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Tumor heterogeneity
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Tumor heterogeneity

Inverse problem approach

High-throughput DNA sequencing data by
Oesper, Mahmoody, Raphael
(Genome Biology 2013)

SNP array data by Van Loo et al. (PNAS 2010),
Carter et al. (Nature Biotechnology 2012)
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Tumor heterogeneity
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FISH data

Let xij be the number of copies of gene jin the

i-th cell, where i=1,..,n(~100) and j=1,..,g(~10).

The bounding box’s size

[min x;;, max ;] X..x [min xig, maxx;] |
l l l l

typically grows exponentially in the number
of probes for the breast cancer datasets

This feature seems to be tumor dependent, i.e.,
does not hold necessarily for all cancers
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FISH data

Breast and cervical cancer data publicly
available from NIH

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data
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Motivation

Understanding tumor heterogeneity is a key
step towards:

find first mutation events, hence identify new
drugs and diagnostics

predict response to selective pressure, hence
develop strategies to avoid drug resistance

identify tumors likely to progress, hence avoid
over- and under-treatment.
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Related work

Pennington, Smith, Shackney and Schwartz
(J. of Bioinf. and Comp. B. 2007)

Two probes

Random walk where coordinate i is picked
independently and with probabilities pio, pi-1,piz1 is
modified by {o,-1,+1} respectively.

Efficient heuristic to maximize a likelihood
function over all possible trees and parameters.
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Related work

Chowdhury, Shackney, Heselmeyer-Haddad,
Ried, Schaffer, Schwartz (Best paper in
ISMB'13). Among other contributions:

Methods which are able to handle large number of
cells and probes.

Exponential-time exact algorithm and an efficient
heuristic for optimizing their objective

New test statistics, tumor classification
Extensive experimental evaluation
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Related work

Copies of Gene 2 Chowdhury et al.:

Problem: Find tree
(and possibly Steiner
nodes) to minimize
cost of connecting
all input (terminal)
vertices

o) 1 2 3
Copies of gene 1
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Contributions |

Probabilistic approach

We summarize the empirical distribution based on
a model that captures complex dependencies
among probes without over-fitting.

Allows us to assign weights on the edges of the
positive integer di-grid which capture how likely a
transition is.

And now, how do we derive a tumor phylogeny?..
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Proposed method

Let X; = #copies of gene
integer valued random variable

Let J; be the domain ofXj

We model the joint probability distribution
X = (Xy,..,X,) as

1
Pr(x) — E 1_[ e‘PA(x)
/ AC|g] \

X = (X1,..,%g) Potential function
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Proposed method

with the following properties of hierarchical
log-linear model

log-linearity: the logarithm of each potential
depends linearly on the parameters, e.g., for
g — 2, 11 —_ Iz — {0,1} then,

l{:}{ﬂ}' PI‘ I] — Wy —+ “ﬁfl)Oﬂ{"rl — “} —+ “‘(l)lﬂ{"rl = 1} —+ EE'(Q}Dﬂ{.{'Q — “}
T “‘(Z)IH{'FQ — J_} T *f’-‘(l';z}[}oﬂ{-f'l — “ Loy = ”} -+ U_‘(lzj[}lﬂ{.!'l — (} Lo = ]_}
+ Ei‘(lg}l[jﬂ{.!'l = 1. Lo — (}} + H‘(lg}llﬂ{.!‘l = 1..!'2 — l}
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Proposed method

Hierarchical:
AgB,WA:O_)WB:O
For instance wy, , 53 can be non-zero only if
W{l,Z}' W{1,3}, W{2,3} are non-zero.

Allows significant computational savings
compared to the general form

Biologically meaningful: if a set A of genes does
not interact, any superset of A maintains this

property.
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Proposed method

A lot of related work and off-the-shelf software for
learning the parameters

Based on Zhao, Rocha and Yu who provide a general
framework that allows us to respect the ‘hierarchical’

property ..

... Schmidt and Murphy provide efficient optimization
algorithms for learning a hierarchical log-linear model
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Proposed method

We use the learned hierarchical log-linear model
In two ways

The non-zero weights provide us insights into
dependencies of factors

We use them to assign weights on the positive
integer di-grid
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Proposed method

Copies of Gene 2

A
3 -
2
1
Nicholas Metropolis
0 > Given a probability distribution mon
0 1 2 3 a state space we can define a Markov

Copies of gene 1 Chain whose stationary
distribution is m.
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Contributions i

Question: Can we use the wealth of
Inter-tumor
phylogenetic
methods to
understand
Intra-tumor
cancer
heterogeneity?

O
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Contributions i

Motivated by this question:

We prove necessary and sufficient conditions for
the reconstruction of oncogenetic trees, a popular
method for inter-tumor cancer inference

We exploit these to preprocess a FISH dataset into
an inter-tumor cancer dataset that respects
specific biological characteristics of the
evolutionary process
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Oncogenetic Trees

Desper, Jiang, Kallioniemi, Moch,
Papadimitriou, Schaffer

T(V,E,r) rooted branching

F={A1,..,Am} where Ai is the set of vertices of a
rooted sub-branching of T.

What are the properties that F should have in
order to uniquely reconstruct T?

Let T be consistent with F if it could give rise to F.
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Onco-:ree Patient 1, A1 ={r,a,b,c} a/\_b
a/\_b . r
Patient 2, A2 ={r,a,b}
c</ \‘d a./:\b
Patient 3, A3 ={r,a,b,d} a/\b
e,
Also, consistent with \> ! b
§A1, A2, A3} °, d
,13 a bc CO/ \d



Oncogenetic Trees

Theorem

The necessary and sufficient conditions to
reconstruct T from F are the following:

X,y such that (x,y) is an edge, there exists a set in the
family that contains x but not y.

necessity
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Oncogenetic Trees

If xis not a descedant of y and vice versa then
there exist two sets Ai,Aj such that

X is in Ai but not in Aj
y isin Ajbut notin A

necessity <)>
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Oncogenetic trees

It turns out that the necessary conditions are
sufficient (constructive proof)

Allows us to force an oncogenetic tree to
capture certain aspects of intratumor
heterogeneity dynamics
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Contributions Il

We evaluate our method on real FISH data
where we show findings consistent with
cancer literature

Here, we show results for a breast cancer dataset
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Experimental results

No ground truth, but

concurrent loss of cdhz function and p53
inactivation play a key role in breast cancer
evolution

subsequent changes in ccnd1, myc, znf217
according to our tree are consistent with =

oncogenetic literature b
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Conclusions

There exists a lot of interest in understanding
intra-tumor heterogeneity

Releasement of FISH data that assess it directly
can promote this understanding

Concerning our work:
Better algorithms for fitting the model

Allow higher-order interactions but use additional
penalty (e.g., AlC)
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Conclusions

... concerning our work
Other choices of inter-tumor methods
Tumor classification applications
Consensus FISH trees
Allow more mechanisms in copy number changes

Understand better the connection between
our work and Chowdhury et al.
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Experimental results
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Experimental results

COX-2(2)

B Generated with code available at

CDH1(2)
p53(2)

i ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtree

0.05743 /0.12218\‘0.10449 0.23808

COX-2(1) COX-2(2) COX-2(2) | @ COX-2(3) :
MYC(2) MYC(2) MYC(2) ©oMYC(2)
CCND1(2) CCND1(2) CCND1(2) | : CCND1(2) :
CDH1(2) CDH1(1) CDH1(2) | . CDH1(2)
p53(2) p53(2) p53(1) © p53(2)
ZNF217(2) | | ZNF217(2) | | ZNF217(2) | : ZNF217(2) :

0.01666 0.08104 0.05177 . 0.00000

0.00000

COX-2(4)
MYC(2)
CCND1(2)
CDH1(2)
p53(2)
ZNF217(2)

0.04233
/0.0065%.00625
| SR T .
COX-2(4) COX-2(4) .
MYC(2) © MYC(2)
CCND1(2) . CCND1(2) :
CDH1(1) . CDH1(2)
p53(2) | 1 ps3(1)
ZNF217(2) - ZNF217(2)

0.00002 . 0.00000

COX-2(4)
MYC(2)
CCND1(2)
CDH1(1)
p53(1)
ZNF217(2)

0.00095
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