Lecture 10

Enoch Cheung
February 19, 2014

1. Find a formula for the sequence {—3,2, —%, g, —%, .1
Notice that ani1 = —2a,. Therefore, a, = (—3)""1(=3) = (—2)"3.

2. Determine whether the sequence converges or diverges
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Note that
(2n—1)! (2n —1)! B 1
2n+ 1! (2n—1)!(2n)2n+1) 4n2+2n
and clearly lim,,_,o 4n2 + 2n = 00, 50 lim,_ o0 % = 0.
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Recall the limit definition of e (p.418)

Observe that the sequence
n/2
2
Vay, = (1 + )
n

and the function f(z) = (1 + x)%/* is continuous, therefore
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Since f is continuous, and lim,,_s % =0, 50 limy, 400 /Gy, = lim, 0 f(2) = € s0 lim,,_, a™ = €2 (it
is clear that it has to be the positive square root).
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and the fraction on the right is less than 1 since the denumerate is greater than or equal to the
numerator. Therefore

so by the Squeez Theorem lim,, ., a, = 0.

so it is divergent, since the ratio |r| > 1.
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using the formula 7 ar" ™! = 1% for |r| < 1.
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