That is, P(B(H)) is a lattice (in fact, it is a complete lattice, as the def-
initions of joins and meets above generalize naturally to infinite joins and
meets).

Note that if X is a connected compact Hausdorff space then C(X) has
no projections other than 0 and I.

Proposition 5.7. B(H) = C∗(P(B(H))). That is, B(H) is generated by its
projections.

Proof. Since every a ∈ B(H) is a linear combination of self-adjoints a + a∗

and i(a − a∗), it suffices to show that if b is self-adjoint and ε > 0 then
there is a linear combination of projections c =

∑
j αjpj such that ‖b− c‖ <

ε. For this we may use spectral theorem and approximate mf by a step
function. �
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Corollary 5.8. C(H) = C∗(P(C(H))). That is, C(H) is generated by its
projections.

Proof. Since a *-homomorphism sends projections to to projections, this is
a consequence of Proposition 5.7 �

Proposition 5.9. Let A be an abelian unital C∗-algebra. Then P(A) is a
Boolean algebra.

Proof. By Lemma 5.6, commuting projections always have joins and meets,
and p 7→ I − p gives complements. It is then easy to check that this is
actually a Boolean algebra using the formulas for joins and meets given by
Lemma 5.6. �

5.0.1. Stone duality. Let us recall the Stone duality for Boolean algebras.
For a Boolean algebra B its Stone space Stone(B) is the compact Hausdorff
space of all ultrafilters of B with the topology generated by its basic open
sets Ua = {U ∈ Stone(B) : a ∈ U}, for a ∈ B \ {0B}. It is well-known
that the algebra of clopen subsets of Stone(B) is isomorphic to B. Also, to
every Boolean algebra homomorphism Φ: B1 → B2 one associates a con-
tinuous map fΦ : Stone(B2) → Stone(B1), so that fΦ(U) = Φ−1(U) for all
U ∈ Stone(B2). Conversely, if f : Stone(B2) → Stone(B1) is a continuous
map, then Φf (a) = b for b such that f−1(Ua) = Ub is a Boolean algebra ho-
momorphism. It is straightforward to show that (i) the operations f 7→ Φf

and Φ 7→ fΦ are inverses of one another, (ii) f is a surjection if and only if
Φf is an injection, and (iii) f is an injection if and only if Φf is a surjec-
tion. Altogether this shows that the category of compact zero-dimensional
Hausdorff spaces is contravariantly equivalent to the category of Boolean
algebras.

By combining Stone duality with Gelfand–Naimark theorem (see the re-
mark after Theorem 4.1) one obtains isomorphism between the categories
of Boolean algebras and abelian C∗-algebras generated by their projections.

Note that if A is nonabelian, then even if P(A) is a lattice it may be
nondistributive and hence not a Boolean algebra. See also Proposition 5.26
below.

Exercise 5.10. Prove that the following are equivalent for a C*-algebra A.

(1) The set of all invertible self-adjoint elements of A is dense in the set
of all self-adjoint elements of A.

(2) The set of all linear combinations of projections is dense in A.

C*-algebras satisfying conditions of Exercise 5.10 are said to have real
rank zero.

Exercise 5.11. Prove that C(X) has real rank zero if and only if X is
zero-dimensional.
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5.1. Maximal abelian subalgebras. In this section we will be interested
in abelian (unital) subalgebras of B(H) and C(H). In particular, we will look
at maximal abelian subalgebras, or “masas.” The acronym masa stands
for ‘Maximal Abelian SubAlgebra’ or ‘MAximal Self-Adjoint subalgebra.’
Pedersen ([45]) uses MAÇA, for ‘MAximal Commutative subAlgebra.’2 Note
that if H = L2(X,µ), then L∞(X,µ) is an abelian subalgebra of B(H) (as
multiplication operators).

Theorem 5.12. L∞(X,µ) ⊂ B(L2(X,µ)) is a masa.

Proof. See [9, Theorem 4.1.2] or [45, Theorem 4.7.7]. �

Conversely, every masa in B(H) is of this form. To prove this, we need a
stronger form of the spectral theorem, which applies to abelian subalgebras
rather than just single normal operators.

Theorem 5.13 (General Spectral Theorem). If A is an abelian subalgebra
of B(H) then there is a probability measure space (X,µ), a subalgebra B of
L∞(X,µ), and a Hilbert space isomorphism Φ : L2(X,µ) → H such that
Ad Φ[B] = A.

Proof. See [9, Theorem 4.7.13]. �

Corollary 5.14. For any masa A ⊂ B(H), there is a probability measure
space (X,µ) and a Hilbert space isomorphism Φ : L2(X,µ)→ H such that

Ad Φ[L∞(X,µ)] = A.

Proof. By maximality, B must be all of L∞(X) in the spectral theorem. �

Corollary 5.14 can be used to classify masas in B(H). The two most
important examples of masas are given in the following two examples.

Example 5.15 (Atomic masa in B(H)). Fix an orthonormal basis (en) for
H, which gives an identification H ∼= `2(N) = `2. The corresponding masa
is then `∞, or all operators that are diagonalized by the basis (en). We call
this an atomic masa because the corresponding measure space is atomic.
The projections in `∞ are exactly the projections onto subspaces spanned
by a subset of {en}. That is, P(`∞) ∼= P(N). In particular, if we fix a basis,
then the Boolean algebra P(N) is naturally a sublattice of P(B(H)). Given
X ⊆ N, we write P (~e)

X for the projection onto span{en : n ∈ X}.

Exercise 5.16. Prove that the atomic masa is isomorphic to C(βN), where
N is the Čech–Stone compactification of N taken with the discrete topology.
(Hint: Cf. Exercise 3.12.)

Example 5.17 (Atomless masa in B(H)). Let (X,µ) be any atomless prob-
ability measure space. Then if we identify H with L2(X), L∞(X) ⊆ B(H) is
the atomless masa. The projections in L∞(X) are exactly the characteristic

2This acronym acquires a whole new meaning in light of the related ASHCEFLC ([44,
6.2.13])



SET THEORY AND OPERATOR ALGEBRAS 27

functions of measurable sets, so P(L∞(X)) is the measure algebra of (X,µ)
(modulo the null sets).

Proposition 5.18. Let A ⊆ B(H) be an atomless masa. Then P(A) is
isomorphic to the Lebesgue measure algebra of measurable subsets of [0, 1]
modulo null sets.

Proof. Omitted, but see the remark following Proposition 5.9. �

We now relate masas in B(H) to masas in C(H).

Theorem 5.19 (Johnson–Parrott, 1972 [36]). If A is a masa in B(H) then
π[A] is a masa in C(H).

Proof. Assume b ∈ B(H) is such that π(b) belongs to the commutant of
π[A]. We need to find a ∈ A such that a− b is compact. Consider the map
δb : A → B(H) defined by

δb(x) = bx− xb.

Then δb(x) is compact for every a ∈ A. A straightforward computation
shows that δb(xy) = δb(x)y + xδb(y). Such a map is called a derivation.
By [36, Theorem 2.1], every derivation from the atomic masa into B(H) is
trivial, i.e., of the form δa for some a in the atomic masa. Then a ∈ A such
that δa and δb agree on A is as required, by [36, Lemma 1.4]. �

Theorem 5.20 (Akemann–Weaver [2]). There exists a masa A in C(H)
that is not of the form π[A] for any masa A ⊂ B(H).

Proof. By Corollary 5.14, each masa in B(H) is induced by an isomorphism
from H to L2(X) for a probability measure space X. But the measure
algebra of a probability measure space is countably generated, so there are
only 2ℵ0 isomorphism classes of probability measure spaces. Since H is
separable, it follows that there are at most 2ℵ0 masas in B(H).

Now fix an almost disjoint (modulo finite) family A of infinite subsets
of N of size 2ℵ0 . Recall that P (~e)

X is the projection to the closed subspace
spanned by {en : n ∈ X}. Then the projections pX = π(P (~e)

X ), for X ∈ A,
form a family of orthogonal projections in C(H). Choose non-commuting
projections qX,0 and qX,1 in C(H) below pX . To each f : A → {0, 1} asso-
ciate a family of orthogonal projections {qX,f(X)}. Extending each of these
families to a masa, we obtain 22ℵ0 distinct masas in C(H). Therefore some
masa in C(H) is not of the form π[A] for any masa in B(H). �

Anderson ([5]) asked whether there is a masa in the Calkin algebra that
is generated by projections but not of the form π[A] for some masa A in
B(H). Note that this question is not answered by Theorem 5.20 since masa
constructed there are not necessarily generated by their projections. By [52]
very mild set-theoretic assumptions imply the existence of such masa. It is
not known whether this can be proved in ZFC.
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Lemma 5.21. Let A ⊂ B(H) be a masa. Then J = P(A) ∩ K(H) is a
Boolean ideal in P(A) and P(π[A]) = P(A)/J .

Proof. It is easy to check that J is an ideal since K(H) ⊆ B(H) is an ideal.
Let a ∈ A be such that π(a) is a projection. WritingA = L∞(X), then in the
proof of Lemma 5.3, we could have chosen to represent a as a multiplication
operator on L2(X), in which case the projection p that we obtain such that
π(p) = π(a) is also a multiplication operator on L2(X). That is there is
a projection p ∈ A such that π(p) = π(a). Thus π : P(A) → P(π[A])
is surjective. Furthermore, it is clearly a Boolean homomorphism and its
kernel is J , so P(π[A]) = P(A)/J . �

Exercise 5.22. Let A be the CAR algebra (§3.4.2) and let D be its subal-
gebra generated by the diagonal matrices. Show that D is a masa in A.

5.2. Projections in the Calkin algebra. In the present section we study
the poset of projections in the Calkin algebra. This structure is closely
related to the Boolean algebra P(N)/Fin, although in many ways it is
closer to quotients over analytic P-ideals such as the asymptotic density
zero ideal, Z0.

Lemma 5.23. A projection p ∈ B(H) is compact if and only if its range is
finite-dimensional.

Proof. If we let B ⊆ H be the unit ball, p is compact if and only if p[B]
is precompact. But p[B] is just the unit ball in the range of p, which is
(pre)compact if and only if the range is finite-dimensional. �

Let us now take a closer look at the images of the two distinguished masas
in B(H).

If A = `∞ is an atomic masa in B(H), then we obtain an “atomic” masa
π[A] in C(H). By Lemmas 5.21 and 5.23, P(π[A]) ∼= P(N)/Fin, where Fin
is the ideal of finite sets. In particular, if we fix a basis then P(N)/Fin
naturally embeds in P(C(H)). For this reason, we can think of P(C(H))
as a “noncommutative” version of P(N)/Fin. Moreover, one can show that
A∩K(H) = c0, the set of sequences converging to 0, so that π[A] = `∞/c0 =
C(βN \ N).

If A is an atomless masa in B(H), then all of its projections are infinite-
dimensional. Thus P(π[A]) = P(A). Thus the Lebesgue measure algebra
also embeds in P(C(H)).

Lemma 5.24. For projections p and q in B(H), the following are equivalent:
(1) π(p) ≤ π(q),
(2) p(I − q) is compact,
(3) For any ε > 0, there is a finite-dimensional projection p0 ≤ I − p

such that ‖q(I − p− p0)‖ < ε.

Proof. The equivalence of (1) and (2) is trivial. For the remaining part see
[58, Proposition 3.3]. �
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We write p ≤K q if the conditions of Lemma 5.24 are satisfied. The poset
(P(C(H)),≤) is then isomorphic to the quotient (P(B(H)),≤K)/ ∼, where
p ∼ q if p ≤K q and q ≤K p. In the strong operator topology, P(B(H)) is
Polish, and (3) in Lemma 5.24 then implies that ≤K ⊂ P(B(H))×P(B(H))
is Borel.

Lemma 5.25. There are projections p and q in B(H) such that π(p) =
π(q) 6= 0 but p ∧ q = 0.

Proof. Fix an orthonormal basis (en) for H and let αn = 1 − 1
n and βn =√

1− α2
n. Vectors ξn = αne2n + βne2n+1 for n ∈ N are orthonormal and

they satisfy limn(ξn|e2n) = 1. Projections p = projspan{e2n:n∈N} and q =
projspan{ξn:n∈N} are as required. �

Recall that P(B(H)) is a complete lattice, which is analogous to the fact
that P(N) is a complete Boolean algebra. Since P(N)/Fin is not a complete
Boolean algebra, we would not expect P(C(H)) to be a complete lattice.
More surprisingly, however, the “noncommutativity” of P(C(H)) makes it
not even be a lattice at all.

Proposition 5.26 (Weaver). P(C(H)) is not a lattice.

Proof. Enumerate an orthogonal basis of H as {ξmn, ηmn : m ∈ N, n ∈ N}.
Define

ζmn =
1
n
ξmn +

√
n− 1
n

ηmn

and

K =span{ηmn : m,n ∈ N}, p = projK
L =span{ζmn : m,n ∈ N}, q = projL.

For f : N→ N, define

M(f) = span{ηmn : m ≤ f(n)} and r(f) = projM(f).

It is easy to show, using Lemma 5.24, that r(f) ≤ p and r(f) ≤K q for all f ,
and that if f < g then r(f) <K r(g) strictly.

Now assume r is a projection such that r ≤K p and r ≤K q. Again using
Lemma 5.24 one sees that r ≤K r(f) for some f . In particular, it follows
that p and q cannot have a meet under ≤K. �

5.3. Cardinal invariants. Since cardinal invariants can often be defined
in terms of properties of subsets of P(N)/Fin (see [13]), we can look for
“noncommutative” (or “quantum”) versions of cardinal invariants by looking
at analogous properties of P(C(H)).

Recall that a denotes the minimal possible cardinality of a maximal infi-
nite antichain in P(N)/Fin, or equivalently the minimal possible cardinality
of an (infinite) maximal almost disjoint family in P(N).
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Definition 5.27 (Wofsey, [59]). A family A ⊆ P(B(H)) is almost orthogonal
(ao) if pq is compact for p 6= q in A but no p ∈ A is compact. We define
a∗ to be the minimal possible cardinality of an infinite maximal ao family
(“mao family”).

Note that we require every p ∈ A to be noncompact since while Fin ⊂
P(N) is only countable, there are 2ℵ0 compact projections in P(B(H)).

Theorem 5.28 (Wofsey, [59]). (1) It is relatively consistent with ZFC
that ℵ1 = a = a∗ < 2ℵ0,

(2) MA implies a∗ = 2ℵ0.

Proof. Omitted. �

Question 5.29. Is a = a∗? Is a ≥ a∗? Is a∗ ≥ a?

It may seem easy to prove that a ≥ a∗, since P(N)/Fin embeds in P(C(H))
so any maximal almost disjoint family would give a mao family. However,
it turns out that a maximal almost disjoint family can fail to be maximal as
an almost orthogonal family. We now proceed to give an example of such a
family.

An ideal J on P(N) is a p-ideal if for every sequence Xn, n ∈ N of elements
of J there is X ∈ J such that Xn \X is finite for all n.

Lemma 5.30 (Steprāns, 2007). Fix a ∈ B(H) and a basis (en) for H. Then

Ja = {X ⊆ N : P (~e)
X a is compact}

is a Borel P-ideal.

Proof. Let ϕa(X) = ‖PXa‖. This is a lower semicontinuous submeasure
on N, and PXa is compact if and only if limn ϕa(X \ n) = 0 (see equivalent
conditions (1)–(3) in Example 3.1.4). Thus Ja is Fσδ. Proving that it is a
p-ideal is an easy exercise. �

Proposition 5.31 (Wofsey, [59]). There is a maximal almost disjoint family
A ⊂ P(N) whose image in P(B(H)) is not a mao family.

Proof. Let

ξn = 2−n/2
∑2n+1−1

j=2n ej .

Then ξn, for n ∈ N, are orthonormal and q = projspan{ξn}. Since limn ‖qen‖ =
0 the ideal Jq is dense: every infinite subset of N has an infinite subset in
Jq (choose a sparse enough subset X such that

∑
n∈X ‖qen‖ < ∞). By

density, we can find a maximal almost disjoint family A that is contained
in Jq. Then q is almost orthogonal to PX for all X ∈ A, so {PX : X ∈ A} is
not a mao family. �

In some sense, this is the only way to construct such a counterexample.
More precisely, we have the following:
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Theorem 5.32. Let a′ denote the minimal possible cardinality of a maximal
almost disjoint family that is not contained in any proper Borel P-ideal.
Then a′ ≥ a and a′ ≥ a∗.

Proof. The inequality a′ ≥ a is trivial, and the inequality a′ ≥ a∗ follows by
Lemma 5.30. �

One can also similarly define other quantum cardinal invariants: p∗, t∗, b∗,
etc (see e.g., [13]). For example, recall that b is the minimal cardinal κ
such that there exists a (κ, ω)-gap in P(N)/Fin and let b∗ be the minimal
cardinal κ such that there exists a (κ, ω)-gap in P(C(H)). Considerations
similar to those needed in the proof of Proposition 5.26 lead to following.

Theorem 5.33 (Zamora–Avilés, [60]). b = b∗.

Proof. Omitted. �

Almost all other questions about the relationship between these and or-
dinary cardinal invariants are open. One should also note that equivalent
definitions of standard cardinal invariants may lead to distinct quantum
cardinal invariants.

5.4. A twist of projections. A question that may be related to cardinal
invariants is when collections of commuting projections of C(H) can be si-
multaneously lifted to B(H) such that the lifts still commute. Let l (this
symbol is \mathfrak l) be the minimal cardinality of such a collection that
does not lift. From the proof of Theorem 5.20 it follows that such collections
exist. Note that if instead of projections in the definition of l we consider
arbitrary commuting operators, then the value of a cardinal invariant de-
fined in this way drops to 2. To see this, consider the unilateral shift and
its adjoint (see Example 5.4).

Lemma 5.34. The cardinal l is uncountable. Given any sequence pi of
projections in B(H) such that π(pi) and π(pj) commute for all i, j, there is
an atomic masa A in B(H) such that π[A] contains all π(pi).

Proof. Let ζ(i), i ∈ N, be a norm-dense subset of the unit ball of H. We
will recursively choose projections qi in B(H), orthonormal basis ei, and
k(j) ∈ N so that for all i ≤ k(j) we have π(qi) = π(pi), qi(ej) ∈ {ej , 0} and
ζ(j) is in the span of {ei : i < k(j)}. Assume qj , j < n, and ei, i < k(n),
have been chosen to satisfy these requirements. Let r be the projection to
the orthogonal complement of {ei | i < k(n)} and for each α ∈ {1,⊥}n

let rα = r
∏
i<n q

α(i)
i . For each α ∈ {1,⊥}n we have that π(pn) and π(rα)

commute, hence by Lemma 5.3 there is a projection pα in B(rα[H]) such
that π(pα) = π(pn)π(rα), and π(pn) =

∑
α π(pn)π(rα). Note that we have

qn =
∑

α∈{1,⊥}n pα.

Now pick k(n + 1) large enough and unit vectors ei, k(n) ≤ i < k(n + 1),
each belonging in some rαqn[H], such that ei, i < k(n+ 1) span ζ(n).
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This assures (ei) is a basis of H. Let X(i) = {n : n ≥ k(i) and the unique
α ∈ {1,⊥}n such that en ∈ rα(n) satisfies α(i) = 1}. Fix i ∈ N. Clearly
qi = P

(~e)
X(i) satisfies π(qi) = π(pi) and it is diagonalized by (en). �

Note that it is not true that any countable collection of commuting pro-
jections in B(H) is simultaneously diagonalizable (e.g., take H = L2([0, 1])
and the projections onto L2([0, q]) for each q ∈ Q).

Theorem 5.35 below was inspired by [41]. In this paper Luzin proved the
existence of an uncountable almost disjoint family {Xξ : ξ < ω1} of subsets
of N with the property that for every Z ⊆ ω1 such that both Z and ω1 \ Z
are uncountable the families {Xξ : ξ ∈ Z} and {Xξ : ξ ∈ ω1 \ Z} cannot
be separated, in the sense that there is no Y ⊆ N such that Xξ \ Y is finite
for all ξ ∈ Z and Xξ ∩ Y is finite for all ξ ∈ ω1 \ Z This family is one of
the instances of incompactness of ω1 that are provable in ZFC, along with
Hausdorff gaps, special Aronszajn trees, or nontrivial coherent families of
partial functions.

Theorem 5.35 (Farah, 2006 [22]). There is a collection of ℵ1 commut-
ing projections in C(H) that cannot be lifted to simultaneous diagonalizable
projections in B(H).

Proof. Construct pξ (ξ < ω1) in P(B(H)) so that for ξ 6= η (using the
standard notation for the commutator of a and b, [a, b] = ab− ba):

(1) pξpη is compact, and
(2) ‖[pξ, pη]‖ > 1/4.

Such a family can easily be constructed by repeatedly applying Lemma 5.34.
If there are lifts P (~e)

Xξ
of π(pξ) that are all diagonalized by a basis (en),

let dξ = pξ − P
(~e)
X(ξ). Write rn = P

(~e)
{0,1,...,n−1}, so a is compact if and only if

limn ‖a(I − rn)‖ = 0. By hypothesis, each dξ is compact, so fix n̄ such that
S = {ξ : ‖dξ(I − rn̄)‖ < 1/8} is uncountable. Since the range of I − rn̄ is
separable, there are distinct ξ, η ∈ S such that ‖(dξ − dη)rn̄‖ < 1/8. But
then we can compute that

‖[pξ, pη]‖ ≤ ‖[PX(ξ), PX(η)]‖+ 1/8 = 1/4,

a contradiction. �

In the early draft of this paper it was conjectured that the projections
constructed in Theorem 5.35 cannot be lifted to simultaneously commuting
projections, and that in particular, l = ℵ1. This conjecture was confirmed
by Tristan Bice in [11].

5.5. Maximal chains of projections in the Calkin algebra. A problem
closely related to cardinal invariants is the description of isomorphism classes
of maximal chains in P(N)/Fin and P(C(H)). The structure (P(N)/Fin,≤)
is ℵ1-saturated, in the model-theoretic sense: every consistent type over a
countable set is realized in the structure (this was first noticed by Hadwin
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in [34]). Therefore under CH a back-and-forth argument shows that all
maximal chains are order-isomorphic. Countable saturatedness of quotients
P(N)/J , for analytic ideals J , was well-studied. For example, by a result
of Just and Krawczyk the quotient over every Fσ ideal that includes Fin is
countably saturated. Also, there are arbitrarily complex Borel ideals with
countably saturated quotients. On the other hand, many well-studied Fσδ
ideals, for example the ideal Z0 of asymptotic density zero sets, don’t have
countably saturated quotients (see [20] and references thereof).

Theorem 5.36 (Hadwin, 1998 [34]). CH implies that any two maximal
chains in P(C(H)) are order-isomorphic.

Proof. One can show that P(C(H)) has a similar saturation property and
then use the same back-and-forth argument. �

Conjecture 5.37 (Hadwin, 1998 [34]). CH is equivalent to “any two max-
imal chains in P(C(H)) are order-isomorphic”.

This conjecture seems unlikely and the analogous statement for P(N)/Fin
is not true.

Theorem 5.38 (essentially Shelah–Steprāns). There is a model of ¬CH in
which all maximal chains in P(N)/Fin are isomorphic.

Proof. Add ℵ2 Cohen reals to a model of CH. We can then build up an
isomorphism between any two maximal chains in the generic model in es-
sentially the same way as a nontrivial automorphism of P(N)/Fin is built
up in [51]. �

The above proof cannot be straighforwardly adapted to the case of P(C(H)).
By forcing towers in P(N)/Fin of different cofinalities, one can construct

maximal chains in (P(N) \ {N})/Fin of different cofinalities (in particular,
they are non-isomorphic). The same thing works for P(C(H)) \ {π(I)}.

Theorem 5.39 (Wofsey, 2006 [59]). There is a forcing extension in which
there are maximal chains in P(C(H)) \ {π(I)} of different cofinalities (and
2ℵ0 = ℵ2).

Idea of the proof. A standard forcing that adds maximal chains of different
cofinalities to P(N)/Fin works. �

6. More on pure states

Recall that a state of a C*-algebra is pure if it cannot be written as a
nontrivial linear combination of two distinct nonzero states (§4.1). We now
look at some set-theoretic problems concerning pure states on C∗-algebras.

Lemma 6.1. If B is abelian and A is a unital subalgebra of B then any
pure state of B restricts to a pure state of A

Proof. A state on either algebra is pure if and only if it is multiplicative. It
follows that the restriction of a pure state is pure. �
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However, in general the restriction of a pure state to a unital subalgebra
need not be pure.

Example 6.2. If ωξ is a vector state of B(H) and A is the atomic masa
diagonalized by a basis (en), then ωξ�A is pure if and only if |(ξ|en)| = 1
for some n. Indeed, A is isomorphic to `∞, which is in turn isomorphic to
C(βN). Therefore (cf. Exercise 4.16) a state of A is pure if and only if
it is the evaluation functional at some point of βN, or equivalently, if it is
a limit of the vector states ωen under an ultrafilter (such states reoccur in
Example 6.31 below).

Lemma 6.3. If A is an abelian C∗-algebra generated by its projections than
a state φ of A is pure if and only if φ(p) ∈ {0, 1} for every projection p in A.

Proof. Let us first consider the case when A is unital. By the Gelfand–
Namark theorem we may assumeA is C(X) for a compact Hausdorff spaceX.
By Exercise 4.16 a state φ of C(X) is pure if and only if there is x ∈ X such
that φ(f) = f(x) for all f . Such a state clearly satisfies φ(p) ∈ {0, 1} for
each projection p in C(X).

If φ(p) ∈ {0, 1} for every projection p, then F = {p : φ(p) = 1} is a filter
such that for every p either p or I − p is in F . (Here F is a ‘conventional’
filter, not to be confused with quantum filters introduced after Lemma 6.41.)
By our assumption, X is zero-dimensional (cf. Exercise 5.11). Therefore F
converges to a point x. We claim that φ(f) = f(x) for all f ∈ C(X).
Pick f ∈ C(X) and ε > 0. Let U ⊆ X be a clopen neighborhood of x
such that |f(y) − f(x)| < ε for all y ∈ U , and let p be the projection
corresponding to the characteristic function of U . Then φ(p) = 1 and by
Lemma 4.8 we have φ(f) = φ(pfp). On the other hand, with λ = f(x) we
have ‖pfp − λp‖ < ε, hence |φ(f) − λ| < ε. Since ε > 0 was arbitrary we
conclude that φ(f) = λ = f(x).

If A is not unital, then A is isomorphic to C0(X) for a locally compact
Hausdorff space X. Consider it as a subalgebra of C(βX) and use an argu-
ment similar to the above. �

Proposition 6.4. Let B be a unital abelian C∗-algebra and A ⊆ B be a
unital subalgebra. If every pure state of A extends to a unique pure state of
B, then A = B.

Proof. We have B = C(X), where X is the space of pure states on B. Since
B is abelian, every point of X gives a pure state on A. We claim that A
separates points of X (cf. Exercise 3.11). Assume the contrary and let x 6= y
be points of X such that f(x) = f(y) for all f ∈ A. Then f 7→ f(x) is a pure
state of A that has two distinct extensions to a pure state of B, contradicting
our assumption. By Stone–Weierstrass we have A = C(X). �

Without the assumption that B is abelian the conclusion of Proposi-
tion 6.4 is no longer true. Let B = M2∞ and let A be its standard masa—the
limit of algebras of diagonal matrices. Then A is isomorphic to C(2N) and
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each pure state φ of A is an evaluation function at some x ∈ 2N. Assume ψ
is a state extension of φ to M2∞ . In each M2n(C) there is a 1-dimensional
projection pn such that φ(pn) = 1, and therefore Lemma 4.8 implies that
for all a ∈ M2n(C) we have φ(a) = φ(pnapn) = the diagonal entry of the
2n× 2n matrix pnapn determined by pn. Since

⋃
nM2n(C) is dense in M2∞ ,

state ψ is uniquely determined by φ.
If A ⊆ B are C∗-algebras we say that A separates pure states of B if for

all pure states ψ 6= φ of B there is a ∈ A such that φ(a) 6= ψ(a).

Exercise 6.5. Give an example of a C*-algebra B and its unital subalgebra
A such that A separates pure states of B but every pure state of A has a
unique extension to a state of B. (Hint: See Exercise 6.25.)

Problem 6.6 (Noncommutative Stone-Weierstrass problem). Assume A is
a unital subalgebra of B and A separates P(B) ∪ {0}. Does this necessarily
imply A = B?

For more on this problem see e.g., [49].

Exercise 6.7. Prove that for an irreducible representation π : A → B(H)
we have π[A] ⊇ K(H) if and only if π[A] ∩ K(H) 6= {0}.

Definition 6.8 (Kaplansky). A C∗-algebra A is of type I if for every irre-
ducible representation π : A→ B(H) we have π[A] ⊇ K(H).

Type I C∗-algebras are also known as GCR, postliminal, postliminary, or
smooth. Here GCR stands for ‘Generalized CCR’ where CCR stands for
‘completely continuous representation’; ‘completely continuous operators’
is an old-fashioned term for compact operators. See [44, §6.2.13] for an
amusing explanation of the terminology (cf. footnote in §5.1). Type I C∗-
algebras should not be confused with type I von Neumann algebras: B(H)
is a type I von Neumann algebra but is not a type I C∗-algebra.

Definition 6.9. A C∗-algebra is simple if and only if it has no nontrivial
(closed two-sided) ideals.

Recall that the pure states of a C∗-algebra correspond to its irreducible
representations (Lemma 4.14) and that pure states are equivalent if and
only if the corresponding irreducible representations are equivalent (Propo-
sition 4.23).

Lemma 6.10. If a type I C∗-algebra has only one pure state up to equiva-
lence then it is isomorphic to K(H) for some H.

Proof. Assume A is of type I and all of its pure states are equivalent. It
is not difficult to see that A has to be simple. Therefore any irreducible
representation is an isomorphism and therefore π[A] = K(H). �

The converse of Lemma 6.10 is a theorem of Naimark (Theorem 6.14).
C∗-algebras that are not type I are called non-type I or antiliminary (cf.
discussion of this terminology in the introduction to [8]). Theorem 6.11 is
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the key part of Glimm’s characterization of type I C∗-algebras ([31], see also
[44, Theorem 6.8.7]). Its proof contains a germ of what became known as
the Glimm-Effros Dichotomy ([35]).

Theorem 6.11 (Glimm). If A is a non-type-I C∗-algebra then there is a
subalgebra B ⊆ A that has a quotient isomorphic to M2∞.

Proof. See [44, §6.8]. �

The following straightforward calculation will be used in Corollary 6.13.

Lemma 6.12. Assume ϕ is a state of A and u and v are unitaries in A
such that ‖u− v‖ < ε. Then ‖ϕ ◦Adu− ϕ ◦Ad v‖ < 2ε.

Proof. It suffices to consider the case when v = I and ‖u − I‖ < ε. Then
for a ∈ A we have ‖a− uau∗‖ = ‖au− ua‖ ≤ ‖au− a‖+ ‖a− ua‖ < 2ε‖a‖.
Therefore we have ‖ϕ(a)−ϕ(uau∗)‖ ≤ ‖ϕ(a− uau∗)‖ < 2ε‖a‖ for all a ∈ A
and ‖ϕ−Aduϕ‖ < 2ε follows. �

Corollary 6.13 (Akemann–Weaver, 2002 [1]). If A is non-type-I and has a
dense subset of cardinality < 2ℵ0, then A has nonequivalent pure states.

Proof. By Glimm’s Theorem, a quotient of a subalgebra of A is isomorphic
to M2∞ , and the pure states ϕf on M2∞ then lift and extend to pure states
ψf of A. Furthermore, if f 6= g then ‖ψf −ψg‖ = 2, since the same is true of
ϕf and ϕg. In particular, if ψ is any pure state on A, then by Lemma 6.12
the unitaries that turn ψ into ψf must be far apart (distance ≥ 1) from
unitaries that turn ψ into ψg. Since A does not have a subset of cardinality
2ℵ0 such that any two points are far apart from each other, ψ cannot be
equivalent to every ψf . �

6.1. Naimark’s theorem and Naimark’s problem. The starting point
of this subsection is the following converse of Lemma 6.10.

Theorem 6.14 (Naimark, 1948). Any two pure states on K(H) are equiv-
alent, for any (not necessarily separable) Hilbert space H.

We shall sketch a proof of this theorem later on.

Question 6.15 (Naimark, 1951). If all pure states on a C∗-algebra A are
equivalent, is A isomorphic to K(H) for some Hilbert space H?

Note that by Lemma 6.10 and Corollary 6.13, any counterexample to this
must be non-type I and have no dense subset of cardinality < 2ℵ0 . A similar
argument shows that a counterexample cannot be a subalgebra of B(H) for
a Hilbert space with a dense subset of cardinality < 2ℵ0 .

The proof of Naimark’s theorem will require some terminology. Recall
that a vector state on B(H) corresponding to a unit vector η is defined by
ωη(a) = (a(η), η).
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Definition 6.16. An operator a ∈ B(H) is a trace class operator if for
some orthogonal basis E of H we have

∑
e∈E(|a|e, e) <∞. For a trace class

operator a define its trace as

tr(a) =
∑

e∈E(ae, e).

Exercise 6.17. Prove the following.
(1) Trace class operators form an ideal in B(H) that is not norm-closed.

(Hint: See [45].)
(2) tr(ab) = tr(ba) for any trace class operator a and any operator b. In

particular, this sum does not depend on the choice of the orthonor-
mal basis.

(Hint: This is similar to the finite-dimensional case.)
(3) Every trace class operator is compact.

(Hint: It can be approximated by finite rank operators.

For unit vectors η1 and η2 in H define a rank one operator bη1,η2 : H → H
by

bη1,η2(ξ) = (ξ, η2)η1.

This is a composition of the projection to Cη2 with the partial isometry
sending η2 to η1.

Lemma 6.18. Given a functional φ in the dual of K(H) there is a trace class
operator u such that φ(a) = tr(ua) for all a ∈ K(H). If φ ≥ 0 then u ≥ 0.

Proof. For the existence, see e.g., [45, Theorem 3.4.13]. To see u is positive,
pick η ∈ H. Then ubη,η(ξ) = u((ξ, η)η) = (ξ, η)u(η) = bu(η),η(ξ). Therefore

0 ≤ φ(bη,η) = tr(ubη,η) = tr(bu(η),η)

=
∑
e∈E

(bu(η),η(e), e) =
∑
e∈E

(ubη,ηe, e) = (u(η), η).

(In the last equality we change the basis to E′ so that η ∈ E′.) �

Proposition 6.19. Every pure state φ of K(H) is equal to the restriction
of some vector state to K(H).

Proof. By Lemma 6.18 we have a trace class operator u such that φ(a) =
tr(ua) for all a ∈ K(H). Since u is a positive compact operator, it is by
the Spectral Theorem diagonalizable so we can write u =

∑
e∈E λee

∗ with
the appropriate choice of the basis E. Thus φ(a) = tr(ua) = tr(au) =∑

e∈E(aue, e) =
∑

e∈E λe(ae, e) ≥ λe0(ae0, e0), for any e0 ∈ E. Since φ is a
pure state, for each e ∈ E there is te ∈ [0, 1] such that teφ(a) = λe0(ae0, e0).
Thus exactly one te = te0 is nonzero, and a 7→ λe0(ae0, e0). �

Proof of Theorem 6.14. If ξ and η are unit vectors in H, then the corre-
sponding vector states ωξ and ωη are clearly equivalent, via any unitary
that sends ξ to η. Hence the conclusion follows from Proposition 6.19 be-
low. �
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6.2. A counterexample to Naimark’s problem from ♦. We shall now
sketch a recent result of Akemann and Weaver, giving a consistent coun-
terexample to Naimark’s problem. One of the most interesting set-theoretic
problems about C*-algebras is whether a positive solution to Naimark’s
problem is consistent with ZFC. A positive answer would open a possibility
of having an interesting representation theory for not necessarily separable
C*-algebras (see the introduction to [1]). The following lemma is based on
recent work of Kishimoto–Ozawa–Sakai and Futamura–Kataoka–Kishimoto.

Lemma 6.20 (Akemann–Weaver, 2004 [1]). Let A be a simple separable
unital C∗-algebra and let ϕ and ψ be pure states on A. Then there is a
simple separable unital B ⊇ A such that

(1) ϕ and ψ extend to states ϕ′, ψ′ on B in a unique way.
(2) ϕ′ and ψ′ are equivalent.

Proof. Omitted. �

It is not known whether this lemma remains true when the separability
assumption is dropped. However, Kishimoto–Ozawa–Sakai proved that their
result used in the proof of Lemma 6.20 fails for nonseparable algebras. A
very simple example was given in [25].

We shall now briefly describe Jensen’s♦ principle, and the set-theoretically
informed readers may want to skip ahead to Theorem 6.22. Recall that a
subset C of ω1 is closed if for every countable A ⊆ C we have that supA ∈ C.
It is unbounded if it supC = ω1. By ♦ we denote Jensen’s diamond princi-
ple on ω1. One of its equivalent reformulations states that there are func-
tions hα : α → ω1, for α < ω1, such that for every g : ω1 → ω1, the set
{α : g�α = hα} is stationary.

There are several revealing reformulations of ♦ (see [40, Chapter II]), and
the following one was suggested by Weaver.

Exercise 6.21. Consider T = ω<ω1
1 as a tree with respect to the end-

extension ordering. Show that ♦ is equivalent to the assertion that there is
tα in T of length α such that for every ω1-branch b of T the set of all α such
that b�α = tα is stationary.

Theorem 6.22 (Akemann–Weaver, 2004 [1]). Assume ♦. Then there is a
C∗-algebra A, all of whose pure states are equivalent, which is not isomorphic
to K(H) for any H.

Proof. We construct an increasing chain of simple separable unital C∗-al-
gebras Aα (α ≤ ω1). We also construct pure states ψα on Aα such that for
α < β, ψβ�Aα = ψα. For each Aα, let {ϕγα}γ<ω1 enumerate all of its pure
states.

If α is limit, we let Aα = lim−→β→αAβ and ψα = lim−→ψβ.
Let us consider the successor case, when Aα is defined and we want to

define Aα+1. Suppose there is ϕ ∈ P(Aα) such that ϕ�Aβ = ϕ
hα(β)
β for all
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β < α (if no such ϕ exists, let Aα+1 = Aα). Note that
⋃
β<αAβ is dense in

Aα since α is limit, so there is at most one such ϕ. By Lemma 6.20, let Aα+1

be such that ψα and ϕ have unique extensions to Aα+1 that are equivalent,
and let ψα+1 be the unique extension of ψα.

Let A = Aω1 and ψ = ψω1 . Then A is unital and infinite-dimensional,
so A is not isomorphic to any K(H). Let ϕ be any pure state on A; we
will show that ϕ is equivalent to ψ, so that A has only one pure state up to
equivalence.

Claim 6.23. S = {α : ϕ�Aα is pure on Aα} contains a club.

Proof. For x ∈ A and m ∈ N the set

Tm,x =
{
α : x ∈ Aα and (∃ψ1, ψ2 ∈ S(Aα))

ϕ�Aα =
ψ1 + ψ2

2
and |ϕ(x)− ψ1(x)| ≥ 1

m

}
is bounded in ω1. Indeed, if it were unbounded, we could take a limit of
such ψi (with respect to an ultrafilter) to obtain states ψi on A such that
ϕ = ψ1+ψ2

2 but such that |ϕ(x) − ψ1(x)| ≥ 1
m , contradicting purity of ϕ.

Since each Aα is separable, we can take a suitable diagonal intersection of
the Tm,x over all m and all x in a dense subset of A to obtain a club contained
in S. �

Now let h : S → ω1 be such that ϕ�Aα = ϕ
h(α)
α for all α ∈ S. Since S

contains a club, there is some limit ordinal α such that h�α = hα. Then by
construction, ϕ�Aα+1 is equivalent to ψα+1; say ϕ�Aα+1 = uψα+1u

∗ for a
unitary u. For each β ≥ α, ψβ extends uniquely to ψβ+1, so by induction
we obtain that ψ is the unique extension of ψα+1 to A. Since ϕ�Aα+1 is
equivalent to ψα+1, it also has a unique extension to A, which must be ϕ.
But uψu∗ is an extension of ϕ�Aα+1, so ϕ = uψu∗ and is equivalent to ψ. �

6.3. Extending pure states on masas. By Exercise 4.16, a state on an
abelian C∗-algebra is pure if and only if it is multiplicative, i.e., a *-homo-
morphism. If the algebra is generated by projections then this is equivalent
to asserting that φ(p) ∈ {0, 1} for every projection p (Lemma 6.3).

Definition 6.24. A masa in a C∗-algebra A has the extension property (EP)
if each of its pure states extends uniquely to a pure state on A.

If A ⊆ B(H) is a masa and φ is a vector state on A then φ extends
uniquely to a pure state of B(H). This is essentially an easy consequence
of Lemma 4.8. By Theorem 4.21 all non-vector pure states are singular and
thus define pure states on C(H). These two observations together imply
that a masa A ⊂ B(H) has the EP if and only if π[A] ⊂ C(H) has the EP

Exercise 6.25. Let A be the CAR algebra and let D be the masa generated
by diagonal matrices (cf. Exercise 5.22). Show that D has the extension



40 ILIJAS FARAH AND ERIC WOFSEY

property. (Hint: Do the finite-dimensional case first. That is, show that the
masa consisting of diagonal matrices in Mn(C) has the extension property.
See also Exercise 4.11.)

Theorem 6.26 (Kadison–Singer, 1959, [38]). Atomless masas in B(H) do
not have the EP.

Proof. Omitted. �

Theorem 6.27 (Anderson, 1978 [5]). CH implies there is a masa in C(H)
that has the EP.

Proof. Omitted. �

Note that Anderson’s theorem does not give a masa on B(H) with the
EP, since his masa on C(H) does not lift to a masa on B(H). The following
is a famous open problem (compare with Problem 6.6).

Problem 6.28 (Kadison–Singer, 1959 [38]). Do atomic masas of B(H) have
the EP?

This is known to be equivalent to an arithmetic statement (i.e., a state-
ment all of whose quantifiers range over natural numbers). As such, it is
absolute between transitive models of ZFC and its solution is thus highly
unlikely to involve set theory. For more on this problem see [15] and [56].
However, there are related questions that seem more set-theoretic. For ex-
ample, consider the following conjecture:

Conjecture 6.29 (Kadison–Singer, 1959 [38]). For every pure state ϕ of
B(H) there is a masa A such that ϕ�A is multiplicative (i.e., pure).

We could also make the following stronger conjecture:

Conjecture 6.30. For every pure state ϕ of B(H) there is an atomic masa
A such that ϕ�A is multiplicative.

Example 6.31. Let U be an ultrafilter on N and (en) be an orthonormal
basis for H. Then

ϕ
(~e)
U (a) = lim

n→U
(aen|en)

is a state on B(H). It is singular if and only if U is nonprincipal (if {n} ∈ U ,
then ϕ

(~e)
U = ωen).

We say a state of the form ϕ
(~e)
U for some basis (en) and some ultrafilter U is

diagonalizable. As noted in Example 6.2, the restriction of a diagonalizable
state to the corresponding atomic masa is a pure state of the masa, and
every pure state of an atomic masa is of this form.

Theorem 6.32 (Anderson, 1979 [7]). Diagonalizable states are pure.

Proof. Omitted. �

Conjecture 6.33 (Anderson, 1981 [4]). Every pure state on B(H) is diag-
onalizable.
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Proposition 6.34. If atomic masas do have the EP, then Anderson’s con-
jecture is equivalent to Conjecture 6.30.

Proof. If atomic masas have the EP, a pure state on B(H) is determined
by its restriction to any atomic masa on which it is multiplicative. Any
multiplicative state on an atomic masa extends to a diagonalizable state, so
this means that a pure state restricts to a multiplicative state if and only if
it is diagonalizable. �

We now prove an affirmative answer for a special case of the Kadison-
Singer problem. We say an ultrafilter U on N is a Q-point (sometimes called
rare ultrafilter) if every partition of N into finite intervals has a transversal
in U . The existence of Q-points is known to be independent from ZFC, but
what matters here is that many ultrafilters on N are not Q-points.

Fix a basis (en) and let A denote the atomic masa of all operators diag-
onalized by it. In the following proof we write PX for P (~e)

X .

Theorem 6.35 (Reid, 1971 [47]). If U is a Q-point then the diagonal state
ϕU�A has a unique extension to a pure state of B(H).

Proof. Fix a pure state ϕ on B(H) extending ϕU�A and let a ∈ B(H).
Without a loss of generality U is nonprincipal so ϕ is singular.

Choose finite intervals (Ji) such that N =
⋃
n Jn and

‖PJmaPJn‖ < 2−m−n

whenever |m−n| ≥ 2. This is possible by (2) and (3) of Example 3.1.4 since
aPJm and PJma are compact. (See [23, Lemma 1.2] for details.) Let X ∈ U
be such that X ∩ (J2i ∪J2i+1) has a unique element, n(i), for all i. Then for
Qi = P{n(i)} and fi = en(i) we have ϕ(

∑
iQi) = 1 and

QaQ =
∑
i

Qia
∑
i

Qi =
∑
i

QiaQi +
∑
i 6=j

QiaQj .

The second sum is compact by our choice of (Ji), and QiaQi = (afi|fi)Qi.
Now as we make X ∈ U smaller and smaller,

∑
i∈X(aei|ei)P{i} gets closer

and closer to (limi→U (aei|ei))
∑
Pi = ϕU (a)

∑
Pi. Thus

lim
X→U

π(PXaPX − ϕU (a)PX)→ 0.

Since ϕ is singular and ϕ(PX) = ϕU (PX) = 1, by Lemma 4.8 ϕ(a) =
ϕ(PXaPX) = ϕU (a). Since a was arbitrary, ϕ = ϕU . �

6.4. A pure state that is not multiplicative on any masa in B(H).
The following result shows that Conjecture 6.30 is not true in all models of
ZFC. The following theorem follows from a stronger result, Theorem 6.46,
whose proof will be sketched below.

Theorem 6.36 (Akemann–Weaver, 2005 [2]). CH implies there is a pure
state ϕ on B(H) that is not multiplicative on any atomic masa.
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The basic idea of constructing such a pure state is to encode pure states
as “quantum ultrafilters”; a pure state on the atomic masa `∞ ⊂ B(H) is
equivalent to an ultrafilter. By the following result, states on B(H) corre-
spond to finitely additive maps from P(B(H)) into [0, 1].

Theorem 6.37 (Gleason). Assume µ : P(B(H))→ [0, 1] is such that µ(p+
q) = µ(p) + µ(q) whenever pq = 0. Then there is a unique state on B(H)
that extends µ.

Proof. Omitted. �

We need to go a little further and associate certain ‘filters’ of projections
to pure states of B(H).

Definition 6.38. A family F of projections in a C∗-algebra is a filter if
(1) For any p, q ∈ F there is r ∈ F such that r ≤ p and r ≤ q.
(2) If p ∈ F and r ≥ p then r ∈ F.

The filter generated by X ⊆ P(A) is the intersection of all filters containing
X (which may not actually be a filter in general if P(A) is not a lattice).

We say that a filter F ⊂ P(C(H)) lifts if there is a commuting family
X ⊆ P(B(H)) that generates a filter F such that π[F] = F . Note that, unlike
the case of quotient Boolean algebras, π−1[F ] itself is not a filter because
there exist projections p, q ∈ B(H) such that π(p) = π(q) but p ∧ q = 0
(Lemma 5.25).

Question 6.39. Does every maximal filter F in P(C(H)) lift?

Maximal filters in P(C(H)) can have rather interesting properties, as the
following result shows.

Theorem 6.40 (Anderson, [6]). There are a singular pure state ϕ of B(H),
an atomic masa A1, and an atomless masa A2 such that both ϕ�A1 and
ϕ�A2 are multiplicative.

Proof. Omitted. �

Lemma 6.41 (Weaver, 2007). For F in P(B(H)) the following are equiva-
lent:

(A) ‖p1p2 · · · pn‖ = 1 for any p1, · · · , pn ∈ F and F is maximal with
respect to this property.

(B) For all ε > 0 and for all finite F ⊆ F there is a unit vector ξ such
that ‖pξ‖ > 1− ε for all p ∈ F .

Proof. Since ‖p1p2 · · · pn‖ ≤ ‖p1‖ · ‖p2‖ · . . . · ‖pn‖ = 1, clause (A) is equiv-
alent to stating that for every ε > 0 there is a unit vector ξ such that
‖p1p2 · · · pnξ‖ > 1− ε. The remaining calculations are left as an exercise to
the reader. Keep in mind that, for a projection p, the value of ‖pξ‖ is close
to ‖ξ‖ if and only if ‖ξ − pξ‖ is close to 0. �
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We call an F satisfying the conditions of Lemma 6.41 a quantum filter.
Such an F is a maximal quantum filter if it is not properly included in
another quantum filter.

Theorem 6.42 (Farah–Weaver, 2007). Let F ⊆ P(C(H)). Then the fol-
lowing are equivalent:

(1) F is a maximal quantum filter,
(2) F = Fϕ = {p : ϕ(p) = 1} for some pure state ϕ.

Proof. (1⇒2): For a finite F ⊆ F and ε > 0 let

XF,ε = {ϕ ∈ S(B(H)) : ϕ(p) ≥ 1− ε for all p ∈ F}.

If ξ is as in (B) then ωξ ∈ XF,ε.
Since XF,ε is weak*-compact,

⋂
(F,ε)XF,ε 6= ∅, and any extreme point of

the intersection is a pure state with the desired property.3

(2⇒1). If ϕ(pj) = 1 for j = 1, . . . , k, then ϕ(p1p2 . . . pk) = 1 by Lemma
4.8, hence (A) holds. It is then not hard to show that Fϕ also satisfies (B)
and is maximal. �

Lemma 6.43. Let F be a maximal quantum filter, let (ξn) be an orthonor-
mal basis, and let N =

⋃n
j=1Aj be a finite partition. If there is a q ∈ F

such that ‖P (~ξ)
Aj
q‖ < 1 for all j, then F is not diagonalized by (ξn). In other

words, the corresponding pure state is not diagonalized by (ξn).

Proof. Assume F is diagonalized by (ξn) and let U be such that F = ϕ
(~ξ)
U .

Then Aj ∈ U for some j, but ‖P (~ξ)
Aj
q‖ < 1 for q ∈ F , contradicting the

assumption that F is a filter. �

Lemma 6.44. Let (en) and (ξn) be orthonormal bases. Then there is a
partition of N into finite intervals (Jn) such that for all k,

ξk ∈ span{ei : i ∈ Jn ∪ Jn+1}

(modulo a small perturbation of ξk) for some n = n(k).

Proof. Omitted. �

For (Jn) as in Lemma 6.44 let

D ~J = {q : ‖P (~e)
Jn∪Jn+1

q‖ < 1/2 for all n}

Lemma 6.45. Each D ~J is dense in P(C(H)), in the sense that for any
noncompact p ∈ P(B(H)), there is a noncompact q ≤ p such that q ∈ D ~J .

Proof. Taking a basis for range(p), we can thin out the basis and take ap-
propriate linear combinations to find such a q. �

3It can be proved, using a version of Kadison’s Transitivity Theorem ([32]), that this
intersection is actually a singleton.
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Recall that d is the minimal cardinality of a cofinal subset of NN under
the pointwise order, and we write t∗ for the minimal length of a maximal
decreasing well-ordered chain in P(C(H)) \ {0}. In particular, CH (or MA)
implies that d = t∗ = 2ℵ0 .

Theorem 6.46 (Farah–Weaver). Assume d ≤ t∗.4 Then there exists a pure
state on B(H) that is not diagonalized by any atomic masa.

Proof. We construct a corresponding maximal quantum filter. By the den-
sity of D ~J and d ≤ t∗, it is possible to construct a maximal quantum filter
F such that F ∩ D ~J 6= ∅ for all ~J . Given a basis (ξk), pick (Jn) such
that ξk ∈ Jn(k) ∪ Jn(k)+1 (modulo a small perturbation) for all k. Let

Ai = {k | n(k) = i( mod 4)} for 0 ≤ i < 4. Then if q ∈ F∩D ~J , ‖P (~ξ)
Ai
q‖ < 1

for each i. By Lemma 6.43, F is not diagonalized by (ξn). �

7. Automorphisms of the Calkin algebra

We now investigate whether the Calkin algebra has nontrivial automor-
phisms. Since the Calkin algebra is a quantized version of the Čech–Stone
compactification of the natural numbers, this question is analogous to the
question of whether P(N)/Fin has nontrivial automorphisms. This question
first appeared in its dual, topological, form (see §5.0.1): does the Čech–Stone
remainder βN \ N of N have nontrivial autohomeomorphisms? Here we say
that an autohomeomorphism f is trivial if it has a continuous extension to a
map f̄ : βN→ βN (note that f̄ is not necessarily an autohomeomorphism).

This question was consistently answered by W. Rudin, who proved that
CH implies the existence of 2c nontrivial autohomeomorphisms of βN \ N.
Later Shelah ([50]) constructed a forcing extension in which all automor-
phisms of P(N)/Fin are trivial. Towards this end he has developed a so-
phisticated oracle chain condition forcing. It is interesting that Shelah’s
result came only a few years after the Brown–Douglas–Fillmore question,
but it took almost thirty years before the connection was noticed by Weaver
in [58].

Shelah’s conclusion was later obtained from the Proper Forcing Axiom
(Shelah–Steprāns) and from Todorcevic’s Axiom (which is one of the two
axioms known under the name of Open Coloring Axiom, OCA) and Martin’s
Axiom (Veličković). A number of rigidity results along the similar lines have
been obtained since (see [21]).

We say an automorphism Φ of a C∗-algebra is inner if Φ = Adu for some
unitary u.

Example 7.1. If A = C0(X) is abelian then each automorphism is of the
form

f 7→ f ◦Ψ

4The sharpest hypothesis would be d <“the Novák number of P(C(H))”, if it makes
sense.
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for an autohomeomorphism Ψ of X. This automorphism is inner if and only
if Ψ is the identity since abelian structures cannot have nontrivial inner
automorphisms. Thus abelian C∗-algebras often have many outer automor-
phisms since every outer autohomeomorphism of the underlying compact
Hausdorff space defines a (necessarily outer) automorphism of the algebra.
However, there do exist (locally) compact Hausdorff spaces with no nontriv-
ial autohomeomorphisms (see the introduction of [46]), so some nontrivial
abelian C∗-algebras have no outer automorphisms.

Proposition 7.2. All automorphisms of B(H) are inner.

Proof. Omitted, but not too different from the proof that each automor-
phism of P(N) is given by a permutation of N. �

Proposition 7.3. The CAR algebra M2∞ =
⊗

nM2(C) has outer automor-
phisms.

Proof. Let Φ =
⊗

n Ad
(

0 1
1 0

)
. Then consider

an =
⊗
i<n

(
1 0
0 1

)
⊗
(

1 0
0 −1

)
as an element ofM2n(C) ⊆M2∞ . We have Φ(an) = −an, and hence ‖Φ(an)−
an‖ = 2. Since every element ofM2∞ can be approximated arbitrarily closely
by an element of a large enough M2n(C), for every u ∈ M2∞ we have that
limn ‖(Adu)(an)−an‖ = 0. This implies that for every inner automorphism
Adu of M2∞ we have limn ‖(Adu)(an) − Φ(an)‖ = 2, and therefore Φ is
outer. �

Exercise 7.4. Assume A is a C*-algebra that is not inner.
(1) Show that every automorphism of A extends to the unique automor-

phism of its unitization Ã.
(2) Using (1) say that an automorphism of a non-unital algebra is outer

if the corresponding automorphism of Ã is outer. Show that for an
infinite-dimensional H the algebra K(H) has outer automorphisms.

The fact is that all infinite-dimensional simple separable algebras have
outer automorphisms. We now turn to automorphisms of the Calkin algebra.

Theorem 7.5 (Brown–Douglas–Fillmore, 1977 [14]). Let a, b ∈ B(H) be
normal. Then there is an automorphism of C(H) mapping π(a) to π(b) if
and only if there is an inner automorphism of C(H) mapping π(a) to π(b).

Proof. Omitted �

Question 7.6 (Brown–Douglas–Fillmore, 1977 [14, 1.6(ii)]). Is there an
automorphism of C(H) that maps π(S) to π(S∗)? More generally, are there
a, b ∈ C(H) such that no inner automorphism maps a to b but an outer
automorphism does?
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Although unitaries in C(H) need not lift to unitaries in B(H), they do lift
to “almost unitaries” (i.e., isomorphisms between finite codimension sub-
spaces of H). In particular, if we let S denote the unilateral shift, one can
show that no inner automorphism of C(H) sends π(S) to π(S∗). This is be-
cause conjugation by a partial isometry preserves the Fredholm index, and
the Fredholm index of S is −1 while the Fredholm index of S∗ is 1.

A more basic question than Question 7.6, also asked by Brown, Douglas
and Fillmore ([14, 1.6(ii)]), is whether outer automorphisms exist at all. The
obvious approach to construct an outer automorphism would be to simply
take a nontrivial automorphism of P(N)/Fin ⊂ P(C(H)) and try to extend
it to an automorphism of all of C(H). Unfortunately, this does not work, by
the following consequence of a result of Alperin–Covington–Macpherson [3].

Proposition 7.7. No nontrivial automorphism of P(N)/Fin extends to an
automorphism of C(H).

Proof. Recall that S∞ is the group of all permutations of N and let FS(S∞)
be its normal subgroup of all permutations which move only finitely many
points. By [3], the outer automorphism group of S∞/FS(S∞) is infinite
cyclic. The description of outer automorphisms given in [3] easily shows
that if an automorphism Φ of the Calkin algebra sends the atomic masa to
itself, then the restriction of Φ to the group of all unitaries that send the
atomic masa to itself is implemented by a unitary of the Calkin algebra. �

The following fact is a major way in which automorphisms of C(H) differ
from automorphisms of P(N)/Fin.

Proposition 7.8. An automorphism Φ of C(H) is inner if and only if
there exists an infinite-dimensional subspace H0 of H such that Φ�C(H0) :
C(H0)→ C(H) is equal to Adu for a unitary u : H0 → H1 ⊆ H.

Proof. Fix u such that Φ(b) = ubu∗ for b ∈ C(H0). Fix v ∈ C(H) so that
vv∗ = π(projH0

) and v∗v = I. Then

Φ(a) = Φ(v∗)Φ(vav∗)Φ(v) = Φ(v∗)uvav∗u∗Φ(v).

For w = Φ(v∗)uv, we then have Φ(a) = waw∗. �

In particular, an automorphism is trivial if and only if it is somewhere
trivial. This is not true for automorphisms of P(N)/Fin. See, for example,
the second part of [51].

7.1. An outer automorphism from the Continuum Hypothesis. Un-
der CH, we might expect to be able to easily modify the proof that P(N)/Fin
has outer automorphisms to obtain an outer automorphism of C(H). That
is, we would build up an automorphism on separable subalgebras of C(H),
diagonalizing so that it avoids each inner automorphism. However, it turns
out that this construction faces serious difficulties at limit stages. Neverthe-
less, the result still holds.
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Theorem 7.9 (Phillips–Weaver, 2006 [46]). CH implies that the Calkin
algebra has outer automorphisms.

The original proof used the approach above, but required very deep C∗-
algebra machinery to handle limit stages. We instead sketch a more elemen-
tary proof, given in [23]. In addition, by an observation of Stefan Geschke,
this proof can be easily modified to require not CH but only 2ℵ0 < 2ℵ1
and d = ℵ1.

Proof of Theorem 7.9. To begin with, fix a basis (en). For any partition of
N into finite intervals N =

⋃
n Jn, let En = span{ei : i ∈ Jn} and D[ ~J ] be

the algebra of all operators that have each En as an invariant subspace. We
write ~Jeven = (J2n ⊕ J2n+1)n and ~Jodd = (J2n+1 ⊕ J2n+2)n.

Lemma 7.10. Suppose u is a unitary and αn ∈ C, |αn| = 1 for all n. Then
if v =

∑
n αnPJnu, Adu and Ad v agree on D[ ~J ].

Proof. Without a loss of generality u = I. Note that a ∈ D[ ~J ] if and only if
a =

∑
n PJnaPJn . Thus for a ∈ D[ ~J ],

vav∗ =
∑
n

αnPJnPJnaαnPJn =
∑
n

PJnaPJn = a.

�

For partitions ~J , ~K of N into finite intervals we say ~J � ~K if for all m
there is some n such that Jm ⊆ Kn ∪Kn+1.

Lemma 7.11. The ordering � is σ-directed and cofinally equivalent to
(NN,≤∗).

Proof. See [23, §3.1]. �

We write DD[ ~J ] = D[ ~Jeven] ∪ D[ ~Jodd].

Definition 7.12. A family F of pairs ( ~J, u) is a coherent family of unitaries
if

(1) F0 = { ~J : ( ~J, u) ∈ F for some u} is �-cofinal and
(2) For ~J � ~K in F0, Adu ~J and Adu ~K agree on DD[ ~J ].

The following key lemma is not entirely trivial because not every a ∈ B(H)
is in D[ ~J ] for some ~J .

Lemma 7.13. If F is a coherent family of unitaries then there is the unique
automorphism ΦF of C(H) such that ΦF (π(a)) = π(uau∗) for all ( ~J, u) ∈ F
and all a ∈ D[ ~J ].

Proof. The main point is that any a ∈ B(H) can be decomposed as a =
a0 + a1 + c so that a0 and a1 are in DD[ ~E] for some ~E and c is compact
([23, Lemma 1.2]). See [23, Lemma 1.3] for details. �
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A coherent family of unitaries is trivial if there is u0 ∈ B(H) such that
Adu0 and Adu agree on D[ ~J ] for all ( ~J, u) ∈ F . The automorphism ΦF is
inner if and only if F is trivial.

Now by CH construct �-increasing and cofinal sequence of partitions Jξ

(ξ < ω1) and diagonal unitaries αξ ∈ (U(1))N ⊂ `∞ ⊂ B(H) such that for
ξ < η such that for ξ < η, Adαξ and Adαη agree on D[ ~Jξ]. This can
be done with Lemma 7.10 and some work, and it can be done in such a
way that there are ℵ1 choices to be made in the construction. We thus
obtain 2ℵ1 different coherent families of unitaries that give 2ℵ1 different
automorphisms of C(H). Since there are only 2ℵ0 unitaries in C(H), some
of these automorphisms must be outer. �

Note, however, that this construction still does not answer Question 7.6,
since the outer automorphisms constructed are locally given by unitaries.
The same is true of the automorphisms constructed in Phillips–Weaver’s
original proof.

7.2. Todorcevic’s Axiom implies all automorphisms are inner. The
following remarkable axiom was extracted by Todorcevic as one of the key
‘Ramseyan’ consequences of the Proper Forcing Axiom. See [54] and [42]
for the broader context.

Todorcevic’s Axiom, TA [53]. Assume (V,E) is a graph such that E =⋃∞
n=0An × Bn for some subsets An, Bn of V . Then one of the following

applies.

(1) (V,E) has an uncountable clique: Y ⊆ X such that any two vertices
in Y are connected by an edge, or

(2) (V,E) is countably chromatic: there is a partition V =
⋃∞
n=0Xn so

that no edge connects two vertices in the same Xn.

Theorem 7.14 (Farah, 2007 [23]). Todorcevic’s Axiom implies all auto-
morphisms of C(H) are inner.

Proof. Fix an automorphism Φ. The proof has two components.

(1) TA implies that the restriction of Φ to D[ ~J ] is implemented by a
unitary for every ~J .

(2) TA implies that every coherent family of unitaries is trivial.

The proof of (1) is a bit more complicated than the proof of (2), and both
can be found in [23]. �

Assertion (2) is false under CH (by the proof of Theorem 7.9). On the
other hand, we don’t know whether (1) is provable without any additional
assumption (cf. Theorem 7.7).
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