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Abstract—In this paper, we describe PEGASUS, an open
source Peta Graph Mining library which performs typical
graph mining tasks such as computing the diameter of the
graph, computing the radius of each node and finding the
connected components. As the size of graphs reaches several
Giga-, Tera- or Peta-bytes, the necessity for such a library
grows too. To the best of our knowledge, PEGASUS is the first
such library, implemented on the top of the HADOOP platform,
the open source version of MAPREDUCE.

Many graph mining operations (PageRank, spectral cluster-
ing, diameter estimation, connected components etc.) are es-
sentially a repeated matrix-vector multiplication. In thi s paper
we describe a very important primitive for PEGASUS, called
GIM-V (Generalized Iterated Matrix-Vector multiplication).
GIM-V is highly optimized, achieving (a) good scale-up on the
number of available machines (b) linear running time on the
number of edges, and (c) more than5 times faster performance
over the non-optimized version ofGIM-V.

Our experiments ran on M45, one of the top 50 supercom-
puters in the world. We report our findings on several real
graphs, including one of the largest publicly available Web
Graphs, thanks to Yahoo!, with ≈ 6,7 billion edges.
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I. I NTRODUCTION

Graphs are ubiquitous: computer networks, social net-
works, mobile call networks, the World Wide Web [1],
protein regulation networks to name a few.

The large volume of available data, the low cost of storage
and the stunning success of online social networks and
web2.0 applications all lead to graphs of unprecedented
size. Typical graph mining algorithms silently assume that
the graph fits in the memory of a typical workstation, or
at least on a single disk; the above graphs violate these
assumptions, spanning multiple Giga-bytes, and heading to
Tera- and Peta-bytes of data.

A promising tool is parallelism, and specifically MAPRE-
DUCE [2] and its open source version, HADOOP. Based
on HADOOP, here we describe PEGASUS, a graph min-
ing package for handling graphs withbillions of nodes
and edges. The PEGASUS code and several dataset are
at http://www.cs.cmu.edu/∼pegasus. The contributions are
the following:

1) Unification of seemingly different graph mining tasks,
via a generalization of matrix-vector multiplication
(GIM-V).

2) The careful implementation ofGIM-V, with several
optimizations, and several graph mining operations
(PageRank, Random Walk with Restart(RWR), diame-
ter estimation, and connected components). Moreover,
the method is linear on the number of edges, and scales
up well with the number of available machines.

3) Performance analysis, pinpointing the most successful
combination of optimizations, which lead to up to5
timesbetter speed than naive implementation.

4) Analysis of large, real graphs, including one of the
largest publicly available graph that was ever analyzed,
Yahoo’s web graph.

The rest of the paper is organized as follows. Sec-
tion II presents the related work. Section III describes our
framework and explains several graph mining algorithms.
Section IV discusses optimizations that allow us to achieve
significantly faster performance in practice. In Section V we
present timing results and Section VI our findings in real
world, large scale graphs. We conclude in Section VII.

II. BACKGROUND AND RELATED WORK

The related work forms two groups, graph mining, and
HADOOP.

Large-Scale Graph Mining.:There are a huge number
of graph mining algorithms, computing communities (eg.,
[3], DENGRAPH [4], METIS [5]), subgraph discovery(e.g.,
GraphSig [6], [7], [8], [9], gPrune [10], gApprox [11],
gSpan [12], Subdue [13], HSIGRAM/VSIGRAM [14],
ADI [15], CSV [16]), finding important nodes (e.g., PageR-
ank [17] and HITS [18]), computing the number of tri-
angles [19], [20], computing the diameter [21], topic de-
tection [22], attack detection [23], with too-many-to-list
alternatives for each of the above tasks. Most of the previous
algorithms do not scale, at least directly, to several millions
and billions of nodes and edges.

For connected components, there are several algorithms,
using Breadth-First Search, Depth-First-Search, “propaga-
tion” ([24], [25], [26]), or “contraction” [27] . These works
rely on a shared memory model which limits their ability to
handle large, disk-resident graphs.

MapReduce and Hadoop.:MAPREDUCE is a program-
ming framework [2] [28] for processing huge amounts of
unstructured data in a massively parallel way. MAPREDUCE

has two major advantages: (a) the programmer is oblivious



of the details of the data distribution, replication, load bal-
ancing etc. and furthermore (b) the programming concept is
familiar, i.e., the concept of functional programming. Briefly,
the programmer needs to provide only two functions, amap
and areduce. The typical framework is as follows [29]: (a)
the map stage sequentially passes over the input file and
outputs (key, value) pairs; (b) theshufflingstage groups of
all values by key, (c) thereducestage processes the values
with the same key and outputs the final result.

HADOOP is the open source implementation of MAPRE-
DUCE. HADOOP provides the Distributed File System
(HDFS) [30] and PIG, a high level language for data
analysis [31]. Due to its power, simplicity and the fact
that building a small cluster is relatively cheap, HADOOP

is a very promising tool for large scale graph mining
applications, something already reflected in academia, see
[32]. In addition to PIG, there are several high-level language
and environments for advanced MAPREDUCE-like systems,
including SCOPE [33], Sawzall [34], and Sphere [35].

III. PROPOSEDMETHOD

How can we quickly find connected components, diameter,
PageRank, node proximities of very large graphs fast? We
show that, even if they seem unrelated, eventually we
can unify them using theGIM-V primitive, standing for
Generalized Iterative Matrix-Vector multiplication, which
we describe in the next.

A. Main Idea

GIM-V, or ‘Generalized Iterative Matrix-Vector multipli-
cation’ is a generalization of normal matrix-vector multipli-
cation. Suppose we have an by n matrix M and a vectorv
of sizen. Let mi,j denote the (i, j)-th element ofM . Then
the usual matrix-vector multiplication is

M × v = v′ wherev′i =
∑n

j=1 mi,jvj .

There are three operations in the previous formula, which,
if customized separately, will give a surprising number of
useful graph mining algorithms:

1) combine2: multiply mi,j andvj .
2) combineAll: sum n multiplication results for node

i.
3) assign: overwrite previous value ofvi with new

result to makev′i.

In GIM-V, let’s define the operator×G, where the three
operations can be defined arbitrarily. Formally, we have:

v′ = M ×G v
wherev′i = assign(vi,combineAlli({xj | j =
1..n, andxj =combine2(mi,j, vj)})).

The functions combine2(), combineAll(), and
assign() have the following signatures (generalizing
the product, sum and assignment, respectively, that the
traditional matrix-vector multiplication requires):

1) combine2(mi,j, vj) : combinemi,j andvj .

2) combineAlli(x1, ..., xn) : combine all the results
from combine2() for nodei.

3) assign(vi, vnew) : decide how to updatevi with
vnew .

The ‘Iterative’ in the name ofGIM-V denotes that
we apply the×G operation until an algorithm-specific
convergence criterion is met. As we will see in a moment,
by customizing these operations, we can obtain different,
useful algorithms including PageRank, Random Walk with
Restart, connected components, and diameter estimation.
But first we want to highlight the strong connection of
GIM-V with SQL: WhencombineAlli() andassign()
can be implemented by user defined functions, the operator
×G can be expressed concisely in terms of SQL. This
viewpoint is important when we implementGIM-V in large
scale parallel processing platforms, including HADOOP, if
they can be customized to support several SQL primitives
including JOIN and GROUP BY. Suppose we have anedge
tableE(sid, did, val) and avector tableV(id,
val), corresponding to a matrix and a vector, respectively.
Then,×G corresponds to the following SQL statement -
we assume that we have (built-in or user-defined) functions
combineAlli() and combine2()) and we also assume
that the resulting table/vector will be fed into theassign()
function (omitted, for clarity):

SELECT E.sid,combineAllE.sid(combine2(E.val,V.val))
FROM E, V
WHERE E.did=V.id
GROUP BY E.sid

In the following sections we show how we can customize
GIM-V, to handle important graph mining operations in-
cluding PageRank, Random Walk with Restart, diameter
estimation, and connected components.

B. GIM-V and PageRank

Our first application ofGIM-V is PageRank, a famous
algorithm that was used by Google to calculate relative
importance of web pages [17]. The PageRank vectorp of n
web pages satisfies the following eigenvector equation:

p = (cET + (1− c)U)p

wherec is a damping factor (usually set to 0.85),E is the
row-normalized adjacency matrix (source, destination), and
U is a matrix with all elements set to1/n.

To calculate the eigenvectorp we can use the power
method, which multiplies an initial vector with the matrix,
several times. We initialize the current PageRank vectorpcur

and set all its elements to1/n. Then the next PageRank
pnext is calculated bypnext = (cET + (1 − c)U)pcur. We
continue to do the multiplication untilp converges.

PageRank is a direct application ofGIM-V. In this view,
we first construct a matrixM by column-normalizeET

such that every column ofM sum to 1. Then the next



PageRank is calculated bypnext = M ×G pcur where the
three operations are defined as follows:

1) combine2(mi,j, vj) = c×mi,j × vj

2) combineAlli(x1, ..., xn) = (1−c)
n

+
∑n

j=1 xj

3) assign(vi, vnew) = vnew

C. GIM-V and Random Walk with Restart

Random Walk with Restart(RWR) is an algorithm to
measure the proximity of nodes in graph [36]. In RWR,
the proximity vectorrk from node k satisfies the equation:

rk = cMrk + (1 − c)ek

whereek is a n-vector whosekth element is 1, and every
other elements are 0.c is a restart probability parameter
which is typically set to 0.85 [36]. M is a column-normalized
and transposed adjacency matrix, as in Section III-B. In
GIM-V, RWR is formulated byrnext

k = M ×G rcur
k where

the three operations are defined as follows (I(x) is 1 if x is
true, and 0 otherwise.):

1) combine2(mi,j, vj) = c×mi,j × vj

2) combineAlli(x1, ..., xn) = (1 − c)I(i 6= k) +∑n

j=1 xj

3) assign(vi, vnew) = vnew

D. GIM-V and Diameter Estimation

HADI [21] is an algorithm to estimate the diameter and
radius of large graphs. The diameter of a graph is the
maximum of the length of the shortest path between every
pair of nodes. The radius of a nodevi is the number of
hops that we need to reach the farthest-away node fromvi.
The main idea of HADI is as follows. For each nodevi in
the graph, we maintain the number of neighbors reachable
from vi within h hops. As h increases, the number of
neighbors increases untilh reaches it maximum value. The
diameter ish where the number of neighbors withinh + 1
does not increase for every node. For further details and
optimizations, see [21].

The main operation of HADI is updating the number
of neighbors ash increases. Specifically, the number of
neighbors within hoph reachable from nodevi is encoded
in a probabilistic bitstringbh

i which is updated as follows:
bh+1
i = bh

i BITWISE-OR {bh
k | (i, k) ∈ E}

In GIM-V, the bitstring update of HADI is represented by
bh+1 = M ×G bh

where M is an adjacency matrix,bh+1 is a vector of length
n which is updated by
bh+1
i =assign(bh

i ,combineAlli({xj | j = 1..n, and
xj =combine2(mi,j, b

h
j )})),

and the three operations are defined as follows:
1) combine2(mi,j, vj) = mi,j × vj .
2) combineAlli(x1, ..., xn) = BITWISE-OR{xj | j =

1..n}
3) assign(vi, vnew) = BITWISE-OR(vi, vnew).
The×G operation is run iteratively until the bitstring for

all the nodes do not change.

E. GIM-V and Connected Components

We propose HCC, a new algorithm for finding connected
components in large graphs. Like HADI , HCC is an appli-
cation ofGIM-V with custom functions. The main idea is
as follows. For every nodevi in the graph, we maintain
a component idch

i which is the minimum node id within
h hops fromvi. Initially, ch

i of vi is set to its own node
id: that is, c0

i = i. For each iteration, each node sends its
current ch

i to its neighbors. Thench+1
i , component id of

vi at the next step, is set to the minimum value among
its current component id and the received component ids
from its neighbors. The crucial observation is that this
communication between neighbors can be formulated in
GIM-V as follows:

ch+1 = M ×G ch

where M is an adjacency matrix,ch+1 is a vector of length
n which is updated by
ch+1
i =assign(ch

i ,combineAlli({xj | j = 1..n, and
xj =combine2(mi,j, c

h
j )})),

and the three operations are defined as follows:

1) combine2(mi,j, vj) = mi,j × vj .
2) combineAlli(x1, ..., xn) = MIN{xj | j = 1..n}
3) assign(vi, vnew) = MIN(vi, vnew).

By repeating this process, component ids of nodes in a
component are set to the minimum node id of the compo-
nent. We iteratively do the multiplication until component
ids converge. The upper bound of the number of iterations
in HCC are determined by the following theorem.

Theorem 1 (Upper bound of iterations inHCC): HCC

requires maximumd iterations whered is the diameter of
the graph.

Proof: The minimum node id is propagated to its
neighbors at mostd times.

Since the diameter of real graphs are relatively small, HCC

completes after small number of iterations.

IV. FAST ALGORITHMS FORGIM-V

How can we parallelize the algorithm presented in the
previous section? In this section, we first describe naive
HADOOP algorithms for GIM-V. After that we propose
several faster methods forGIM-V.

A. GIM-V BASE: Naive Multiplication

GIM-V BASE is a two-stage algorithm whose pseudo
code is in Algorithm 1 and 2. The inputs are an edge
file and a vector file. Each line of the edge file contains
one (idsrc, iddst, mval) which corresponds to a non-zero
cell in the adjacency matrixM . Similarly, each line of the
vector file contains one(id, vval) which corresponds to an
element in the vectorV . Stage1 performscombine2
operation by combining columns of matrix(iddst of M )
with rows of vector(id of V ). The output ofStage1 are
(key, value) pairs where key is the source node id of the



Algorithm 1 : GIM-V BASE Stage 1.

Input : Matrix M = {(idsrc, (iddst, mval))},
Vector V = {(id, vval)}

Output : Partial vector
V ′ = {(idsrc,combine2(mval, vval)}

Stage1-Map(Key k, Value v) ;1

begin2

if (k, v) is of type Vthen3

Output(k, v); // (k: id, v: vval)4

else if (k, v) is of type Mthen5

(iddst, mval)← v;6

Output(iddst, (k, mval)); // (k: idsrc)7

end8

Stage1-Reduce(Key k, Value v[1..m]) ;9

begin10

saved kv ←[ ];11

saved v ←[ ];12

foreach v ∈ v[1..m] do13

if (k, v) is of type Vthen14

saved v ← v;15

Output(k, (“self”, saved v));16

else if (k, v) is of type Mthen17

Add v to saved kv // (v: (idsrc, mval))18

end19

foreach (id′src, mval′) ∈ saved kv do20

Output(id′src, (“others”,combine2(mval′, saved v)));21

end22

end23

matrix(idsrc of M ) and the value is the partially combined
result(combine2(mval, vval)). This output of Stage1
becomes the input ofStage2. Stage2 combines all partial
results fromStage1 and assigns the new vector to the old
vector. ThecombineAlli() andassign() operations are
done in line 16 ofStage2, where the “self” and “others”
tags in line 16 and line 21 ofStage1 are used to makevi

andvnew of GIM-V, respectively.
This two-stage algorithm is run iteratively until

application-specific convergence criterion is met. In Algo-
rithm 1 and 2, Output(k, v) means to output data with the
key k and the valuev.

B. GIM-V BL: Block Multiplication

GIM-V BL is a fast algorithm forGIM-V which is
based on block multiplication. The main idea is to group
elements of the input matrix into blocks or submatrices of
size b by b. Also we group elements of input vectors into
blocks of lengthb. Here the grouping means we put all the
elements in a group into one line of input file. Each block
contains only non-zero elements of the matrix or vector.
The format of a matrix block with k nonzero elements
is (rowblock, colblock, rowelem1

, colelem1
, mvalelem1

, ...,

Algorithm 2 : GIM-V BASE Stage 2.

Input : Partial vectorV ′ = {(idsrc, vval′)}
Output : Result VectorV = {(idsrc, vval)}

Stage2-Map(Key k, Value v) ;1

begin2

Output(k, v);3

end4

Stage2-Reduce(Key k, Value v[1..m]) ;5

begin6

others v ←[ ];7

self v ←[ ];8

foreach v ∈ v[1..m] do9

(tag, v′)← v;10

if tag == “same” then11

self v ← v′;12

else if tag == “others” then13

Add v′ to others v;14

end15

Output(k,assign(self v,combineAllk(others v)));16

end17

rowelemk
, colelemk

, mvalelemk
). Similarly, the format

of a vector block with k nonzero elements is
(idblock, idelem1

, vvalelem1
, ..., idelemk

, vvalelemk
). Only

blocks with at least one nonzero elements are saved to disk.
This block encoding forces nearby edges in the adjacency
matrix to be closely located; it is different from HADOOP’s
default behavior which do not guarantee co-locating them.
After grouping, GIM-V is performed on blocks, not on
individual elements.GIM-V BL is illustrated in Figure 1.

Figure 1. GIM-V BL using 2 x 2 blocks. Bi,j represents a matrix block,
and vi represents a vector block. The matrix and vector are joined block-
wise, not element-wise.

In our experiment at Section V,GIM-V BL is more than 5
times faster thanGIM-V BASE. There are two main reasons
for this speed-up.

• Sorting Time Block encoding decrease the number
of items to sort in the shuffling stage of HADOOP.
We observed that the main bottleneck of programs in
HADOOP is its shuffling stage where network transfer,
sorting, and disk I/O happens. By encoding to blocks
of width b, the number of lines in the matrix and the
vector file decreases to1/b2 and 1/b times of their
original size, respectively for full matrices and vectors.



• Compression The size of the data decreases signifi-
cantly by converting edges and vectors to block format.
The reason is that inGIM-V BASE we need4×2 bytes
to save each (srcid, dstid) pair since we need 4 bytes to
save a node id using Integer. However inGIM-V BL
we can specify eachblock using a block row id and
a block column id with two 4-byte Integers, and refer
to elements inside the block using2 × logb bits. This
is possible because we can use logb bits to refer to a
row or column inside a block. By this block method
we decreased the edge file size(e.g., more than 50%
for YahooWeb graph in Section V).

C. GIM-V CL: Clustered Edges

When we use block multiplication, another advantage is
that we can benefit from clustered edges. As can be seen
from Figure 2, we can use smaller number of blocks if
input edge files are clustered. Clustered edges can be built
if we can use heuristics in data preprocessing stage so that
edges are clustered, or by co-clustering (e.g., see [32]). The
preprocessing for edge clustering need to be done only once;
however, they can be used by every iteration of various
application ofGIM-V. So we have two variants ofGIM-V:
GIM-V CL, which is GIM-V BASE with clustered edges,
and GIM-V BL-CL, which is GIM-V BL with clustered
edges. Be aware that clustered edges is only useful when
combined with block encoding. If every element is treated
separately, then clustered edges don’t help anything for the
performance ofGIM-V.

Figure 2. Clustered vs. non-clustered graphs with same topology. The
edges are grouped into 2 by 2 blocks. The left graph uses only 3blocks
while the right graph uses 9 blocks.

D. GIM-V DI: Diagonal Block Iteration

As mentioned in Section IV-B, the main bottleneck of
GIM-V is its shuffling and disk I/O steps. SinceGIM-V
iteratively runs Algorithm 1 and 2, and each Stage requires
disk IO and shuffling, we could decrease running time if we
decrease the number of iterations.

In HCC, it is possible to decrease the number of iterations.
The main idea is to multiply diagonal matrix blocks and
corresponding vector blocks as much as possible in one
iteration. Remember that multiplying a matrix and a vector
corresponds to passing node ids to one step neighbors in

HCC. By multiplying diagonal blocks and vectors until the
contents of the vectors do not change in one iteration, we
can pass node ids to neighbors located more than one step
away. This is illustrated in Figure 3.

Figure 3. Propagation of component id(=1) when block width is 4. Each
element in the adjacency matrix of (a) represents a 4 by 4 block; each
column in (b) and (c) represents the vector after each iteration. GIM-V DL
finishes in 4 iterations whileGIM-V BL requires 8 iterations.

We see that in Figure 3 (c) we multiplyBi,i with vi

several times untilvi do not change in one iteration. For
example in the first iterationv0 changed from{1,2,3,4} to
{1,1,1,1} since it is multiplied toB0,0 four times.GIM-V
DI is especially useful in graphs with long chains.

The upper bound of the number of iterations in HCC DI
with chain graphs are determined by the following theorem.

Theorem 2 (Upper bound of iterations inHCC DI): In a
chain graph with lengthm, it takes maximum2∗⌈m/b⌉−1
iterations in HCC DI with block sizeb.

Proof: The worst case happens when the minimum
node id is in the beginning of the chain. It requires 2
iterations(one for propagating the minimum node id inside
the block, another for passing it to the next block) for the
minimum node id to move to an adjacent block. Since
the farthest block is⌈m/b⌉ − 1 steps away, we need
2 ∗ (⌈m/b⌉ − 1) iterations. When the minimum node id
reached the farthest away block,GIM-V DI requires one
more iteration to propagate the minimum node id inside
the last block. Therefore, we need2 ∗ (⌈m/b⌉ − 1) + 1 =
2 ∗ ⌈m/b⌉ − 1 iterations.



E. Analysis

We analyze the time and space complexity ofGIM-V. In
the theorems below,M is the number of machines.

Theorem 3 (Time Complexity ofGIM-V): One iteration
of GIM-V takesO(V +E

M
log V +E

M
) time.

Proof: Assuming uniformity, mappers and reducers
of Stage1 and Stage2 receivesO(V +E

M
) records per

machine. The running time is dominated by the sorting time
for V +E

M
records, which isO(V +E

M
log V +E

M
).

Theorem 4 (Space Complexity ofGIM-V): GIM-V
requiresO(V + E) space.

Proof: We assume the value of the elements of the
input vectorv is constant. Then the theorem is proved by
noticing that the maximum storage is required at the output
of Stage1 mappers which requiresO(V + E) space up to
a constant.

V. PERFORMANCE ANDSCALABILITY

We do experiments to answer following questions:

Q1 How doesGIM-V scale up?
Q2 Which of the proposed optimizations(block mul-

tiplication, clustered edges, and diagonal block
iteration) gives the highest performance gains?

The graphs we used in our experiments at Section V and
VI are described in Table I1 .

Name Nodes Edges Description

YahooWeb 1,413 M 6,636 M WWW pages in 2002
LinkedIn 7.5 M 58 M person-person in 2006

4.4 M 27 M person-person in 2005
1.6 M 6.8 M person-person in 2004
85 K 230 K person-person in 2003

Wikipedia 3.5 M 42 M doc-doc in 2007/02
3 M 35 M doc-doc in 2006/09

1.6 M 18.5 M doc-doc in 2005/11
Kronecker 177 K 1,977 M synthetic

120 K 1,145 M synthetic
59 K 282 M synthetic
19 K 40 M synthetic

DBLP 471 K 112 K document-document
flickr 404 K 2.1 M person-person
Epinions 75 K 508 K who trusts whom

Table I
ORDER AND SIZE OF NETWORKS.

We run PEGASUS in M45 HADOOP cluster by Yahoo!
and our own cluster composed of 9 machines. M45 is
one of the top 50 supercomputers in the world with 1.5
Pb total storage and 3.5 Tb memory. For the performance
and scalability experiments, we used synthetic Kronecker
graphs [37] since we can generate them with any size, and
they are one of the most realistic graphs among synthetic
graphs.

1Wikipedia: http://www.cise.ufl.edu/research/sparse/matrices/
Kronecker, DBLP: http://author’s website/PEGASUS/
YahooWeb, LinkedIn: released under NDA.
flickr, Epinions, patent: not public data.

A. Results

We first show how the performance of our method changes
as we add more machines. Figure 4 shows the running time
and performance ofGIM-V for PageRank with Kronecker
graph of 282 million edges, and size 32 blocks if necessary.

In Figure 4 (a), for all of the methods the running time
decreases as we add more machines. Note that clustered
edges(GIM-V CL) didn’t help performance unless it is com-
bined with block encoding. When it is combined, however,
it showed the best performance (GIM-V BL-CL).

In Figure 4 (b), we see that the relative performance
of each method compared toGIM-V BASE method de-
creases as number of machines increases. With 3 machines
(minimum number of machines which HADOOP distributed
mode supports), the fastest method(GIM-V BL-CL) ran
5.27 times faster thanGIM-V BASE. With 90 machines,
GIM-V BL-CL ran 2.93 times faster thanGIM-V BASE.
This is expected since there are fixed component(JVM load
time, disk I/O, network communication) which can not be
optimized even if we add more machines.

Next we show how the performance of our methods
changes as the input size grows. Figure 4 (c) shows the
running time of GIM-V with different number of edges
under 10 machines. As we can see, all of the methods scales
linearly with the number of edges.

Finally, we compare the performance ofGIM-V DI and
GIM-V BL-CL for HCC in graphs with long chains. For this
experiment we made a new graph whose diameter is 17, by
adding a length 15 chain to the 282 million Kronecker graph
which has diameter 2. As we see in Figure 5,GIM-V DI
finished in 6 iteration whileGIM-V BL-CL finished in 18
iteration. The running time of both methods for the first
6 iterations are nearly same. Therefore, the diagonal block
iteration method decrease the number of iterations while not
affecting the running time of each iteration much.
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Figure 4. Scalability and Performance of GIM-V. (a) Runningtime decreases quickly as more machines are added. (b) The performance(=1/running
time) of ’BL-CL’ wins more than 5x (for n=3 machines) over the ’BASE’. (c) Every version ofGIM-V shows linear scalability.

VI. GIM-V AT WORK

In this section we use PEGASUS for mining very large
graphs. We analyze connected components, diameter, and
PageRank of large real world graphs. We show that PE-
GASUS can be useful for finding patterns, outliers, and
interesting observations.

A. Connected Components of Real Networks

We used the LinkedIn social network and Wikipedia page-
linking-to-page network, along with the YahooWeb graph for
connected component analysis. Figure 6 show the evolution
of connected components of LinkedIn and Wikipedia data.
Figure 7 show the distribution of connected components in
the YahooWeb graph. We have following observations.

Figure 7. Connected Components of YahooWeb. Notice the two anomalous
spikes which are far from the constant-slope tail.

Power Law Tails in Connected Components Distri-
butions We observed power law relation of count and
size of small connected components in Figure 6(a),(b) and
Figure 7. This reflects that the connected components in
real networks are formed by processes similar to Chinese
Restaurant Process and Yule distribution [38].

Stable Connected Components After Gelling Point
In Figure 6(a), the distribution of connected components
remain stable after a ‘gelling’ point[39] at year 2003.We

can see that the slope of tail distribution do not change after
year 2003. We observed the same phenomenon in Wikipedia
graph in Figure 6 (b). The graph show stable tail slopes from
the beginning, since the network were already mature in year
2005.

Absorbed Connected Components and Dunbar’s num-
ber In Figure 6(a), we find two large connected components
in year 2003. However it became merged in year 2004.
The giant connected component keeps growing, while the
second and the third largest connected components do not
grow beyond size 100 until they are absorbed to the giant
connected component in Figure 6 (a) and (b). This agrees
with the observation[39] that the size of the second/third
connected components remains constant or oscillates. Lastly,
the maximum connected component size except the giant
connected component in the LinkedIn graph agrees well
with Dunbar’s number[40], which says that the maximum
community size in social networks is roughly 150.

Anomalous Connected ComponentsIn Figure 7, we
found two outstanding spikes. In the first spike at size
300, more than half of the components have exactly the
same structure and they were made from a domain selling
company where each component represents a domain to be
sold. The spike happened because the companyreplicated
sites using the same template, and injected the disconnected
components into WWW network. In the second spike at
size 1101, more than 80 % of the components are porn
sites disconnected from the giant connected component. By
looking at the distribution plot of connected components,
we could find interesting communities with special purposes
which are disconnected from the rest of the Internet.

B. PageRanks of Real Networks

We analyzed PageRank of YahooWeb graph with PEGA-
SUS. Figure 8 shows the distribution of PageRank of the
graph. We observed that the PageRank follows a power
law distribution with exponent 1.97, which is very close
to the exponent 1.98 of the in-degree distribution of the
same graph. Pandurangan et. al.[41] observed that the two
exponent are same for 100,000 pages in Brown University



(a) Connected Components of LinkedIn (b) Connected Components of Wikipedia
Figure 6. The evolution of connected components. (a) The giant connected component grows for each year. However, the second largest connected
component do not grow above Dunbar’s number(≈ 150) and the slope of the tail remains constant after the gelling point at year 2003. (b) As in LinkedIn,
notice the growth of giant connected component and the constant slope for tails.

domain. Our result is that the same observation holds true for
10,000 timeslarger network with 1.4billion pages snapshot
of the Internet.

The top 3 highest PageRank sites at year 2002
are www.careerbank.com, access.adobe.com, and
top100.rambler.ru. As expected, they have huge in-
degrees (from≈70K to ≈70M).

Figure 8. PageRank distribution of YahooWeb. The distribution follows
power law with exponent 1.97.

C. Diameter of Real Network

We analyzed the diameter and radius of real networks with
PEGASUS. Figure 9 shows the radius plot of real networks.
We have following observations:

Small Diameter For all the graphs in Figure 9, the
average diameter was less than 6.09. This means that the
real world graphs are well connected.

Constant Diameter over Time For LinkedIn graph, the
average diameter was in the range of 5.28 and 6.09. For

Wikipedia graph, the average diameter was in the range of
4.76 and 4.99. Note that the diameter do not monotonically
increase as network grows: they remain constant or shrinks
over time.

Bimodal Structure of Radius Plot For every plot,
we observe bimodal shape which reflects the structure of
these real graphs. The graphs have one giant connected
component where majority of nodes belong to, and many
smaller connected components whose size follows power
law. Therefore, the first mode is at radius zero which comes
from one-node components; second mode(e.g., at radius 6
in Epinion) comes from the giant connected component.
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Figure 9. Radius of real graphs.
X axis: radius. Y axis: number of nodes.
(Row 1) LinkedIn from 2003 to 2006.
(Row 2) Wikipedia from 2005 to 2007.
(Row 3) DBLP, flickr, Epinion.



VII. C ONCLUSIONS

In this paper we proposed PEGASUS, a graph mining
package for very large graphs using the HADOOP architec-
ture. The main contributions are followings:

• We identified the common, underlying primitive of sev-
eral graph mining operations, and we showed that it is a
generalized form of a matrix-vector multiplication. We
call this operation Generalized Iterative Matrix-Vector
multiplication and showed that it includes the diameter
estimation, the PageRank estimation, RWR calculation,
and finding connected-components, as special cases.

• Given its importance, we proposed several optimiza-
tions (block-multiplication, diagonal block iteration etc)
and reported the winning combination, which achieves
5 timesfaster performance to the naive implementation.

• We implemented PEGASUS and ran it on M45, one
of the 50 largest supercomputers in the world (3.5 Tb
memory, 1.5Pb disk storage). Using PEGASUS and our
optimized Generalized Iterative Matrix-Vector multipli-
cation variants, we analyzed real world graphs to reveal
important patterns including power law tails, stability
of connected components, and anomalous components.
Our largest graph, “YahooWeb”, spanned 120Gb, and
is one of the largest publicly available graph that was
ever studied.

Other open source libraries such as HAMA (Hadoop Ma-
trix Algebra) [42] can benefit significantly from PEGASUS.
One major research direction is to add to PEGASUS an
eigensolver, which will compute the topk eigenvectors and
eigenvalues of a matrix. Another directions includes tensor
analysis on HADOOP ([43]), and inferences of graphical
models in large scale.
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