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so the limit is < 1 when |z| < 2 and > 1 when |z| > 2. Thus by the Ratio Test the series converges
when |z| < 2 and diverges when |z| > 2.

Now to consider the end points of z = 2 and x = —2. When x = 2, we are considering
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which diverges since |ap+1| > |ay|. Similarly, when x = —2,
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which also diverges.

Therefore, the interval of convergence is (—2,2) and the radius of convergence is 2.
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thus by the Ratio test, this converges when |z| < § and diverges when |z| > 1.
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Now to look at the endpoints x = % and x = —%. When z = %,
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converges absolutely by p-test, so converges.
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Similarly, when x = —3,
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converges by p-test.
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Thus the interval is [~ 3, 1] and the radius is 3.
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so by the Ratio test, converges when |z — 2| < 1 and diverges when |z — 2| > 1.

Now consider the end points. When = =1,
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When z = 3,
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Thus both of them converges absolutely, by limit comparison test with > #

Therefore the interval is when |x — 2| <1 so the interval is [1,3] and the radius is 1.
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thus the series converges for every x, so the interval is (—oo, c0) and the radius is co.

5. If >, cpd™ is convergent, does it follow that the following series are convergent?

(a)

Consider the power series
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which is centered around a = 0. Since this is a power series, and Y. ¢,4" is convergent, the
radius of convergence is at least 4. So we know that since —2 is in the interval (—4,4) of radius
4, 30 s ¢n(—2)™ is convergent.
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There is not enough information to conclude that the series is convergent. Consider
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which converges because it is an alternating series.

However,

which diverges.



