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Let a € Z and m € N. If gcd(a,m) = 1 then a~! is unique modulo m.
Suppose ged(a,m) =1 with ba =1 (mod m) and ca =1 (mod m) (so b and ¢ are both multiplica-
tive inverses of a). Then because multiplication is commutative ac =1 (mod m). Therefore,
ba=1 (modm) = bac=c¢ (mod m) = blac)=c¢ (modm) = b=c¢ (mod m)
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Therefore, b = ¢ (mod m) so a™* is unique modulo m.

. Lemma. If n € N and ay,as,...,a, € N and p|(ajaz---a,) then Fi € N with 1 < i < n such that

pla;.
Note that this is only true for prime p.
We prove this by induction on n. Base case: If p|a; then p|a;.
Inductive case: Assume that for any ay,...,a, € N, p|(ajas - - a,) implies pla; for some 1 < i < n.

Now given aq,...,an,an+1 € N, then if pla,11 then we are done. Otherwise, p t a,+1, and since
p is prime, this means that p,a,4+1 are relatively prime. By Euclid’s Lemma (Lemma 6.5.25), since
pl(a1 -+ an-ant1) and p, a, 41 are relatively prime, so p|(ay - - - a,,). Therefore, by inductive hypothesis,
pla; for some 1 <14 < n.

(a) 6z =1 (mod 13).
Note that 6 -2 = 12 = —1 (mod 13), so 6(—2) = 1 (mod 13). Therefore, z = —1 (mod 13).
By question 1, multiplicative inverses are unique so —2 is the only solution modulo m.
(b) 4z+3=1 (mod 9).
Note that 4 - (—2) =1 (mod 9). Therefore,

dx43=1 (mod9) <= 4dx=-2 (mod9) <= z=(-2)(-2) (mod9) < z=4 (mod9)

(¢) 62 —4 =12 (mod 15)
There are no such solutions x, because 6,15 are not relatively prime, so 6 has no inverse
modulo 15.
Suppose 62 —4 = 12 (mod 15) for some z, then 6z = 16 =1 (mod 15), so z is the multiplica-
tive inverse to 6, which does not exist.

Let a,b € Z and m,d € N. Assume d = ged(a, m). Consider the linear congruence ax = b (mod m).

(a) If dtb, can there be any x € Z satisfying this congruence?
No. Suppose ax = b (mod m) for some z, then m|(b — ax). Since d|m, this means that
d|(b — az). Note that d|a so d|ax. Therefore, d|b which is a contradiction.
(b) If d|b why can we say that there are solutions to this congruence?
Since d = ged(a, m) there are s,t € N such that as+mt = d, so taken mod m, this means that
as = d (mod m) (s is something similar to an inverse of a, but instead of 1 it gives d because a
need not have an inverse if d > 1). This s need not be unique modulo m.
Suppose a = cd, then ¢, m are relatively prime, since if £|c and £|m, then ¢d|a and ¢d|m so d
would not be the ged. Therefore, ¢~! exists mod m, so

ar=b (modm) <= cdr=>b (modm) <= zd=c 'b (modm)

so we can let ¢~ 1b = yd then we are looking for solutions of xd = yd (mod m) where d|m.
Lemma. If d|m then

xd=yd (modm) < z=y (mod %)



Proof: Certainly, if 2 = y (mod %), then %|(z — y) so m|(x — y). Now suppose zd = yd
(mod m), then m|(xd — yd) so mk = (x — y)d for some k € N. Therefore, 7k = = — y so
Tl —y). O

Therefore, since d|b, using the lemma,

ar=b (modm) <= xd=c 'b (modm) <= z= c_lg (mod %)

so there are d solutions modulo m, since if z = ¢ (mod %) is a solution, then ¢, t4 %, t—i—%", R

% are all solutions distinct mod m.

(¢) 9z =12 (mod 15).
Note that 9-2=18 =3 (mod 15),s0 9-2-4 =12 (mod 15). Therefore, x =8 (mod 15) is a

solution. Since ged(9,15) = 3, there are 3 solutions, and we have shown that 8, 8 +5,8+2-5 are
all solutions, so x = 8,13, 3 are all distinct solutions mod 15.

5. Let a,b,c € Z. Prove that ged(a,b) = ged(a + ¢b, b).

We wish to show that the set of common divisors of a,b and (a + ¢b), b are the same.

Suppose d is a common divisor of a,b, then d|a and d|b, so d|cb, so d|(a + ¢b). Therefore, d is a
common divisor of (a + ¢b), b.

Now suppose d is a common divisor of (a+¢b), b, then d|(a+cb) and d|b. So d|—cb, so d|(a+cb— cb)
so d|a. Therefore, d is a common divisor of a, b.



