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2.

f(x) =
x

x2 + 16

=
x

16

1
x2

16 + 1

=
x

16

1

1− (−x2

16 )

=
x

16

∞∑
n=0

(−x2

16
)n

=
x

16

∞∑
n=0

(−1)n x
2n

16n

=

∞∑
n=0

(−1)n x
2n+1

16n+1

note the substitution is for | − x2

16 | < 1, equivalently |x| < 4. Thus R = 4.
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The substitution was with |x| < 1. Now we need to determine what C is. For x = 0, ln(1+0) = C+0,
thus C = ln(1) = 0.
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