1.

33. A graph of the temperature in New York City on September 19, 2009 is shown. Use Simpson's Rule with n = 12 to estimate the average temperature on that day.

Recall estimation using Simpson's Rule

$$\int_{a}^{b} f(x)dx \approx S_{n} = \frac{\Delta x}{3} [f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n})]$$

using n = 12, we obtain the values

x	f(x)
0	67
2	65
4	61
6	58
8	56
10	61
12	63
14	68
16	71
18	69
20	67
22	66

64

24

$$S_{12} = \frac{2}{3} [67 + 4 \cdot 65 + 2 \cdot 61 + 4 \cdot 58 + 2 \cdot 56 + 4 \cdot 61 + 2 \cdot 63 + 4 \cdot 68 + 2 \cdot 71 + 4 \cdot 69 + 2 \cdot 67 + 4 \cdot 66 + 64]$$

which gives $S_{12} \approx 1543.33$. Therefore, the average value is

$$\frac{1587.33}{24} \approx 64.31$$

2. The region bounded by the curves $y = e^{-1/x}$, y = 0, x = 1, and x = 5 is rotated around the x-axis. Use Simpson's Rule with n = 8 to estimate the volume of the resulting solid.

We wish to approximate

$$\int_1^5 \pi \cdot (e^{-1/x})^2 dx$$

x	$\pi \cdot (e^{-1/x})^2$
1.0	0.425
1.5	0.828
2.0	1.156
2.5	1.412
3.0	1.613
3.5	1.774
4.0	1.905
4.5	2.014
5.0	2.106

$$S_8 = \frac{0.5}{3}[0.425 + 4 \cdot 0.828 + 2 \cdot 1.156 + 4 \cdot 1.412 + 2 \cdot 1.618 + 4 \cdot 1.774 + 2 \cdot 1.905 + 4 \cdot 2.014 + 2.106]$$

which gives $S_8 = 5.999$.

- 3. Sketch the graph of a continuous function on [0,2] for which the Trapezoidal Rule with n=2 is more accurate than the Midpoint Rule.
- 4. If f is a positive function and f''(x) < 0 for $a \le x \le b$, show that $T_n < \int_a^b f(x) dx < M_n$. If f''(x) < 0, then f is concave down. See Figure 5 on p.533.

The line \overline{BC} is chosen to be tangent to point P on the curve.