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1. Find the Maclaurin series for f(z) using the definition of a MacLaurin series. [Assuem that f has a
power series expansion. Do not show that R, (z) — 0.] Also find the associated radius of convergence.

f(x) = sin(rx)

Recall the definition of Maclaurin series
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and clearly the pattern continues, because f*(z) = 7*f(z), so
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Using the ratio test, we can find the radius of convergence
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so converges for all x, so the radius of convergence is co.
2. Use the binomial series to expand the function as a power series. State the radius of convergence.
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has radius of convergenece R = 2 using the binomial series theorem.
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with R = oo.
We used the expansion
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with R = oo.



