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so the limit is < 1 when |x| < 2 and > 1 when |x| > 2. Thus by the Ratio Test the series converges
when |x| < 2 and diverges when |x| > 2.

Now to consider the end points of x = 2 and x = −2. When x = 2, we are considering
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which diverges since |an+1| > |an|. Similarly, when x = −2,
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which also diverges.

Therefore, the interval of convergence is (−2, 2) and the radius of convergence is 2.
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By Ratio Test
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thus by the Ratio test, this converges when |x| < 1
3 and diverges when |x| > 1

3 .

Now to look at the endpoints x = 1
3 and x = − 1

3 . When x = 1
3 ,
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converges absolutely by p-test, so converges.

Similarly, when x = − 1
3 ,
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converges by p-test.

Thus the interval is [− 1
3 ,

1
3 ] and the radius is 1
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so by the Ratio test, converges when |x− 2| < 1 and diverges when |x− 2| > 1.

Now consider the end points. When x = 1,
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Thus both of them converges absolutely, by limit comparison test with
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Therefore the interval is when |x− 2| ≤ 1 so the interval is [1, 3] and the radius is 1.
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thus the series converges for every x, so the interval is (−∞,∞) and the radius is ∞.
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which is centered around a = 0. Since this is a power series, and
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radius of convergence is at least 4. So we know that since −2 is in the interval (−4, 4) of radius
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which converges because it is an alternating series.

However,
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which diverges.
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