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thus when |z — a| < b converges and when |z — a| > b diverges.
Now consider the endpoints © = a — b,a + b. For x = a — b,
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also diverges.
Therefore, the interval is (@ — b,a + b) and the radius is b.
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Now consider the endpoints x = % - %, % + % S0 x = %, 1. For x = %,
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converges by p-test. Similarly, for x =1
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converges by p-test.
Thus the interval is (£,1) and the radius is £.
3. Consider
f@)=1+22+2>+22° + a2t +..- = chx”
where co,, = 1, ca41 = 2. Find the interval of convergence and an explicit formula for f(z).
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and we know that the sums both diverge to oo when x > 1 and both converge when z < 1. When

T <1,

for x in (—1,1).

for z in (-3, 3).
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