Lecture 21

Enoch Cheung

April 24, 2014

1. Sketch and find the area of r = 3 4+ 2 cos 6.
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Notice that r > 0 for all 8. Thus we can get the area by consider 0 < 6 < 27.
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2. Find the area of r = 1 + 2sin 6 (inner loop).
Think about what the graph looks like:
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and the inner loop happens when r < 0. Consider 0 = r
g = Ir 1lim
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Notice that the region we are considering is %T <4#
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Therefore, the area of the inner loop is given by
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3. Find all common points of = 2sin 20 and r = 1.

First, consider the points where 2sin 20 = 1, so sin20 = 1, s0 20 = & tk2m, ‘%T + k27 for k € Z, so

0 = 75 +km, % + k6. This gives (1,0) for 0 = 5, %r, 113—2”, 11%“.

We also need to consider the case where 2sin 20 = —1, because those points will are intersections
of the lines too (despite having different 6 at the points). sin26 = 3, so 20 = %’T + k27, 11% + k2w for

k€Z,s00="1"+kmr, LT + k6. This gives (—1,6) for § = 17, Lix 19 231
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4. Find all common points of » = sinf and r = sin 26.

First, observe consider situation where sinf = sin 260 = 2sinf cos 6, so % = cosf, so we are consid-
ering when 0 = %, %’r, or sinf = 0. Plugging in gives us r = ?, —? respectively. This gives us the
points (@, %) and (—@, &) = (@, 2r) and the pole. We can also observe that since both r are 0 at

some 6, the pole is an intersection (they intersect at the pole as long as they are 0 at any 6).

To see that there are no other points, observe that the other way they can intersect is when

—sin(f 4+ 7) = sin26. However, since sinf = —sin(f + 7), we have actually already considered these
cases.
Therefore, the points are (@, %) and (?, 2?7') and the pole.

5. Find the length of r = 2cos for 0 < 0 < 7.
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