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converges since | 910 | < 1.
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diverges since | 43 | ≥ 1.

3.
∞∑
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n2 + 1

let an = 1√
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n , then
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converges to a number 6= 0. Since
∑∞

n=1 bn is divergent,
∑∞

n=1 an is divergent.

4.
∞∑
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(1 + n2)2

let an = 5+2n
(1+n2)2 and compare it to bn = n

n4 = 1
n3 .
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so since
∑∞

n=1 bn converges, it converges.

5. Show that if an > 0 and limn→∞ nan 6= 0 then
∑

an is divergent.

Let bn = 1
n , then limn→∞

an

bn
= limn→∞ nan 6= 0. If limn→∞

an

bn
is a number 6= 0, then by Limit

Comparison Test, since
∑

bn is divergent,
∑

an is divergent. On the other hand, if limn→∞ nan is
divergent, then limn→∞ an is divergent, so

∑
an is divergent.
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by Ratio test
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so it is absolutely convergent.
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7.
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by Ratio test
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so it is absolutely convergent.
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so it is absolutely convergent.
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