
ITERATED FORCING AND THE CONTINUUM HYPOTHESIS

Appalachian Set Theory Workshop, May 29–30, 2009
Lectures by Todd Eisworth and Justin Tatch Moore

Notes taken by David Milovich

Remark. The notes which follow reflect the content of a two day tutorial which took
place at the Fields Institute on 5/29 and 5/30 in 2009. Most of the content has
existed in the literature for some time (primarily in the original edition of [10]) but
has proved difficult to read and digest for various reasons. The only new material
contained in these lectures concerns the notion of a fusion scheme presented in
Sections 6 and 7 and even this has more to do with style than with mathematics.
Our presentation of the iteration theorems follows [4]. The k-iterability condition is
a natural extrapolation of what appears in [4] and [5], where the iteration theorem
for the ℵ0-iterability condition is presented (with a weakening of < ω1-properness).
The formulation of complete properness is taken from [8]. We stress, however, these
definitions and theorems are really technical and/or pedagogical modifications of
the theorems and definitions of Shelah presented in [10]. Those interested in further
reading on the topic of the workshop should consult: [1], [4], [5], [8], [10], and
[12]. We would like to thank the anonymous referee for their careful reading and
suggesting a number of improvements.

1. Introduction

The focus of the following lectures is on forcing axioms in the presence of the Con-
tinuum Hypothesis. Not long after Solovay and Tennenbaum’s proof that Souslin’s
Hypothesis was relatively consistent [11], Jensen showed that Souslin’s Hypothesis
is relatively consistent with CH (see [3]). While Martin’s Maximum provides a
provably optimal consistent forcing axiom [6], it is still not clear whether there is
an optimal forcing axiom which is consistent with CH.1 Over the last three decades,
Shelah and others developed a number of sufficient conditions for establishing that
consequences of forcing axioms are consistent with CH. The purpose of these lec-
tures is to present these conditions in a form which strikes some balance between
utility and ease of understanding.

We will begin by stating an open problem which seems to require new ideas and
at the same time serves to illustrate what can be accomplished through existing
methods. If X and Y are countable subsets of ω1 which are closed in their suprema,
then we say that X measures Y if there is an α0 < α = supX such that X∩ (α0, α)
is contained in or disjoint from Y . Measuring is the assertion that whenever 〈Dα :
α ∈ ω1〉 is a sequence with Dα a closed subset of α for each α ∈ ω1, there is a club
E ⊆ ω1 such that E ∩ α measures Dα whenever α is a limit point of E.

1In September 2009 Aspero, Larson, and Moore announced that there are two Π2 sentences ψ1

and ψ2 in the language of (H(ω2),∈, ω1) such that it is forcible that (H(ω2),∈, ω1) satisfy ψi∧CH
for i = 1 or 2, but such that ψ1 ∧ ψ2 implies ¬CH. This essentially rules out the possibility of a
provably optimal forcing axiom which is consistent with CH.
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Question 1.1. Is measuring consistent with CH?

It is easy to show that ♦ implies that measuring fails. We will also see that there
is a canonical partial order for forcing an instance of measuring without adding
reals. By the book keeping arguments of [11], the question reduces to showing
that an iteration of these partial orders does not add new reals. Dealing with this
difficulty — determining when an iteration of forcings does not add reals — will be
the central theme throughout these lectures.

In order to demonstrate the type of problem which arises here, let us consider
another combinatorial principle. Recall that a ladder system is a sequence 〈Cα :
α ∈ lim(ω1)〉 such that for each α ∈ lim(ω1), Cα ⊆ α is cofinal and has ordertype
ω. Let (U) be the assertion that if ~C is a ladder system and g : ω1 → 2, then there
is an f : ω1 → 2 such that for each α ∈ lim(ω1),

f � Cα ≡∗ g(α).

Here ≡∗ g(α) means “takes the constant value g(α) except on a finite set.” We will
see that there is a partial order which forces an instance of (U) and which does not
add new reals. Still, Devlin and Shelah [2] have shown that (U) implies 2ω = 2ω1

and in particular that CH fails. To see this, fix a bijection h : ω → ω×ω such that
i, j ≤ n whenever h(n + 1) = (i, j). For each g : ω1 → 2 construct a sequence of
functions fn : ω1 → 2 such that f0 = g and

fn+1 � Cα ≡∗ fi(α + j)

whenever α ≥ ω is a limit and h(n + 1) = (i, j). Given fk (k ≤ n), fn+1 exists by
applying (U) to the coloring α 7→ fi(α + j) where h(n + 1) = (i, j). Now observe
that for each limit α ≥ ω, 〈fn � α : n ∈ ω〉 uniquely determines 〈fn � α+ω : n ∈ ω〉.
Hence, by the transfinite recursion theorem, 〈fn � ω : n ∈ ω〉 uniquely determines
〈fn : n ∈ ω〉 and in particular uniquely determines g = f0. Hence 2ω = 2ω1 .

In fact Devlin and Shelah showed that the following weak form of ♦ is equivalent
to 2ω < 2ω1 [2]:

For all F : 2<ω1 → 2 there exists a g : ω1 → 2 such that for all
f : ω1 → 2 the set {δ < ω1 : F (f � δ) 6= g(δ)} is stationary.

Here F can be viewed as a method for coding and weak diamond can be viewed
as asserting that each of these coding methods fails to code at least some element
of 2ω1 . In the example just discussed, F (f � δ) = i if f � Cδ ≡∗ i (with F (f � δ)
defined arbitrarily if f � Cδ is not eventually constant).

2. Proper forcing

Before proceeding it will be useful to review so terminology associated to proper
forcing. First, let us agree to the following conventions about forcing. A forcing Q
is a partial order with the following additional properties:

• Q is separative, i.e., if q 6≤ p, then ∃r ≤ q(r ⊥ p).
• Q has a maximal element.

The first condition is out of convenience for our general discussion of forcing and
iterations. There is no loss of generality since we may always replace a given partial
order (or even quasi-order) with its separative quotient and the underlying set with
its cardinality. Similarly, we may always adjoin a maximal element to the partial
order if it is not present. This will frequently be done without further mention. We
will also use the following notation:
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• If P is a forcing, G ⊆ P is V -generic, and x is in V [G], then ẋ denotes a
name such that ẋ[G] = x.

• For each x in V , x̌ is the canonical name for x.

The choice of names in the first convention is not canonical but will be taken to
be when possible (for instance the generic filter does have a canonical name, as do
new sets which are explicitly constructed from it).

Recall that if P is a forcing and Q̇ is a P -name for a forcing, then the two-step
iteration is defined by P ∗Q̇ = {p∗q̇ : p ∈ P, 
 q̇ ∈ Q̇} and declaring that p∗q̇ ≤ r∗ṡ
if and only if p ≤ r and p 
 q̇ ≤ ṡ.

Regarding elementary submodels, we will adopt the following conventions:

(1) χ always denotes a regular cardinal sufficiently large for the argument at
hand;

(2) H(χ) denotes the sets hereditarily of size less than χ;
(3) <χ is a well-ordering of H(χ).

When discussing forcing at an abstract level, we all always assume that the under-
lying set of a given forcing is a cardinal. If P is a notion of forcing and χ ≥

(
2|P |)+

,
then all statements of interest about P are absolute between V and H(χ) (the rea-
son for our assumption on the underlying set is that then P is necessarily in H(χ)).
Recall that if X is an uncountable set, then a club in [X]ω is a set E of the form
{Z ∈ [X]ω : f ′′Z<ω ⊆ Z} for some f : X<ω → X. A subset S ⊆ [X]ω is stationary
if it intersects every club in [X]ω. The countable elementary submodels of H(χ)
form a closed unbounded subset of [H(χ)]ω.

Definition 2.1. Our usual situation is that P is a notion of forcing, P ∈ N ≺ H(χ),
and N is countable. We won’t explicitly mention all the parameters included in N
(e.g., P,≤P ,1P ∈ N ≺ 〈H(χ),∈, <χ〉). Rather than say all this, we will just say,
“let P ∈ N as usual” or “let N be a suitable model for P .” Unless explicitly stated
otherwise, all elementary submodels are countable.

Definition 2.2. Given P ∈ N as usual, set NP = {τ̇ : τ̇ ∈ N ∧ τ̇ is a P -name}. If
G ⊆ P is generic, then N [G] ≺ H(χ)[G] where N [G] = {τ̇ [G] : τ̇ ∈ NP }.

Is N [G] as above a generic extension of N? This is where properness comes in.

• A condition q ∈ P is (N,P )-generic if q 
 N ∩ ĠP ∩D 6= ∅ for every dense
D ⊆ P for which D ∈ N .

• P is proper if whenever P ∈ N as usual and p ∈ N ∩ P , there is an
(N,P )-generic q ≤ p.

Remark. This definition is robust with respect to demanding that χ =
(
2|P |)+

,
that χ be arbitrarily large, that additional parameters be added to H(χ), and so
forth.

Definition 2.3. “N ∩D is predense below q” means that every extension of q has
an extension below something in N ∩D.

Proposition 2.4. Suppose P ∈ N as usual. The following are equivalent.

(1) q is (N,P )-generic.
(2) N ∩D is predense below q for all dense D ⊆ P from N .
(3) If A is a maximal antichain and A ∈ N , then q 
 A ∩N ∩ ĠP 6= ∅.
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The following is a key property of proper forcing. In fact, together with the
preservation of properness under countable support iterations, it gives the essential
properties of properness.

Proposition 2.5. If P is proper and G ⊆ P is generic, then every countable set
of ordinals in V [G] is covered by a countable set from V . In particular:

• P does not collapse ω1;
• P adds a countable sequence of elements of V if and only if it adds a new

real.

Proof. Suppose p is in P and forces Ȧ is a countable set of ordinals. Let α̇n be
forced by p to be the nth element of Ȧ, N ≺ H(χ) be a suitable model with
p, P, {α̇n : n ∈ ω} ∈ N , and q ≤ p be (N,P )-generic. We claim that q 
 α̇n ∈ Ň for
all n. To see this, observe that Dn = {r ∈ P : r decides a value for α̇n}, which is
dense in P . It follows that q 
 N∩Dn∩ĠP 6= ∅. Let G ⊆ P be generic with q ∈ G.
Working in V [G], we have that α̇n[G] is an ordinal and some r ∈ N∩Dn∩G decides
the value of αn. We recover the ordinal in N from r and α̇n by elementarity. �

Theorem 2.6. P is proper if and only if forcing with P preserves stationary subsets
of [X]ω for any uncountable set X.

The following are easy observations which give important examples of proper
forcings. Recall that a forcing P has the c.c.c. if every antichain in P is countable.
A forcing P is countably closed if every countable descending sequence in P has a
lower bound.

Proposition 2.7. Every partial order with the c.c.c. is proper.

Proof. Let P be a c.c.c. forcing and let P ∈ N be as usual. Every condition is
(N,P )-generic because if A is a maximal antichain from N , then A ⊆ N . �

Proposition 2.8. Every countably closed forcing is proper.

Proof. Let P be a countably closed forcing and let P ∈ N be as usual with p ∈
N ∩ P . Build 〈pn〉n<ω such that p0 = p, pn+1 ≤ pn, and pn+1 ∈ Dn ∩ N . Let
q ≤ pn for all n. Then q is (N,P )-generic. �

As simple as it is, this last construction provides the template for the construc-
tions to come. In general if a proper forcing does not add new reals, it need not be
the case that an arbitrary sequence of conditions has a lower bound. If some ad-
ditional care is taken in constructing the sequence, however, one can often arrange
that the resulting sequence is bounded.

Let P be proper and not add reals. Let N be as usual. Let p be (N,P )-generic.
Let 〈Dn〉n<ω enumerate the dense subsets of P from N . Let 〈dn

m〉m<ω enumerate
Dn ∩ N . We have that p 
 ∀n ∃m dn

m ∈ ĠP because p is (N,P )-generic. Let ḟ

be a P -name such that p 
 ∀n dn
ḟ(n)

∈ ĠP . Since P doesn’t add reals, we can find

g ∈ ωω and q ≤ p such that q 
 ǧ = ḟ . For each n, q 
 dn
g(n) ∈ ĠP ; hence, q ≤ dn

g(n).
If this were not the case, q would have an extension r ⊥ dn

g(n), which would imply
that every generic filter G with r ∈ G would have incompatible elements, which is
absurd. So, q is (N,P )-generic in a strong sense: whenever D ∈ N is dense in P ,
there is a d ∈ N ∩D such that q ≤ d. This motivates the following definition.
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• q is totally (N,P )-generic if q extends an element of N ∩D for any dense
D ⊆ P with D ∈ N .

• P is totally proper if whenever N,P are as usual, any p ∈ N ∩ P has a
totally (N,P )-generic extension.

Of course being totally (N,P )-generic is equivalent to being a lower bound for a
(N,P )-generic filter.

Proposition 2.9. P is totally proper if and only if P is proper and adds no new
reals.

An important point which we will come to momentarily is that, even in a totally
proper forcing P , conditions which are (N,P )-generic need not be totally (N,P )-
generic. It is true, however, that every (N,P )-generic condition in a totally proper
forcing can be extended to a totally (N,P )-generic condition.

3. Two-step iterations

If P is proper and 
P Q̇ is proper, then P ∗ Q̇ is proper: P preserves stationary
subsets of [λ]ω and then Q preserves them, so P ∗ Q̇ preserves them. Similarly, if
P is totally proper and 
P Q̇ is totally proper, then P ∗ Q̇ is totally proper.

Understanding preservation of properties such as properness and total properness
in transfinite iterations is more subtle and ultimately requires a finer and more
localized analysis of two step iterations. To illustrate this, suppose that P is proper
and that P forces Q̇ is proper. Let N be as usual with P ∗ Q̇ ∈ N . It can
be shown that p ∗ q̇ is (N,P ∗ Q̇)-generic if and only if p is (N,P )-generic and
p 
 q̇ is (N [ĠP ], Q̇)-generic.

This refinement fails for total properness and this is ultimately the source of all
of the difficulties which we will encounter in these lectures. There are N,P, Q̇, p, q̇
such that P is totally proper, 
P Q̇ is totally proper, p is totally (N,P )-generic,
and p 
 q̇ is totally (N [ĠP ], Q̇)-generic, but p ∗ q̇ is not totally (N,P ∗ Q̇)-generic.

This is best illustrated in an example.

Example 3.1. Let ~C = 〈Cs : s ∈ lim(ω1)〉 be a ladder system. Let g : ω1 → {0, 1}.
Does there exist f : ω1 → {0, 1} such that for all δ ∈ lim(ω1), f � Cδ is eventually
constant with value g(δ)? Generally the answer is ‘no’ if, for instance, ♦ holds.
That is, for a given ladder system one can use a ♦-sequence to predict possible
uniformizing functions f and build the desired coloring g. We’ll force the answer
to be yes, for a given g, without adding new reals. Define Pg to be the collection of
all countable approximations to the desired uniformizing function f . Specifically,
dom(p) = δ for some δ < ω1, and if α ≤ δ is a limit ordinal, then p � Cα is
eventually constant with value g(α).

Proposition 3.2. Pg is totally proper and forces the existence of a uniformizing
function f for the coloring g.

The following three lemmas constitute the essence of the proof. Moreover, the
role of each is quite typical in arguments of this sort.

Lemma 3.3. For each α < ω1, the set of conditions p for which α ∈ dom(p) is
dense.

Proof. Suppose that the lemma holds for all β < α. Suppose p ∈ Pg and α 6∈
dom(p). Let dom(p) = β + 1 for some β < α. If α = γ + 1, then extend p to
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q with γ ∈ dom(q); extend q to q ∪ {〈α, 0〉}. So, we may assume α is a limit
ordinal. Let 〈γn〉n<ω be strictly increasing with limit α and satisfy γ0 = β. Build
〈pn〉n<ω such that p0 = p, pn+1 ≤ pn, γn ∈ dom(pn), and pn+1(δ) = F (α) for all
δ ∈ dom(pn+1 \ pn) ∩ Cα. The last requirement can be met because Pg is closed
with respect to finite modification. Finally, let q =

⋃
n<ω pn ∪ {〈α, 0〉}. �

Lemma 3.4. Suppose that pn (n ∈ ω) is a strictly descending sequence in Pg. The
following are equivalent:

(1) pn (n ∈ ω) has a lower bound in Pg.
(2) ∪pn is in Pg.
(3) if α = dom(

⋃
n pn), then there is an α0 < α such that pn(ξ) = g(α) when-

ever ξ is in Cα ∩ dom(pn) with α0 < ξ.

Proof. Follows from the definitions. �

Proof. (of Proposition 3.2) Let N be as usual with Pg, g, etc. ∈ N . Let p ∈ Pg ∩N .
Let Nk (k ∈ ω) be an ∈-chain of countable elementary submodels of H(ω2) such
that g and p are in N0 and N ∩H(ω2) =

⋃
k Nk. Let 〈Dk〉k<ω enumerate the dense

subsets of P from N such that Dk is in Nk. We build 〈pk〉k<ω such that p = p0,
pk ≥ pk+1 ∈ Nk ∩Dk, and, for any α ∈ Cδ ∩ dom(pk+1 \ pk) where δ = N ∩ ω1, we
have pk+1(α) = g(δ) if δ ∈ S.

To see that this can be done, suppose we have pk and look at Nk ∩Cδ \dom(pk).
It’s finite and hence an element of Nk. Inside Nk, extend pk to a condition r such
that Cδ ∩Nk ⊆ dom(r). Modify r on Cδ ∩Nk \ dom(pn) to agree with g(δ). This
modification is finite and hence r remains both in Nk and Pg. Now extend r to
pk+1 ∈ Nk ∩Dk. pk+1 is as desired. By Lemma 3.4, pk (k ∈ ω) has a lower bound
as desired. �

Example 3.5. Set P = 〈2<ω1 ,⊇〉 and let ġ be the generic function coded by P .
Define Q̇ = Pġ and let N be as usual with P, Q̇ ∈ N . Let p be (N,P )-generic with
dom(p) = N∩ω1. We claim there is no q̇ such that p∗ q̇ is totally (N,P ∗Q̇)-generic.
To see this, let δ = N ∩ ω1 and let 〈αn〉n<ω enumerate Cδ. Let

Dn = {r ∗ ṡ ∈ P ∗ Q̇ : r ∗ ṡ decides the value of ḟ(αn)}

where ḟ is the function added by Q̇. If some p ∗ q̇ could decide every ḟ(αn), then
it would also decide ġ(δ) to be ε, which is absurd, for we can extend p to force ġ(δ)
to be 1− ε.

This problem can be remedied by requiring p to be totally generic over models
above N as well.

Proposition 3.6. Suppose that P is totally proper and Q̇ is a P -name for a
totally proper forcing. Let N0 ∈ N1 be as usual with P ∗ Q̇ ∈ N0. If p is
totally (Ni, P )-generic for i = 0, 1, then there is a q̇ such that p ∗ q̇ is totally
(N0, P ∗ Q̇)-generic.

Proof. Set Gi = {r ∈ Ni ∩ P : p ≤ r}. We have the following facts.

(1) G0 = N0 ∩G1.
(2) G0 ∈ N1.
(3) G0 has a lower bound p′ ∈ G1.
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To see that this last fact is true, observe that the set of conditions which decide a
particular value for N0∩ ĠP is dense in P and is in N1. Choose p′ ∈ N1∩G1 which
decides N0 ∩ ĠP —it is decided to be G0. Since P is separative, p′ must extend
every element of G0.

Now fix q̇ ∈ N1∩Q̇ such that 
P q̇ is totally (N0[ĠP ], Q)-generic and fix a dense
D ⊆ P ∗ Q̇ such that D ∈ N0. There is a P -name D/GP in N0 for {ṡ[ĠP ] : ∃r ∈
ĠP r ∗ ṡ ∈ D}, which is dense in Q. Since p is totally (N1, P )-generic, it forces
that q̇ decides (D/GP ) ∩ N0. Also, p′ decides ĠP ∩ N0. Therefore, p ∗ q̇ decides
(ĠP ∗ ĠQ) ∩D ∩N0. �

It is important to note, however, that p ∗ q̇ is not (N1, P ∗ Q̇)-generic. For longer
iterations, we expect to need more models above N0 than just N1 and for transfinite
iterations we expect to need an infinite tower of models above N0. This creates a
new challenge. In order to describe it, we will need a definition.

Definition 3.7. If χ is a regular uncountable cardinal, a suitable tower of models
is a ⊆-continuous sequence N = 〈Nξ : ξ < α〉 of countable elementary submodels
of H(χ) such that if ξ < α, 〈Nη : η ≤ ξ〉 is in Nξ+1. We will say that N is suitable
for P if N0 is suitable for P . We will abuse notation and write P ∈ N to mean
P ∈ N0. In what follows, N will always refer to a suitable tower of models.

If P ∈ N are as usual, then a condition p is (N , P )-generic if it is (N,P )-generic
for each N in N . For finite towers of models N , the existence of (N , P )-generic
conditions below elements of N0 ∩ P is already guaranteed by the properness of
P . For infinite towers of models, however, this is no longer the case and, stated
for towers of height α, this yields the definition of α-properness. We will write
(< ω1)-proper to mean α-proper for every α < ω1.

Another important point in the formulation of Proposition 3.6 is that p is re-
quired to be totally (N1, P )-generic. If Q satisfies a strengthening of properness,
which we will term complete properness, then this requirement can be relaxed to p
being (N1, P )-generic. A precise definition of complete properness will be given in
Section 7.

Proposition 3.8. Suppose P is totally proper and


P Q̇ is completely proper.

Given N0 ∈ N1 ∈ N2 as usual and p that is (N2, P )-generic, (N1, P )-generic, and
totally (N0, P )-generic, there is a q̇ such that p ∗ q̇ is totally (N0, P ∗ Q̇)-generic.

To illustrate the significance of this change, let us return to Example 3.5. Replace
2<ω1 in the definition of P with its regular open algebra. This forcing generates
the same generic extensions as 2<ω1 , but also has a well defined join operation. If
N0 ∈ N1 ∈ N2 are suitable models for P as usual and p ∈ P is totally (N0, P )-
generic and (Ni, P )-generic for i = 1, 2, it is possible that p does not decide ġ(δ)
where δ = N0∩ω1. To see this, let p0 and p1 be totally (Ni, P )-generic for i = 0, 1, 2
with p0 � δ = p1 � δ and p0(δ) 6= p1(δ). Then p = p0 ∨ p1 is as desired.

The point is that the previous arguments still show there is no q̇ such that p ∗ q̇
is totally (N0, P ∗ Q̇)-generic. Complete properness is in fact designed to avoid
this sort of situation which we know from the demonstration in the introduction
represents a fundamental obstruction to an iteration theorem for total properness.
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We will see that transfinite iterations of forcings which are completely proper
and α-proper for every α < ω1 do not add new reals. We will also see that the
degree to which α-properness is needed in this theorem is somewhat of a mystery.

4. Countable support iterations

Definition 4.1. A countable support (c.s.) iteration P = 〈Pα, Q̇α〉α<ε satisfies the
following conditions (which also define Pε).

• P0 = ∅.
• For all α ≤ ε, elements of Pα are functions with domain α.
• For all α < ε Pα+1 is forcing equivalent to Pα ∗ Q̇α as witnessed by a

coordinate preserving function.
• If α ≤ ε is a limit ordinal, then Pα is the set of countably supported

functions f for which f � β ∈ Pβ for all β < α.

If ε is a limit ordinal, then for any generic G ⊆ Pε, p ∈ G if and only if p � α ∈ Gα

for all α < ε where Gα = {f � α : f ∈ G}.

Theorem 4.2. Let P = 〈Pα, Q̇α〉α<ε ∈ N be as usual, P be a countable support
iteration of proper forcings, α ∈ N ∩ ε, q be (N,Pα)-generic, q 
 ṗ ∈ N ∩ Pε, and
q 
 ṗ � α ∈ Ġα. Then there is a q† ∈ Pε such that q† is (N,Pε)-generic, q† � α = q,
and q† 
 ṗ ∈ Ġε.

Lemma 4.3. Suppose P is proper, 
P Q̇ is proper, N is as usual, P ∗ Q̇ ∈ N , p
is (N,P )-generic, τ̇ is a P -name for a condition in P ∗ Q̇ whose first component is
forced by p to be in ĠP , and τ̇ ∈ N . There is a q̇ such that p∗ q̇ is (N,P ∗Q̇)-generic
and p ∗ q̇ 
 τ̇ ∈ ĠP∗Q̇.

Proof of theorem. Proceed by induction on ε. The lemma is trivially true if ε = 0
and follows from Lemma 4.3 if ε is a successor ordinal. Now assume ε is a limit
ordinal and let 〈αn〉n<ω be strictly increasing, cofinal in N∩ε, and such that α0 = α.
Let 〈Dn〉n<ω enumerate the dense subsets of Pε from N . Define 〈qn, ṗn〉n<ω such
that:

(1) ṗ0 = ṗ and q0 = q
(2) qn is (N,Pαn)-generic
(3) qn 
 ṗn+1 is a Pαn -name for a condition in Pε ∩N
(4) qn 
 ṗn ≥ ṗn+1 ∈ Dn

(5) m < n ⇒ qn � αm = qm

(6) qn 
 ṗn � αn ∈ Ġαn

Given ṗn, qn, let Gn ⊆ Pαn be generic with qn ∈ Gn, so that ṗn is interpreted as pn

with pn � αn ∈ Gn. The set of restrictions to αn of conditions in Dn which extend
pn is dense below pn � αn in Pαn . This set is also in N [Gn], so there exists pn+1 ≤ pn

such that pn+1 ∈ N ∩Dn and pn+1 � αn ∈ Gn. Let ṗn+1 be a Pαn-name forced by
qn to have the above properties of pn+1. Now apply our induction hypothesis to
P � αn+1, αn, qn, ṗn+1 � αn+1 to get qn+1 ∈ Pαn+1 such that (2), (5), and (6) hold.

Let q† =
⋃

n<ω qn inside of Pε. Strictly speaking, this union has domain sup(N ∩
ε), which may be less than ε, but we extend the domain to all of ε without increasing
the support. It suffices to show that q† 
 ṗn ∈ ĠPε for all n. We do this by proving
that q† 
 ṗn � αm ∈ ĠPαm

for all m. Let G ⊆ Pε be generic with q† ∈ G. It
follows that qm ∈ G � αm for each m. Given n, we know that pn � αn ∈ G � αn
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by our construction. If m > n, we know that pm � αm ∈ G � αm. Since pm ≤ pn,
we have pm � αm ≤ pn � αm. Hence, pn � αm ∈ G � αm; hence, pn ∈ GPε . Thus,
q† 
 ṗn ∈ ĠPε . �

Recall the following definition:

Definition 4.4. Q is α-proper if every p ∈ Q extends to an (N , Q)-generic condi-
tion, for any tower of models N of length α where p ∈ N0 ∩Q and Q ∈ N0.

Note that Q is totally proper and α-proper if and only if Q is “totally α-proper”
(i.e. suitable towers of models admit sufficiently many conditions which are totally
generic for all of their models).

Theorem 4.5. [10] A countable support iteration of forcings which are α-proper for
all α < ω1 and D-complete for a simple 2-completeness system D is totally proper.

Remark. We will only prove this theorem for ℵ1-completeness systems. The corre-
sponding iteration theorem is already sufficient to handle most applications of this
theorem and the proof is considerably easier to digest.

Definition 4.6. Given P totally proper and P ∈ N as usual, let

Gen(N,P ) = {G∗ ⊆ N ∩ P : G∗ is an N -generic filter of N ∩ P},
Gen+(N,P ) = {G∗ ∈ Gen(N,P ) : G∗ has a lower bound}, and

Gen(N,P, p) = {G∗ ∈ Gen(N,P ) : p ∈ G∗}.

Given any τ̇0, . . . , τ̇m ∈ NP , G∗ ∈ Gen(N,P ), and Φ a formula, G∗ decides if
Φ(τ̇0, . . . , τ̇m) holds in the generic extension N [ĠP ]. G∗ gives us a snapshot of
N [ĠP ]. In particular, G∗ tells us a lot about Q̇ ∩N [ĠP ] where Q̇ ∈ NP is a name
for a notion of forcing. G∗ also tells us about Ḋ where Ḋ ∈ NP is a name for a
dense subset of Q̇.

Definition 4.7. Suppose G∗ ∈ Gen(N,P ) and Q̇ is a P -name from N for a
totally proper notion of forcing. A sequence 〈q̇n〉n<ω of names from NP is an
(N [G∗], Q̇)-generic sequence if

• 
P q̇n ∈ Q̇,
• N [G∗] |= q̇n+1 ≤ q̇n (i.e., ∃p ∈ G∗ p 
 q̇n+1 ≤ q̇n), and
• if Ḋ ∈ NP is a name for a dense set in Q̇, there exists m such that N [G∗] |=

q̇m ∈ Ḋ.

Any lower bound for G∗ forces that the sequence of interpretations 〈q̇n[ĠP ]〉n<ω

generates an element of Gen(N [ĠP ], Q̇). Notice that G∗ doesn’t tell us whether
〈q̇n[ĠP ]〉n<ω has a lower bound. However, if G∗ ∈ Gen(M,P ) where N ∈ M , then
G∗ can determine if an (N [G∗ ∩N ], Q̇)-generic sequence in M has a lower bound.

Definition 4.8. Given a totally proper forcing P , 
P Q̇ is totally proper, and
k ∈ {2, 3, 4, . . . , ω, ω1}, we say that Q̇ satisfies the k-iterability condition over P if
the hypotheses below always imply the conclusion below.

Hypotheses:
• N0 ∈ N1 are as usual.
• G∗ ∈ Gen(N0, P ) ∩N1.
• l∗ < 1 + k.
• ∀l < l∗ Gl ∈ Gen(N1, P ).
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• ∀l < l∗ Gl ∩N0 = G∗.
• q̇ is a P -name from N0 for a condition in Q̇.

Conclusion: There exists a (N0[G∗], Q̇)-generic sequence 〈q̇n〉n<ω such that 
P

q̇0 ≤ q̇ and, whenever some p ∈ P forces that ∃l < l∗ N1 ∩ ĠP = Gl, p also forces
that 〈q̇n〉n<ω has a lower bound. The iterability condition means the 2-iterability
condition.

Main Theorem. If P = 〈Pα, Q̇α〉α<ε is a CS iteration of totally proper forcings,
then Pε is totally proper provided that:

(1) 
Pα Q̇α is <ω1-proper.
(2) Q̇α satisfies the iterability condition over Pα.

The connection to complete properness (which we have yet to define) is the
following proposition.

Proposition 4.9. If P is totally proper and P forces Q̇ is a k-completely proper
forcing, then P ∗ Q̇ satisfies the k-iterability condition.

The proof which will be presented is only for the ω1-iterability condition. While
an assumption like the iterability condition is clearly necessary in light of the fact
that statements such as (U) are not consistent with CH, the role of α-properness is
less clear. This condition can be weakened [5] or replaced by a seemingly unrelated
condition [10, XVIII]. It can not be dropped altogether in light of an example of
Shelah which we will discuss in Section 9 below.

5. Limitations of (< ω1)-proper forcing

(< ω1)-properness is not merely a technical assumption satisfied by all forcings
of interest. Recall the following definition.

Definition 5.1. [9] ♣ asserts that there exists a ladder system ~C such that for all
X ∈ [ω1]ℵ1 there exists δ such that Cδ ⊆ X. Club guessing (on ω1), denoted by
♣C , asserts the same as ♣ except that X is required to be a club.

♣ (♣C) is equivalent to ♣ (respectively ♣C) with the demand that there exist
stationarily many δ as above. ♦ is equivalent to the conjunction of ♣ and CH and
it is well known and easily demonstrated that MAω1 implies that ♣ fails. On the
other hand, ♣C is a much weaker assumption. It is well known that if Q is a c.c.c.
forcing, then every club in a generic extension by Q contains a club from the ground
model. In particular, ♣C is preserved by c.c.c. forcing. Since it is possible to force
MA + ¬CH with a c.c.c. forcing, ♣C is consistent with MAω1 .

The following proposition of Shelah connects this with (< ω1)-properness.

Proposition 5.2. Suppose that 〈Cα : α ∈ lim(ω1)〉 is a ♣C-sequence and Q is
an ω-proper forcing. Forcing with Q preserves that 〈Cα : α ∈ lim(ω1)〉 is a ♣C-
sequence.

Proof. Suppose that Ė is a Q-name for a club, q is in Q, and let 〈Nξ : ξ < ω1〉 be
a suitable tower of models with q, Ė, and Q in N0. Define D = {ξ : Nξ ∩ ω1 = ξ}
and let α be such that Cα ⊆ D. Since Q is ω-proper, there is a q̄ ≤ q which is
(Nξ, Q)-generic for all ξ in Cα. This implies that q̄ forces ξ is in Ė for all ξ in Cα

and hence that Čα ⊆ Ė. �
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A similar argument shows that if measuring fails and Q is an ω-proper forcing,
then measuring fails after forcing with Q. Notice that measuring can be viewed as
the ultimate failure of club guessing. If ~D is a ladder system and E is a club, then
for club-many δ ∈ E we have otp(δ∩E) = δ, so E∩(δ0, δ) ⊆ Dδ is impossible for all
δ0 < δ, and hence measuring implies that a tail of E misses Dδ. Thus, measuring
implies that there is a club F ⊆ E not guessed by ~D. This remains true even for
sequences where the map α 7→ otp(Dα) is regressive.

6. Methods for verifying (< ω1)-properness

We will now turn to a framework for proving that forcings satisfy conditions
such as total (< ω1)-properness and complete properness. The purpose is not to
reformulate these conditions or simplify their statement. Rather it is to provide a
sufficient criteria — analogous to the existence of an Axiom A structure — which is
both easy to verify and sufficiently general to accommodate the important classes
of examples of totally proper forcings.

Definition 6.1. Let Q be a fixed forcing notion with order ≤. A fusion scheme
on Q is an indexed family of partial orders ≤σ (σ ∈ X<ω) such that the following
conditions are satisfied:

(1) ≤∅ is ≤ and if σ ⊆ τ , q ≤τ p implies q ≤σ p;
(2) Player II has a winning strategy in G(Q, ~≤,M) whenever M is a suitable

model for Q and ~≤.

The game G(Q, ~≤,M) is defined as follows. In the nth inning, Player I plays qn

in Q ∩M and Player II responds by playing σn in X<ω. The players are required
to play so that qn+1 ≤σn qn and σn ⊆ σn+1; the first player to break one of these
rules loses. If qn (n ∈ ω) is the result of a play of the game in which the players
followed the rules, then Player II wins if either {qn : n ∈ ω} does not generate an
(M,Q)-generic filter or else there is a q̄ with q̄ ≤ qn for all n ∈ ω.

This definition becomes of interest only when additional conditions are placed on
the scheme. Before proceeding, let us see how Example 3.1 fits into this framework.

Let 〈Cα : α ∈ lim(ω1)〉 be a ladder system and let g : ω1 → 2 be a function. Let
Pg be the collection of all countable partial uniformizing functions with the order
≤ of extension. Set X = lim(ω1) and if σ is in X<ω, define q ≤σ p iff whenever ξ
is in dom(q) \ dom(p) and i < |σ| is minimal such that ξ is in Cσ(i), q(ξ) = g(σ(i)).
Player II’s strategy is to play 〈M ∩ω1〉 in every round of G(Q, ~≤,M). It should be
clear that this defines a strategy for Player II which is winning from every initial
position.

Fix a fusion scheme ≤σ (σ ∈ X<ω) on a forcing Q.

Definition 6.2. The fusion scheme satisfies (TP) if whenever M is a suitable model
for the fusion scheme, p is in Q ∩M , D ⊆ Q is dense and in M , and σ is in X<ω,
there is a q in D ∩M such that q ≤σ p.

We have already shown that the fusion scheme defined above on Pg satisfies
(TP).

Theorem 6.3. If a forcing Q admits a fusion scheme satisfying (TP), then Q is
totally proper.
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Proof. Let ≤σ (σ ∈ X<ω) be a fusion scheme on Q which satisfies (TP). Suppose
that M is a suitable model for the fusion scheme and let q be in M . Let Dn (n ∈ ω)
enumerate the dense subsets of Q which are in M . Player I plays by the following
strategy. To begin the game, Player I plays q0. If in the nth inning qn and σn

were played, Player I picks a qn+1 in Dn ∩M which satisfies qn+1 ≤σn qn. This is
possible by our assumption that the scheme satisfies (TP). Now let qn (n ∈ ω) be
the result of a play of this strategy against Player II’s winning strategy. Player I
has arranged that {qn : n ∈ ω} generates a (M,Q)-generic filter and hence there
must be a q̄ in Q such that q̄ ≤ qn for all n. Such a q̄ is totally (M,Q)-generic. �

Next we will consider a condition on a fusion scheme which can be used to verify
α-properness for each α < ω1. First we will need a preliminary definition.

Definition 6.4. If Q is a forcing equipped with a fusion scheme ≤σ (σ ∈ X<ω) and
〈qn : n < ω〉 is a ≤-descending sequence in Q, then we say that q̄ is a conservative
lower bound for 〈qn : n < ω〉 if whenever σ ∈ X<ω is such that 〈qn : n < ω〉 is
eventually ≤σ-descending, q̄ ≤σ qn for all but finitely many n. Here 〈qn : n < ω〉
is eventually ≤-descending if there is an m such that 〈qn : m < n < ω〉 is ≤-
descending.

Returning to Example 3.1, q̄ =
⋃

n qn is a conservative lower bound for 〈qn : n ∈
ω〉 provided that 〈qn : n < ω〉 has a lower bound in Pg. This is in fact often the
case in practice.

Definition 6.5. A fusion scheme satisfies (A) if the following conditions are met:
(1) for any countable Q0 ⊆ Q, {≤σ� Q0 : σ ∈ X<ω} is countable;
(2) every bounded ≤-descending sequence in Q has a conservative lower bound;
(3) Player II has a winning strategy in G(Q, ~≤,M) starting from any initial

position.2

Notice that it is in fact trivial to verify that Pg with its fusion scheme satisfies (A).
The point of this definition and the following theorem is that (A) is usually trivial
to verify for a given fusion scheme which satisfies it. This should be contrasted
by the often tedious direct verification of α-properness by induction on α (see the
proof of Lemma 5.11 of [8]).

Theorem 6.6. If a forcing Q admits a fusion scheme which satisfies (TP) and
(A), then Q is totally α-proper for all α < ω1.

Proof. Fix a forcing Q and fusion scheme ≤σ (σ ∈ X<ω) on Q which satisfies (TP)
and (A). Let 〈Mξ : ξ < α〉 be a tower of models of ordertype α which is suitable for
Q and ≤σ (σ ∈ X<ω). As usual, we may assume that α is a limit ordinal. It will
be convenient to adopt the convention that Mα =

⋃
ξ<α Mξ and Mα+1 is H(θ). We

will verify the following by induction on ζ ≤ α:
If ξ ≤ ζ, q is in Q∩Mξ and is totally (Mη, Q)-generic for all η < ξ,
and σ is in X<ω, then there is a q̄ ≤σ q such that q̄ is in Mζ+1 such
that q̄ is totally (Mη, Q)-generic for all η ≤ ζ.

2I.e. given any partial play of the game, there is a strategy for Player II such that any
completion of game play in which II follows this strategy in the remainder of the game results
Player II winning.
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Let ξ < ζ be given and assume the induction hypothesis holds for all smaller values
of ζ. Since our fusion scheme satisfies (A), {≤τ � Mζ : τ ∈ X<ω} is countable and
hence contained in Mζ+1. Therefore we can choose a σ̄ in Mζ+1 ∩X<ω such that
≤σ� Mζ =≤σ̄� Mζ .

If ζ = ζ0 + 1 for some ζ0, then we can first apply the induction hypothesis to
find a q′ ≤σ q in Mζ0+1 which is totally (Mη, Q)-generic for all η ≤ ζ0. We now
need to find a q̄ in Mζ+1 such that q̄ ≤σ q′ and q̄ is totally-(Mζ , Q)-generic. To do
this, we run the proof of Theorem 6.3 for q′ inside Mζ+1 except that we begin with
the following position in G(Q, ~≤,Mζ): 〈q′, σ̄, q′〉. What results will be a sequence
〈qn : n ∈ ω〉 in Mζ+1 which is ≤σ̄-descending, ≤-bounded, and which generates a
(Mζ , Q)-generic filter. By our assumption and elementarity of Mζ+1, there is a q̄
which a conservative lower bound for 〈qn : n ∈ ω〉. Consequently q̄ ≤σ q′ and q̄ is
totally (Mζ , Q)-generic.

Next suppose that ζ is a limit and let 〈ζn : n < ω〉 be a sequence converging
to ζ which is in Mζ+1 and such that ζ0 = ξ. By our assumption of suitability,
〈Mζn : n < ω〉 is in Mζ+1. We will play G(Q, ~≤,Mζ), this time starting from the
position 〈q, σ̄, q〉. Let σ0 = σ̄ and q0 = q. We now describe a strategy for Player
I to use in the remainder of the game. If qn and σn were played in the previous
round, Player I plays qn+1 in Mζn+1+1 such that qn+1 ≤σn qn and qn+1 is totally
(Mη, Q)-generic for all η ≤ ζn+1. In the end, Player I has arranged that 〈qn : n ∈ ω〉
will generate a (Mζ , Q)-generic filter since any dense subset of Q in Mζ will be in
some Mζn . Let 〈qn : n < ω〉 be the result of a play of the game which is in Mζ+1

and in which Player I played this strategy but Player II won. Such a play exists by
our assumptions and by elementarity of Mζ+1. Let q̄ be a conservative lower bound
for 〈qn : n < ω〉 which is in Mζ+1. It follows that q̄ ≤σ q and q̄ is (Mη, Q)-generic
for all η ≤ ζ. �

7. Complete Properness

Now we will turn to the definition of complete properness and some analogous
approaches to verifying it. First we will need some preliminary definitions. If M
and N are sets, then M → N will symbolize an elementary embedding ε of (M,∈)
into (N,∈) such that ε is in N and N satisfies that M is countable (i.e. N contains
an injection of M into ω). If X is an element of M , we will use XN to denote
ε(X). If G is a subset of M which is not an element, we will use GN to denote the
point-wise image of G under ε. If there is no cause for confusion, the superscript
will sometimes be omitted to simplify notation.

Definition 7.1. If Q is a forcing, then a Q-diagram is a collection of the form
M → Ni (i ∈ λ) where M is a suitable model for Q.

Definition 7.2. If Q is a forcing and M is a suitable model and M → N , then we
say that a (M,Q)-generic filter G ⊆ Q∩M is

−−→
MN -prebounded if whenever N → N∗

and G is in N∗, then N∗ |= GN∗
is bounded.

Definition 7.3. Q is λ-completely proper if whenever M → Ni (i < κ) is a Q-
diagram for some κ < 1 + λ, there is a (M,Q)-generic filter G which is

−−−→
MNi-

prebounded for all i < κ. We will write completely proper to mean 2-completely
proper.
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To see the relevance of this definition, let us return to our example of the uni-
formizing forcing Pg for a ladder system coloring g of ~C. If M → Ni (i < 2) is a
Pg-diagram, then in general it is possible that

gN0(M ∩ ω1) 6= gN1(M ∩ ω1).

If this occurs and CN0
δ ∩ CN1

δ is infinite, then there is no (M,Pg)-generic G which
is
−−−→
MNi-prebounded for both i.
In general it seems difficult to prove that a specific forcing such as Pg fails to

be completely proper. For instance it is not clear at all whether every forcing Pg

fails to be completely proper. Usually there is a hypothetical scenario suggesting
the forcing is not completely proper — such as what we have just demonstrated
for Pg — and there is a corresponding proof (via [2]) that iterations of forcings of
this type can add new reals. We only know that some member of the given class of
forcings (which shows up in a forcing extension) fails to be completely proper. This
is not well understood. A (seemingly) isolated exception to this will be discussed
in Section 9 below.

The connection of this notion to the λ-iterability condition is made clear by the
following proposition.

Proposition 7.4. Suppose that P is totally proper and P forces that Q̇ is λ-
completely proper. Then P ∗ Q̇ satisfies the λ-iterability condition.

Proof. Let M ∈ N be a pair of suitable models for P ∗ Q̇, G ⊆ Q ∩M be (M,Q)-
generic, κ < λ, and pi (i < κ) be totally (N,Q)-generic conditions which are lower
bounds for G. Set N̄ equal to the transitive collapse of N and let Gi denote the
image of {p ∈ P ∩ N : pi ≤ p} under the collapsing map. Let Ĝ be a V -generic
filter containing G. In V [Ĝ], we now have a Q-diagram M [G] → N̄ [Gi] (i < κ) and

therefore there is an H ⊆ Q ∩ M [G] which is
−−−−−−−−→
M [G]N̄ [Gi]-prebounded. It suffices

to show that each pi forces that H has a lower bound. To see this, let Ĝi be a V -
generic filter containing pi. Let N∗ be a suitable model containing N as an element
such that N∗ ∩ Ĝi is (N∗, P )-generic, N and Gi are in N∗[Ĝi]. Since the inclusion
map of N [Ĝi] into N∗[Ĝi] induces an embedding N̄ [Gi] → N∗[Ĝi], it follows that
N∗[Ĝi] must satisfy that H has a lower bound. Since Ĝi was arbitrary subject to
containing pi, it must be that pi forces that H has a lower bound. �

While we will not formulate the notion of being D-complete, the connection to
the present terminology is provided by the following proposition.

Proposition 7.5. [8] A λ-completely proper forcing is D-complete with respect to
a (specific) simple completeness system D.

In fact this proposition has a partial converse; see [8, 4.14].
Now we will return to our discussion of fusion schemes. It is not clear how to

formulate a single condition to verify complete properness which works for all of
our examples. Still there are two easy adaptations of (TP) which handle the main
examples and even if these are not sufficient in a future application, it seems that
a simple adaptation may work.

Remark. It should be noted that employing fusion schemes to verify complete
properness is usually only warranted if one additionally wishes to verify that the
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forcing is (< ω1)-proper. In cases where this is not appropriate or necessary, a more
direct approach is likely more efficient.

Definition 7.6. If k < ω, we say a fusion scheme ≤σ (σ ∈ X<ω) satisfies (CPk) if
whenever M → Ni (i < k) is a Q-diagram, p is in Q ∩M , D ⊆ Q is dense and in
M , and σi is in XNi , there is a q in D ∩M such that for all i < k,

Ni |= qNi ≤σi pNi .

(CP) will be used to abbreviate (CP2). A fusion scheme satisfies (CPℵ1) if it satisfies
(CPk) for all k.

Remark. While it would perhaps seem more natural to define (CPℵ0) to mean
∀k(CPk), the above definition is chosen so that there is a correspondence between
(CPλ) and λ-complete properness. See Theorem 7.8 below.

Definition 7.7. A fusion scheme satisfies (CP′
λ) if whenever M → Ni (i < κ) is

a Q-diagram for κ < 1 + λ, Player II has a strategy in G(Q, ~≤,M) so that if qn

(n ∈ ω) is the result of a legal play of the game by this strategy and qn (n < ω)
generates an (M,Q)-generic filter G, then G is

−−−→
MNi-prebounded for all i < κ.

Notice that if M ∈ N are suitable models for Q and M → N denotes the identity
map, then any

−−→
MN -prebounded filter in Q∩M is actually bounded (since we may

take N∗ a suitable model with G, N ∈ N∗ and N → N∗ being the identity map).
Hence (CP′

1) is a more restrictive property than (TP ).

Theorem 7.8. If Q admits a fusion scheme satisfying either (CPλ) or (CP′
λ), then

Q is λ-completely proper.

Proof. That (CP′
λ) implies λ-complete properness is a trivial modification of the

proof of Theorem 6.3. The argument that (CPk) implies k-complete properness of
Q for k < ω is similar except that Player I plays their ‘book keeping’ strategy (in
V ) against a team of k many Player II’s, each playing their winning strategy in
a model Ni for i < k. Player I’s ability to follow this strategy is made possible
by (CPk). Let qn (n ∈ ω) be a resulting play of Player I and G be the filter it
generates. Notice that Player I has arranged that G is (M,Q)-generic. We now
must show that G is

−−−→
MNi-prebounded for each i < k. To this end let k be fixed

and let Ni → N∗ be such that G is in N∗.

Claim. There is a sequence q′n, σn (n ∈ ω) in N∗ which is the result of a play by
Player I against Player II playing their winning strategy in Ni such that

G = {p ∈ Q ∩M : ∃n(q′n ≤ p)}

Proof. Let pn (n ∈ ω) be an enumeration of G which is in N∗. In N∗, let T be
the tree of all partial plays τ of G(Q, ~≤,M) in which Player II’s winning strategy
is followed and Player I plays elements of G. We order τ / τ ′ if there is a play by
Player I in τ ′ which extends pn where n = |τ |. Clearly T has an infinite branch
if and only if the conclusion of the claim holds and from the outside, T has an
infinite branch as witnessed by qn (n < ω). Since N∗ is well founded and satisfies
a sufficient fragment of ZFC, N∗ must also satisfy that T has an infinite branch
since otherwise N∗ would contain a strictly decreasing function from T into its (well
founded) ordinals. �
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Since the team member for Player II who was in Ni used a winning strategy
(from the vantage point of Ni) and since Ni is elementarily embedded into N∗, N∗

satisfies G is bounded.
To handle the case λ = ω1, suppose that M → Ni (i < ω) is a Q-diagram. As

before, Player I plays in V against a team of Player II’s playing from the models
Ni with their winning strategies. The difference is that the Player II playing from
Ni begins playing only in round i. The rest of the argument is as before. �

Now we will consider two more examples of forcings.

7.1. Destroying ♣-sequences. First, let us consider a forcing that destroys in-
stances of ♣.

Definition 7.9. Suppose ~C is a ladder system. Define Q~C to be the collection of
all countable subsets q of ω1 such that if δ ≤ sup(q) is a limit ordinal, then Cδ 6⊆ q.
Q is ordered by reverse end extension.

Theorem 7.10. Q~C admits a fusion scheme which satisfies (CPℵ1) and (A). In
particular Q~C is both completely proper and (< ω1)-proper.

Remark. The following proof actually shows that the forcing to add an uncountable
subset of ω1 which is almost disjoint from every ladder is both completely proper
and (< ω1)-proper.

Proof. Let X = lim(ω1) and, for σ ∈ X<ω, define q ≤σ p if q \ p ∩ Cσ(i) is empty
for all i < |σ|. To see that this defines a fusion scheme, let M be a suitable model
for Q. Player II plays CM∩ω1 in the first round of the game and arbitrarily after
that. Suppose that qn (n ∈ ω) is a play by Player I in which Player II followed this
strategy and suppose that qn (n ∈ ω) generates an (M,Q)-generic filter. Define
q̄ =

⋃
n qn. It is trivial to verify that {q ∈ Q : sup(q) > α} is dense for all α < ω1

and hence sup(q̄) = δ where δ = M ∩ ω1. Since all proper initial parts of q̄ are in
Q, it is sufficient to check that Cδ is not contained in q̄. But this follows from the
fact that Cδ ∩ (q̄ \ q0) = ∅, since qn+1 ≤〈δ〉 qn for all n.

Notice that this argument shows that Player II has a winning strategy in this
game starting from any partial play of the game. Also, for each δ < ω1, {Cα ∩ δ :
α ∈ ω1} is countable. Finally, 〈qn : n < ω〉 7→

⋃
n qn defines a conservative lower

bound when 〈qn : n < ω〉 is descending and bounded. It follows that the fusion
scheme satisfies (A).

We now claim that this fusion scheme satisfies (CPℵ1). To see this, suppose that
M → Ni (i < k) is a Q-diagram, q is in Q ∩ M , D ⊆ Q is dense and in M , and
Ni |= σi ∈ ω<ω

1 , Define

C =
⋃
i<k

⋃
j<|σi|

CNi

σ(j)

and observe that the ordertype of C (and hence of the closure of C) is less than
ω2. Let N ≺ H(ℵ2) be in M such that everything relevant is in N and N ∩ ω1 is
not in the closure of C. Let ξ = sup(C ∩N) + 1 and define q′ = q ∪ {ξ}. q′ is in N
and therefore there is a q̄ ≤ q′ in D ∩ N . Notice that q′ ≤σi q and, since q̄ \ q′ is
contained in N and bounded below by ξ. �

Now consider the variation Q′
~C

of Q~C in which the conditions are required to be
closed sets. While the above proof shows that Q′

~C
is completely proper, we have
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already seen that Q′
~C

will almost never be ω-proper. The reader should convince
themselves that the analogous fusion scheme fails to have conservative lower bounds.

7.2. The forcing to measure a sequence of closed sets. In section we will
consider the forcing associated with measuring.

Definition 7.11. Let 〈Dα : α < ω1〉 be a sequence such that for each α < ω1, Dα

is a closed subset of α. Define Q~D to be the set of all pairs q = (xq, Eq) such that:
(1) xq is a countable closed set;
(2) Eq ⊆ ω1 is a club with max(xq) < min(Eq);
(3) if α ≤ max(xq), then there is an α0 < α such that xq ∩ (α0, α) is contained

in or disjoint from Dα.
The order on Q~D is defined by q ≤ p if and only if xp is an initial part of xq,
Eq ⊆ Ep, and xq \ xp ⊆ Ep.

Theorem 7.12. The forcing Q for measuring a sequence 〈Dα : α < ω1〉 admits a
fusion scheme satisfying (CP′

ℵ1
). In particular, it is completely proper.

Remark. By remarks above, Q~D is not ω-proper unless 〈D〉 is already measured.
In this case, Q~D is countably closed.

Proof. If U ⊆ ω1 is a countable open set, define q ≤U p if either (xq \xp)∩sup(U) ⊆
U or else Eq ∩U = ∅. If σ is a finite sequence of countable open subsets of ω1, then
q ≤σ p means that for each i < |σ|, q ≤U p where U =

⋂
j≤i σ(j).

Let M → Ni (i ∈ ω) be a Q diagram and let U be the collection of all open
M -stationary subsets of δ = M ∩ ω1 which are in Ni for some i < ω. Construct
a ⊆-decreasing sequence Uk (k < ω) of elements of U such that if V is an open
subset of M ∩ ω1 in Ni for some i, then there is a k < ω such that Uk is either
contained in or disjoint from V . It suffices to show that if Player II plays Uk in
round i of G(Q, ~≤,M), then this defines a strategy as required by (CP′

ℵ1
). To see

this, suppose that G ⊆ M ∩ Q is an (M,Q)-generic filter resulting from a play of
the game by this strategy and i < ω is given.

Define V = δ \ DNi

δ and let k be such that Uk ⊆ V or V ∩ Uk is empty. By
following the above strategy, Player II forces Player I to play so that xl \ xk ⊆ Uk

for all l > k. It follows that G is
−−−→
MNi-prebounded. �

7.3. Adding subtrees to Aronszajn trees. Recall that an Aronszajn tree (A-
tree) is an uncountable tree in which all levels and chains are countable. A Souslin
tree is an A-tree in which, moreover, all antichains are countable. In this section,
we will consider a forcing which adds a generic subtree to a given A-tree T . This
subtree will have the property that the minimal elements of its complement will
form an uncountable antichain and hence witness that T is not Souslin in the generic
extension.

We will first fix some notation. In order to simplify matters later on, assume
without loss of generality that the αth-level of T consists of functions from α into ω
and that T is ordered by extension. This equips T with a canonical lexicographic
order. Let T [n] denote the collection of all tuples 〈ti : i < n〉 which all come from
some level of T and which are listed in non decreasing ≤lex-order. For each n,
T [n] is an A-tree when ordered by coordinate-wise extension and these trees will
collectively be referred to as the finite powers of T . If u is in T [n] and A ⊆ T ,
then we will write u ⊆ A to mean that the range of u is contained in A. If t is
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in T and α < ω1, then t � α is the element s of T of height α with s ≤ t if t has
height at least α and t � α = t otherwise. Similarly, if u is in T [n] for some n, then
u � α is defined by coordinate-wise restriction (which agrees with the definition of
restriction in T [n]).

Definition 7.13. Define QT to be the set of all q = (xq,Uq) for which:

• xq is a subtree of T which has a last level αq.
• Uq is a countable collection of pruned subtrees3 of some finite power of T .
• for all U ∈ Uq there is a u in Uαq with u ⊆ xq.

Q is ordered by declaring q ≤ p to mean that xq ⊇ xp and Uq ⊇ Up.

Theorem 7.14. QT admits a fusion scheme satisfying (A) and (CPℵ1). In par-
ticular, QT is completely proper and (< ω1)-proper.

By applying the Main Theoremand standard chain condition and book keeping
arguments, we obtain the following corollary.

Corollary 7.15. Souslin’s hypothesis is consistent with CH.

Remark. Observe that each U ∈ Up ∩ P(T ) “promises” that the generic tree Ṡ =⋃
q∈ĠQ

xq added by QT will intersect U uncountably often. QT is a simplification
of a forcing of Shelah [10] that specializes A-trees without adding reals. We will
show that QT adds an uncountable antichain to T . It is not clear whether QT

necessarily specializes T .

Proof. Define a fusion scheme on Q = QT as follows. Set X = T and if σ is in
X<ω, define r ≤σ q to mean that r ≤ q and for all i < |σ|, if σ(i) � αq ∈ xq then
σ(i) � αr ∈ xr. We leave it as an exercise to the reader to verify that this defines
a fusion scheme and that in fact Player II has a winning strategy in G(Q, ~≤,M)
from every initial position whenever M is a suitable model for Q.

To see that this fusion scheme satisfies (A), observe that if M is a suitable model
and δ = M ∩ ω1, then

≤σ� (Q ∩M) =≤σ�δ� (Q ∩M).

Since T is Aronszajn, it follows that {≤σ� (Q ∩M) : σ ∈ X<ω} is countable. To
see that Q has conservative lower bounds, let qn (n < ω) be a descending sequence
which has a lower bound. Set

ᾱ = sup
n

αqn Uq̄ =
⋃
n

Uqn x =
⋃
n

xqn

Define xq̄ to be the union of x together with all t in Tᾱ such that t � ξ is in x for
all ξ < ᾱ. It is straightforward to verify that q̄ = (xq̄,Uq̄) is a conservative lower
bound for qn (n < ω).

Lemma 7.16. If M is as usual, q ∈ Q ∩ M , D ⊆ Q is dense, D ∈ M , and
σ ∈ T<ω, then there exists r ≤σ q such that r ∈ D ∩M . In particular, the fusion
scheme define above satisfies (CPℵ1).

3A subtree of a tree is an initial part (i.e., downward closed subset) of that tree. A tree is
pruned if every element has uncountably many extensions.
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Proof. We will begin by arguing that the second part of the lemma follows from
the first. Observe that if M → Ni (i < k) is a Q-diagram and for each i < k
Ni |= σi ∈ T<ω, then there is a model M ′, suitable (enough) for Q and containing
q and D. Let δ = M ′ ∩ ω1. Even though, for a given i < k, σi is typically not in
Nj for i 6= k, σi � δ is in each M for all i < k. Therefore we can find a single σ in
M which corresponds to the concatenation of these restrictions. Hence if we verify
the first sentence in the lemma for σ and M ′ → M , we have verified the instance
of (CPℵ1) for M → Ni (i < k), σi (i < k), q, and D. Hence we may now focus on
the first sentence in the lemma.

Seeking a contradiction, suppose the first sentence of the lemma is false. Without
loss of generality, σ consists of entries t such that ht(t) ≤ δ = M∩ω1 and t � αq ∈ xq.
Since Tδ is countable, there is an h : ω1 → T<ω such that h(α) ∈ T<ω

α and h(δ)
is the entries of σ of height δ (listed in the same order). We may assume h ∈ M
because h(δ) is in the Skolem hull M ∪ δ. Let Ξ be the set of ξ < ω1 for which
h(ξ) � αq = h(δ) � αq and, if r ≤ q with r ∈ D and αr < ξ, then r 6≤h(ξ) q.

Claim. δ ∈ Ξ, so Ξ is uncountable.

Proof. Seeking a contradiction, suppose r witnesses that δ 6∈ Ξ. Fix β ∈ M ∩
[αr, ω1). Observe that r ≤h(δ) q if and only if r ≤h(δ)�β q. By elementarity, there
is an r′ ∈ M ∩ D such that αr′ = αr and r′ ≤h(δ)�β q. Thus, r′ ≤h(δ) q, in
contradiction with our assumption that the lemma fails. �

Returning to the proof of the lemma, let U ⊆ T [n] be the set of u for which
uncountably ξ ∈ Ξ satisfy u ≤ h(ξ). It follows that U is pruned and q′ = 〈xq,Uq ∪
{U}〉 is a condition in M . Now q has no extension in D ∩M , which is absurd. �

We leave the following as an exercise (see Lemma 5.7 of [8]).

Exercise 7.17. Prove that for every β, the set {q ∈ Q : αq ≥ β} is dense and that
if q ∈ Q, then there is an r ≤ q such that ∀s ∈ xq ∃t ∈ Tαr s ≤ t 6∈ xr. This proves
that Ṡ does not contain any cone of T (i.e., a set of the form {t ∈ T : t ≥ s}).
Prove that this implies that Ȧ, a name for the set of minimal elements of Ť \ Ṡ, is
forced to be an uncountable antichain of Ť .

This finishes the proof of the theorem. �

8. Proof of the Main Theorem

Definition 8.1. Given an iteration 〈Pα, Q̇α〉α<ε, α < ε, p ∈ Pα, and q ∈ Pε, we
say that q is a completion of p if q � α = p.

The following argument, which we will call the Three Models Argument, is the
key component of the proof of the Main Theorem. Suppose:

• Q̇ satisfies the ω1-iterability condition over a totally proper forcing P ;
• N0 ∈ N1 ∈ N2 are as usual with P, Q̇ ∈ N0;
• G∗ ∈ Gen(N0, P ) ∩N1;
• p is (N2, P )-generic, p is (N1, P )-generic, p is totally (N0, P )-generic, and

p is a lower bound of G∗.
It follows that p 
 N1 ∩ ĠP ∈ N2 because p 
 N2[ĠP ] ∩ V = N2. Let 〈Gl〉l<ω

enumerate N2 ∩Gen(N1, P ). Every p satisfying the above assumptions forces that
N1 ∩ ĠP ∈ {Gl : l < ω}. This is by elementarity of N2 and because P adds
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no new countable subsets to V . Hence, by the iterability condition, there is a
(N0[G∗], Q̇)-generic sequence 〈q̇n〉n<ω such that any p satisfying the above assump-
tions forces that 〈q̇n〉n<ω has a lower bound. Therefore, there is a P -name ṡ such
that any such p forces ṡ to be a lower bound of 〈q̇n〉n<ω. Hence, for any such p,
p ∗ ṡ is totally (N,P ∗ Q̇)-generic. Note that {r ∗ ṫ : r ∈ G∗, N0[G∗] |= ∃n ṫ ≥ q̇n} ∈
Gen+(N0, P ∗ Q̇). Thus, we can complete G∗ to a filter G† ∈ Gen+(N0, P ∗ Q̇) such
that any p satisfying the above assumptions can be completed to a lower bound
p ∗ ṡ of G†.

The Main Theorem is a corollary of the following claim.

Claim. Given P = 〈Pα, Q̇α〉α<ε satisfying the hypotheses of the Main Theorem,
the following hypotheses imply the following conclusion.

Hypotheses:
• N is as usual with P ∈ N .
• α ∈ ε ∩N .
• N = 〈Nξ : ξ ≤ 2ε∗〉 is a tower of models with N0 = N where ∀β β∗ =

otp(N ∩ β).
• G∗ ∈ Gen(N0, Pα) ∩N2α∗+1.
• p ∈ N ∩ Pε.
• p � α ∈ G∗.

Conclusion: There is a G† ∈ Gen(N0, Pε, p) such that any lower bound for G∗

that is (Nξ, Pα)-generic for all ξ ∈ (2α∗, 2ε∗] can be completed to a lower bound for
G†.

Proof. Proceed by induction on ε. First, consider the case ε = γ + 1. We have
ε∗ = γ∗ + 1 because P ∈ N ⇒ ε ∈ N ⇒ γ ∈ N . Let α,N , G∗, p be as given.
Step inside N2γ∗+1. Apply our induction hypothesis inside this model to α,N �
(2γ∗ + 1), G∗, p � γ, assuming α < γ∗—the case α = γ∗ is marginally simpler. This
application gives us G′ ∈ Gen(N0, Pγ) ∩N2γ∗+1 such that any lower bound for G∗

that is (Nξ, Pα)-generic for all ξ ∈ (2α∗, 2γ∗] can be completed to a lower bound
for G′. Note that N0 ∈ N2γ∗+1 ∈ N2ε∗ and G′ ∈ Gen(N0, Pγ) ∩N2γ∗+1, so by the
Three Models Argument, we can extend G′ to a filter G† ∈ Gen(N0, Pε) such that
any lower bound for G′ that is also (N2γ∗+1, Pγ)-generic and (N2ε∗ , Pγ)-generic can
be completed to a lower bound for G†.

Subclaim. Suppose q is a lower bound for G∗ and is (Nξ, Pα)-generic for all ξ ∈
(2α∗, 2ε∗]. It follows that there is a Pα-name ṙ such that q forces each of the
following.

• ṙ ∈ N2γ∗+1 ∩ Pγ .
• ṙ is a lower bound for G′.
• ṙ � α ∈ ĠPα .

Proof. Let G ⊆ Pα be generic with q ∈ G. We then have N0∩G = G∗ and G∩Nξ ∈
Gen+(Nξ, Pα) ∩ Nξ+1 for all ξ ∈ (2α∗, 2ε∗). Step inside N2γ∗+1. By elementarity
of N2γ∗+1, N2γ∗ ∩G has a lower bound s. Such an s is totally (Nξ, Pα)-generic for
all ξ ∈ (2α∗, 2γ∗]. We can then complete s to a lower bound r ∈ Pγ for G′. Let ṙ
be a name for r, forced by q to have our desired properties. �

We now have Pα 3 q 
 ṙ ∈ Pγ ∩ N2γ∗+1 and q 
 ṙ � α ∈ ĠPα
. By properness,

we can complete q to a condition q′ ∈ Pγ such that q′ 
 ṙ ∈ ĠPγ
and q′ is
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(N2γ∗+1, Pγ)-generic and (N2ε∗ , Pγ)-generic. Therefore, to finish the successor case,
it suffices to prove that q′ is a lower bound for G′. Seeking a contradiction, suppose
it is not. Let G ⊆ Pγ be generic with q′ ∈ G. Since q′ 
 ṙ ∈ ĠPγ , we have q′ ≤ ṙ[G].
Since q′ 
 ṙ ≤ G′, we also have ṙ[G] ≤ G′, so q′ ≤ G′, in contradiction with our
assumption that q′ 6≤ G′.

Next, consider the case where ε is a limit. Choose 〈αn〉n<ω strictly increasing
and cofinal in N ∩ ε with α0 = α. Let 〈Dn〉n<ω enumerate the dense subsets of Pε

from N . Build 〈pn, Gn〉n<ω such that:
• p0 = p and G0 = G∗.
• pn ≥ pn+1 ∈ N0 ∩Dn.
• Gn ∈ Gen(N0, Pαn , pn � αn) ∩N2α∗

n+1.
• pn+1 � αn ∈ Gn.
• Any lower bound for Gn that is (Nξ, Pαn)-generic for all ξ ∈ (2α∗

n, 2α∗
n+1]

can be completed to a lower bound for Gn+1.
How? For n = 0, there’s nothing to do. Assume we have pn and Gn. We can

then find pn+1 ∈ N0 ∩ Dn such that pn+1 ≤ pn and pn+1 � αn ∈ Gn. Why?
The set of conditions in Pαn that can be completed to an extension of pn in Dn

is dense below pn � αn, which is in Gn. Moreover, this dense set is in N0. Since
Gn ∈ Gen(N0, Pαn , pn � αn), we can find pn+1 as desired.

Apply our induction hypothesis to

P � αn+1, pn+1 � αn+1, αn, Gn,N � (2α∗
n+1 + 1)

inside the model N2α∗
n+1+1. This application gives us a filter

Gn+1 ∈ Gen(N0, Pαn+1 , pn+1 � αn+1) ∩N2α∗
n+1+1

such that any condition which is a lower bound for Gn and is (Nξ, Pαn
)-generic for

all ξ ∈ (2α∗
n, 2α∗

n+1] can be completed to a lower bound for Gn+1, as desired.
Let G† = {r ∈ Pε ∩ N : ∃n r ≥ pn}. It follows that G† ∈ Gen(N0, Pε, p). Let

q be a lower bound for G∗ that is (Nξ, Pα)-generic for all ξ ∈ (2α∗, 2ε∗]. Define by
induction a sequence 〈qn〉n<ω such that:

• q0 = q.
• qn ∈ Pαn .
• qn+1 � αn = qn.
• qn is a lower bound for Gn.
• qn is (Nξ, Pαn)-generic for all ξ ∈ (2α∗

n, 2ε∗].
Given qn, let us find qn+1 as follows. Arguing as in the successor case, there is a
Pαn -name ṙ such that qn forces each of the following:

• ṙ ∈ N2α∗
n+1+1 ∩ Pαn+1 .

• ṙ is a lower bound for Gn+1.
• ṙ � αn ∈ ĠPαn

.
By <ω1-properness, we can complete qn to a condition qn+1 ∈ Pαn+1 such that
qn+1 
 ṙ ∈ ĠPαn+1

and qn+1 is (Nξ, Pαn+1)-generic for all ξ ∈ (2α∗
n, 2ε∗]. Arguing

as in the successor case, qn+1 is a lower bound for Gn+1.
Set q† =

⋃
n<ω qn in Pε. (Technically, this union has domain sup(N ∩ ε), which

may be less than ε, but we extend the domain to all of ε without increasing the
support.) It suffices to show that q† ≤ G†, so it suffices to show that q† ≤ pm for
all m. Seeking a contradiction, suppose q† 6≤ pm. It follows that for some n ≥ m
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we have qn = q† � αn 6≤ pm � αn. Hence, qn 6≤ pn+1 � αn ∈ Gn; hence, qn 6≤ Gn, in
contradiction with how 〈qn〉n<ω was constructed. �

9. The role of (< ω1)-properness

The point of this section is to present a proof of the following theorem of Shelah
which shows that the hypothesis of (< ω1)-properness can not be dropped entirely
from Main Theorem.

Theorem 9.1. [10, XVIII.1.1] Assume V = L. There is a countable support
iteration 〈Pξ; Q̇ξ : ξ < ω2〉 of forcings such that:

(1) Q̇ξ is forced to be an ℵ1-completely proper forcing;
(2) Q̇ξ is forced to have cardinality ℵ1;
(3) Pω2 introduces a new subset of ω.

Remark. In fact Pω2 introduces a club which does not contain any infinite subset
from V . It is not clear whether this is true in general.

Our presentation of Theorem 9.1 is somewhat different than in [10] in that we
define the partial order explicitly and then work to prove its properties. It seems
that the differences with the construction in [10] are, however, superficial.

Let D consist of all countable subsets of ω1 which are closed in their supremum.
Fix a surjection φ : ω → H(ω) which is in L and satisfies that φ−1(X) is infinite for
all X in H(ω). In all of the discussion which follows, we need to assume a minimum
of CH. Fix a bijection ind : ω1 → D. Additional assumptions on ind will be stated
as they are needed.

Fix a ladder sequence ~C = 〈Cα : α ∈ lim(ω1)〉 for the moment.

Definition 9.2. If q is in D, we say q is self coding with respect to ~C if and only if
whenever ν is a limit point of q, there is a well ordering / of ω and an X ⊆ ω such
that

(ω, /,X) ' (ν,∈, q ∩ ν)

and for all m < ω there is a νm < ν such that whenever ξ is in q ∩ (νm, ν) there is
a n > m such that

φ(|Cν ∩ ξ|) = (n, / � n, X ∩ n).

The following fact states a key property of this definition.

Fact 9.3. If p and q are self coding with respect to ladder systems ~Cp and ~Cq,
respectively, Cp

δ = Cq
δ , and p ∩ δ 6= q ∩ δ, then p ∩ q is not cofinal in δ.

Proof. Suppose that p ∩ q ∩ δ is cofinal in δ for some limit ordinal δ and Cp
δ = Cq

δ .
If ξi (i < ω) is contained in p ∩ q and cofinal in δ, then the structures

φ(|Cp
δ ∩ ξi|) = (ni, /i, Xi)

must converge in the sense that for any m, ni > m for all but finitely many i
the sequence {(m, /i � m,Xi ∩ m)}i is eventually constant. Let / be a relation
on ω and X be a subset of ω such that for any m, for all but finitely many i,
/ � m = /i � m and X ∩m = Xi ∩m. Now (ω, /,X) is isomorphic to (δ,∈, p ∩ δ)
and (δ,∈, q ∩ δ). Since the only automorphism of (δ,∈) is the identity, it must be
that p ∩ δ = q ∩ δ. �
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Definition 9.4. If E ⊆ ω1 is a club and q is in D, then we say that q is E-fast if
whenever ν is a limit point of q,

min(E \ (ν + 1)) < ind(q ∩ ν) < min(q \ (ν + 1))

(here we define the latter inequality to be vacuous if ν = sup(q)).

The following fact is our motivation for this definition.

Fact 9.5. Suppose that Ei (i < ω) is a sequence of clubs such that for every i < j,
all initial parts of Ej are Ei-fast. Then whenever δ is in ∩{Ei : i < ω}

sup{ind(Ei ∩ δ) : i < ω} = min(∩{Ei : i < ω} \ (δ + 1))

(note that this ordinal is a limit point of Ei for all i < ω).

Definition 9.6. Define Q~C,E to be the collection of all elements of D which are

E-fast and self coding with respect to ~C. Q~C,E is viewed as a forcing notion with
the order of end extension.

In general we do not expect Q~C,E to preserve ω1. Note, however, that it is trivial
that

{q ∈ Q~C,E : ∃β > α(β ∈ q)}
is dense for all α < ω1 and hence every condition in Q~C,E forces that the generic
self coding set is cofinal in ω1. Recall that a ladder system 〈Cα : α < ω1〉 is a strong
club guessing sequence if whenever E ⊆ ω1 is a club, {δ < ω1 : Cδ ⊆∗ E} contains
a club.

Theorem 9.7. Suppose that 〈Cα : α < ω1〉 is a strong club guessing sequence and
E is a club. Then Q~C,E is proper.

Proof. Let Q = Q~C,E for brevity. We will actually prove something more precise.

Let ~C be an arbitrary ladder sequence and let S consist of all countable elementary
submodels M of H(ω2) such that if δ = M ∩ω1 and E ⊆ ω1 is a club in M , Cδ \E
is finite. We will prove that if S′ ⊆ S is stationary, then forcing with Q preserves
S′.

Let M be as usual such that M ∩ H(ω2) is in S, let q be in Q ∩ M . Fix an
enumeration Di (i < ω) of the dense subsets of Q which are in M . Let ζi (i < ω)
enumerate the ordinals which are at most ζ = min(E \ (δ + 1)). Fix a bijection
π : ω → δ such that |Cδ ∩ π(k)| ≤ k and define i / j if π(i) < π(j).

Construct a descending sequence qk (k < ω) in Q ∩ M by induction. Start by
putting q0 = q. Now suppose that qk has been constructed. Define Xk = π−1(qk)
and nk = |Cδ ∩ sup(qk)|. By our choice of φ, there are infinitely many i such that
φ(i) = (nk, / � nk, Xk ∩ nk). Our assumptions on S imply that for all but finitely
many i, there is a countable elementary submodel N of H(ω2) such that qk and Dk

are in N and |Cδ ∩N | = i. Therefore it is possible to find such an N with

|Cδ ∩ ν| > nk

φ(|Cδ ∩ ν|) = (nk, / � nk, Xk ∩ nk)
where ν = N ∩ ω1. Let q′k = qk ∪ {sup(qk), ξ} where ξ < ν is such that sup(qk) < ξ
and Cδ ∩ ν = Cδ ∩ ξ. Finally, let qk+1 be an extension of q′k in N such that qk+1 is
in Dk and if q̄ is in Q with ind(q̄) = ζk, then qk+1 is not an initial part of q̄. The
key point here is that if η is in qk+1 \ qk, then Cδ ∩ η = Cδ ∩ ν. Furthermore, if q̄ is
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any extension of qk+1 in M , π−1(q̄) ∩ nk = π−1(qk) ∩ nk. Finish the construction
by letting q̄ = ∪{qk : k < ω}.

Since {p ∈ Q : sup(p) > α} is dense in Q and in M for all α < δ, we will
necessarily have that nk →∞. Also we have arranged that if ξ is in qk+1 \ qk, then

φ(|Cδ ∩ ξ|) = (nk, / � nk, π−1(q̄) ∩ nk).

It follows that q̄ is self coding with respect to ~C. Furthermore, we have arranged
that min(E \ (δ+1)) < ind(q̄) which, together with the fact that q̄∩ξ is a condition
in Q for all ξ < δ, implies that q̄ is E-fast. Hence q̄ is in Q and we have clearly
arranged that q̄ is (M,Q)-generic. �

In order to prove that the forcing Q~C,E is completely proper, we need to know

that ~C satisfies the following strong condition for some A ⊆ ω1:
(∗)A: The following hold:

(1) L[A] contains E and ~C;
(2) For every limit ordinal δ, L[A ∩ δ] satisfies δ is countable;
(3) L[A∩δ] satisfies Cδ is the <L[A∩δ]-least ladder in δ such that whenever

Lα[A∩ δ] satisfies “δ is ω1 and every two closed unbounded subsets of
δ intersect”, Cδ is almost contained in every closed unbounded subset
of δ in Lα[A ∩ δ].

The most stringent requirement we will need is on the function ind in proving
the ℵ1-complete properness of Q~C,E :

(∗∗): ind(q) = ξ if and only if q is the ξth-least element of D in the /L-ordering.

Proposition 9.8. (V = L) If ~C satisfies (∗)A for some A ⊆ ω1 and ind satisfies
(**), then Q~C,E is ℵ1-completely proper.

Proof. Suppose that M → Ni (i < ω) is a Q-diagram and that q ∈ Q ∩M . Let ζi

denote min(ENi \ (δ + 1)). While ζi depends on i, we can take the supremum ζ of
this sequence. Working as in Proposition 9.7, we can build a sequence qk (k < ω)
of extensions of q such that, setting q̄ = ∪{qk : k < ω}, we have ζ < ind(q̄) and q̄

is self coding with respect to ~C. Notice that if N → N ′ and the filter G generated
by qk (k < ω) is in N ′, then so is q̄. By absoluteness of Lα, indN ′

is a restriction of
ind. In particular, N ′ satisfies q̄ is EN ′

-fast. Furthermore, while ~CN ′
may not be

an initial segment of ~C, ~CN ′
� (δ +1) = ~C � (δ +1) by absoluteness of Lα[A∩ δ] for

α > δ and this is the only portion of ~CN ′
relevant in determining whether q̄ is self

coding with respect to ~CN ′
. Thus q̄ is in QN ′

and clearly N ′ satisfies q̄ is a lower
bound for G. �

Remark. This is clearly against the spirit of complete properness. We do not expect
in general that if, e.g., ~C is a ladder system in some suitable model M and M → Ni

(i < 2), then N0 and N1 should agree about Cδ. In fact this sort of behavior can
be ruled out if, for instance, there is a measurable cardinal.

Proposition 9.9. (V = L) Suppose that 〈Pξ; Q̇ξ : ξ < ω2〉 is an iteration of
forcings such that for all ξ < ω2:

(1) E0 = lim(ω1);
(2) Q̇ξ = Q~Cξ,Ėξ ;
(3) Ėξ+1 is the Pξ+1 name for the union of the generic filter for Q̇ξ;
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(4) if η is a limit ordinal, then Ėη is the Pη-name for ∩{Ėξ : ξ < η};
(5) ~Cξ is the Pξ-name for the ladder system satisfying (*) with respect to some

A coding 〈(~Cη, Eη) : η < ξ〉 in some canonical way;
(6) Q̇~Cξ,Eξ

is computed using a fixed function ind in L.

Then Pω2 introduces a new real.

Proof. In fact we will show that if

α0 = min(∩{Eξ : ξ < ω2})
then 〈Eξ ∩ α0 : ξ < ω2〉 is not in L. We will assume for contradiction that this
is not the case and prove that 〈Eξ : ξ < ω2〉 is in L. Observe first that Q̇ξ is a
Pξ-name for a subset of D. In order to make statements in the forcing language
easier to read, we will suppress “checks” on the names for ground model elements of
D. Define sequences αζ (ζ < ω1) and qξ,ζ (ξ < ω2; ζ ∈ lim(ω1) ∪ {0}) by recursion
as follows:

qξ,0 = Eξ ∩ α0

αζ+k+1 = sup{ind(qω·k+i,ζ) : i < ω}
If ζ > 0 then:

αζ = sup
ζ′<ζ

αζ′ .

The next claim is used to handle the recursive definition of qξ,ζ for limit ordinals ζ.

Claim. For each ξ < ω2 and ζ ∈ lim(ω1), there is a unique element qξ,ζ of D such
that:

(1) qξ,ζ is a cofinal subset of αζ ;
(2) either:

(a) ζ is a limit of limit ordinals and {αζ′ : ζ ′ ∈ ζ ∩ lim(ω1)} ⊆ qξ,ζ or
(b) ζ = ζ0 + ω and there is a k0 such that for all k > k0, αζ0+k is in qξ,ζ ;

(3) 〈qη,ζ : η < ξ〉 forces qξ,ζ is in Q̇ξ.
Moreover qξ,ζ = Eξ ∩ αζ .

Proof. This is proved by induction on the lexicographical order on lim(ω1)×ω2. Let
(ζ, ξ) be in lim(ω1) × ω2 and suppose that the claim is true whenever (ζ ′, ξ′) <lex

(ζ, ξ).
Case 1: ζ = ζ0 + ω for some ζ0 in lim(ω1) ∪ {0}. By Fact 9.5, αζ0+k the least

element of ∩{Eξ : ξ < ω · k} greater than αζ . By (*), 〈qξ′,ζ : ξ′ < ξ〉 decides the
element Cξ

αζ
of ~Cξ. By Fact 9.3, 〈qξ′,ζ : ξ′ < ξ〉 forces that q = Eξ∩αζ is the unique

element of Qξ which contains all but finitely many elements of {αζ0+k : k < ω}.
This finishes case 1.

Case 2: ζ ∩ lim(ω1) is cofinal in ζ. Our induction hypothesis implies that for
all ζ ′ in ζ ∩ lim(ω1), αζ′ is a limit point of Eξ. Hence {αζ′ : ζ ′ ∈ ζ ∩ lim(ω1)} is
contained in Eξ. By (*), 〈qξ′,ζ : ξ′ < ξ〉 decides the element Cξ

αζ
of ~Cξ. By Fact 9.3,

〈qξ′,ζ : ξ′ < ξ〉 forces that q = Eξ ∩αζ is the unique element of Qξ which contains a
tail of {αζ′ : ζ ′ ∈ ζ ∩ lim(ω1)}. This finishes case 2 and the proof of the claim. �

With the claim in hand, we can apply the recursion theorem in L to find objects
〈αζ : ζ < ω1〉 and 〈qξ,ζ : ξ < ω2; ζ ∈ lim(ω1)〉 in L which satisfy the equations of
the recursion. By Claim 9, we moreover have that, for each ξ < ω2, Eξ = ∪{qξ,ζ :
ζ ∈ lim(ω1)} and hence Eξ is in L for all ξ. Note, however, that if q is in Q~C,E ,
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then for all but countably many ν ∈ E, q ∪ {ν} is in Q~C,E and, by genericity, E1

does not contain any club from L, a contradiction. �

It is known that the length ω2 in this iteration is the shortest possible.

Theorem 9.10. A CS iteration of length less than ω2 of totally proper forcings
satisfying the ω1-iterability condition does not add reals.

10. Open Problems

We will finish with some open problems. While the example discussed in Section
9 illustrates that we can not drop (< ω1)-properness from Theorem 4.5 entirely,
it does not answer the following problem, which is ultimately what is of greatest
interest.

Problem 10.1. Assume it is consistent that there is a supercompact cardinal. Is
the forcing axiom for completely proper forcings consistent with CH?

We have seen that a positive answer to this question implies that measuring is
consistent with CH (modulo a large cardinal assumption).

Problem 10.2. Assume there is a measurable cardinal. Is there a countable support
iteration of completely proper forcings which adds a new real?

Of course if this question has a positive answer under the assumption of any
large cardinal hypothesis, this would be of great interest. One might view that the
“problem” with the example in Section 9 is that there are an insufficient number
of embeddings M → N to give the definition of complete properness its intended
strength. Since Woodin cardinals can be used to generate embeddings similar to
M → N via the “countable tower” (see [7]), the existence of Woodin cardinals may
be a natural hypothesis to consider in this context.

While club guessing on ω1 is easily seen to be preserved by countably closed
forcings, strong club guessing is not. This can be used to show that 2<ω1 forces that
Q~C,E does not preserve stationary subsets of ω1 (where Q~C,E is the forcing defined
in Section 9.1). Shelah has proved the following iteration theorem in addition to
Theorem 4.5.

Theorem 10.3. A countable support iteration of forcings which are:
(1) completely proper and
(2) remain proper in every totally proper forcing extension

does not add new reals.

In the context of totally proper forcings, the requirement that the forcing remains
proper in every totally proper forcing extension is usually met by forcings which
have only a countable “working part” and no “side conditions.” The example in
Section 7.1 has no side conditions (and remains proper in every totally proper
extension). The examples in Sections 7.2 and 7.3 do have side conditions. The side
condition in the forcing for measure a sequence ~D of closed sets can be removed if
either the map α 7→ otp(Dα) is regressive or if Dα is a clopen subset of α for each
α < ω1.

It should be remarked that Shelah’s two iteration theorems can not (apparently)
be combined to a single theorem where we require that each iterand satisfies one of
the two hypotheses. While the forcing associated to measuring is cut from the same
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block as the example in Section 9.1, we do not expect that the forcing to destroy a
Souslin tree should “cause problems.”

Problem 10.4. Is it true that countable support iteration of forcings which are:
(1) completely proper and
(2) remain proper after forcing with 2<ω1

does not add new reals?

The following is likely a closely related question.

Problem 10.5. If P is a countable support iteration of completely proper forcings
which adds a new real, must P × 2<ω1 collapse ω1?

The answer to this question, however, is not clear even in the case of the example
in Section 9.

Problem 10.6. If P is a countable support iteration of completely proper forcings
which adds a new real, must P add a club E ⊆ ω1 such that for some δ < ω1, E
contains no ground model subsets of ordertype δ?

If P is example in Section 9, then
⋂

ξ<ω2 Eξ contains no ground model infinite
set.
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