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Let b,, = n?—;. To see by11 > by, we look at the function f(x) = w;”;. Then
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so f'(z) < 0 for x > 2. Therefore, for n > 2 we know that b, 1 > by, so the sequence is eventually
decreasing.
We also check that
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Therefore, the alternating series converges.
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we know that sin((n + 1)m) = (=1)" for all integers n.
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Clearly Hlﬁ < irom and lim,,_, o ﬁ = 0. Thus the alternating series converges.

. Approximate the sum of the series correct to four decimal places.
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We know that if b, 11 < by, and lim,, 00 by, = 0 then |R,| = |s— 8, | < byy1. We want |R,,| < 0.0001

so we need to find n such that b, < 0.0001
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so we need n = 3.
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Trying the ratio test
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so by the ratio test the series absolutely converges.

. The terms of a series are defined recursively by
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Determine whether > a,, converges or diverges.
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so the series diverges.
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