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(a) Prove that Vo € R. 22 #1 — x # 1.

We will prove this by contrapositive. Let z € R be arbitrary, and = 1, then z? = 1.
Therefore, Vo € R. x = 1 — z? = 1, which is the contrapositive of the original statement.

(b) Prove that Vn € N. n > 5 — 2n? > (n + 1)2.

Suppose n € N arbitrary, n > 5. Then
m*=n?+n?>n?+an>n*+2n+1=(n+1)?

where we made the substitution n > 4 and 2n > 1.

(c) Let E(x) be the proposition “z is even.” Prove that

Va,b € Z. E(a) N E(b) <= E(a+b)AFE(a-b)

We first prove E(a) A E(b) = FE(a+b) A E(a-b). Consider a,b € Z arbitrary, and
E(a) A E(b) so let a = 2h and b = 2k for h,k € Z. Then a+ b = 2h + 2k = 2(h + k) is even and
a-b=(2h)(2k) = 2(2hk) is even, so E(a+ b) A E(a - b).

Now we prove FE(a) AE(b) <= E(a+b)AE(a-b) by contraposition. Consider a,b € Z arbitrary
such that =(E(a) A E(b)). Equivalently, =E(a) V ~E(b). Consider the case where ~E(a), so a
is odd. Then if @ + b is even then b is odd. However, this means that a - b is odd which gives a
contradiction. Now consider the case where —E(b), so b is odd. Then if a 4 b is even then a is
odd, so a - b is odd which gives a contradiction.

3. Claim: There are no positive integer solutions to the equation 22 — 2 = 1.

Symbolically, this is Va,y € N 22 — 2 # 1.
Suppose for sake of contradiction that =,y € N such that 22 — y? = 1. Then note that

(+y)(z—y) =2"—y* =1

so in particular (x + y) divides 1. However, since x,y are positive integers, x + y > 2, which is a
contradiction because the only divisors of 1 are —1 and 1.



4. Claim: If ¢ and b are both real numbers such that the product ab is irrational then either a or b must
be irrational.

To write this out symbolically:
Va,beR. ab¢ Q—>a¢ QVb¢gQ

Consider the contrapositive (with De Morgan’s law): Va,b € R.a € QA b € Q — ab € Q. Let
a,b € R be arbitrary, and suppose a,b € Q. Then let a = $,b = = where s,t,u,v € Z and v,t # 0.
Then ab = = € Q since uv # 0. Therefore, we have shown the contrapositive.

5. Claim: For any distinct integers p and ¢ it is the case that p — 1 is a multiple of ¢ — p if and only if
q — 1 is a multiple of ¢ — p.

To write this out symbolically:
Vpg€Z. (p#£q = ((¢—p)llp—-1) < (¢-p)l(gd—1)))

Consider p, q € Z arbitrary such that p # q.
Suppose (¢ — p)|(p — 1), then there is some n € Z such that (¢ — p)n =p — 1. Tt follows that

(g—pn=p—1

= (g—=pn—(p—q)=p—1-(p—q)
= (g—p)n—-1)=q-1

o (¢ —p)|(g — 1) as desired.

On the other hand, suppose (¢ — p)|(¢ — 1), then there is some n € Z such that (¢ — p)n = ¢ — 1,
then

(g—pn=q-1
= (g—p)n+(p q)—q—1+(p q)
= (g—p)(n+1)=p—

0 (¢ —p)|(p—1) as desired.



