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 Densest subgraph problem is very popular in 
practice. However, not what we want for 
many applications. 

 δ=edge density,D=diameter,τ=triangle density 
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 Thematic communities and spam link farms 
[Gibson, Kumar, Tomkins ‘05] 

 Graph visualization[Alvarez-Hamelin etal.’05] 
 Real time story identification [Angel et al. ’12] 
 Motif detection [Batzoglou Lab ‘06]  
 Epilepsy prediction [Iasemidis et al.  ‘01]  
 Finding correlated genes [Horvath et al.]  
 Many more .. 
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 Clique: each vertex in S connects to every 
other vertex in S.  
 

  α-Quasi-clique:  
the set S has at least α|S|(|S|-1)/2 edges. 
 

 k-core: every vertex connects to at least k 
other vertices in S. 
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 δ (S)=
𝑒[𝑆]

( 𝑆  
2
)

  

 

  d (S)=
2𝑒[𝑆]

|𝑆|
  

 

  t (S)=
𝑡[𝑆]

( 𝑆  
3
)
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 General framework which subsumes popular 
density functions. 
 

 Optimal quasi-cliques. 
 

 An algorithm with additive error guarantees and 
a local-search heuristic. 
 

 Variants  
 Top-k optimal quasi-cliques 
 Successful team formation 
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 Experimental evaluation 

 Synthetic graphs 

 Real graphs 

 

 Applications 

 Successful team formation of computer scientists  

 Highly-correlated genes from microarray datasets  
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First, some related work. 
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K4 

 Maximum clique problem:  
find clique of maximum possible size. 
NP-complete problem 

 Unless P=NP, there cannot be a  
    polynomial time algorithm that  
    approximates the maximum clique  
    problem within a factor better than 𝑂(𝑛1−𝜀)    
    for any ε>0 [Håstad ‘99]. 



 δ (S)=
𝑒[𝑆]

( 𝑆  
2
)

  

 

  d (S)=
𝑒[𝑆]

|𝑆|
  

 

 d (S)=
𝑒[𝑆]

|𝑆|
, |S|=k  

 

 d (S)=
𝑒[𝑆]

|𝑆|
, |S| ≥ k (|S| ≤ k) 
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A single edge achieves  
always maximum possible δ(S) 

Densest subgraph problem 

k-Densest subgraph problem 

 DalkS (Damks) 



 Maximize average degree  
 

 Solvable in polynomial time 

 Max flows       (Goldberg) 

 LP relaxation (Charikar) 
 

 Fast ½-approximation algorithm (Charikar) 
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 k-densest subgraph problem is NP-hard  
 

 Feige, Kortsatz, Peleg    
Bhaskara, Charikar, Chlamtac, Vijayraghavan 
Asahiro et al.  
Andersen 
Khuller, Saha [approximation algorithms], 
Khot [no PTAS]. 
 

KDD'13 12 



 A set S of vertices is α-quasiclique if  

𝑒 𝑆 ≥ 𝛼(
𝑆  
2
) 

 
 [Uno ’10] introduces an algorithm to 

enumerate all α-quasicliques. 
 

KDD'13 13 



 For a set of vertices S define  
𝑓𝛼 𝑆 = 𝑔 𝑒 𝑆 − 𝑎ℎ |𝑆|  

where g,h are both strictly increasing, α>0.  
 
 
 Optimal (α,g,h)-edge-surplus problem 

Find S* such that 𝑓𝛼 𝑆∗ ≥ 𝑓𝛼(𝑆). 
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 When g(x)=h(x)=log(x), α=1, then 
Optimal (α,g,h)-edge-surplus problem 

becomes max log
𝑒[𝑆]

|𝑆|
, which is the densest 

subgraph problem. 
 g(x)=x, h(x)=0 if x=k, o/w +∞ we get the k-

densest subgraph problem. 
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 When g(x)=x, h(x)=x(x-1)/2 then we obtain 

max
𝑆⊆𝑉, 𝑆 ≥2

 𝑒 𝑆 − 𝛼( 𝑆  
2
) ,  which we define as  

the optimal quasiclique (OQC) problem. 
 

 Theorem 1: Let g(x)=x, h(x) concave. Then the 
optimal (α,g,h)-edge-surplus problem is poly-
time solvable.  
 However, this family is not well suited for applications 

as it returns most of the graph. 
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 Conjecture: finding a planted clique C of size 

𝑛
1

2
−𝛿 , 𝛿 > 0 in a random binomial graph 𝐺 𝑛,

1

2
 

is hard.  
 

 Let  f S = e S −
2

3
 ( 𝑆  
2
).  Then,  

f C =
1

3
 𝑛

1

2
−𝛿

2
> 0,  

     𝐸 𝑓 𝑆 = −
1

6

𝑆  
2

< 0.  
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 Notice that in general the optimal value can 
be negative.  
 

 We can obtain guarantees for a shifted 
objective but introduces large additive error 
making the algorithm almost useless, i.e., 
except for very special graphs. 
 

 Other type of guarantees more suitable.  
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 Additive error approximation algorithm 

 𝐺𝑛 ← 𝐺 

 For 𝑘 ← 𝑛   downto 1 

▪ Let v be the smallest degree vertex in 𝐺𝑘. 

▪ 𝐺𝑘−1 ← 𝐺𝑘 − {𝑣} 

 Output 𝑆 ← 𝑎𝑟𝑔𝑚𝑎𝑥1≤𝑘≤𝑛 𝑓𝑎(𝐺𝑘) 
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Theorem: fα 𝑆 ≥ 𝑓𝛼 𝑆∗ −
𝛼

2
"𝑠𝑚𝑎𝑙𝑙" × 𝑆   

Running time: O(n+m). However it would be nice  
to have running time O(|output|). 



1. Initialize S with a random vertex. 
2. For t=1 to Tmax 

1. Keep expanding S by adding at each time a 
vertex 𝑣 ∉ 𝑆 such that 𝑓𝛼 𝑆 ∪ 𝑣 ≥ 𝑓𝛼(𝑆). 

2. If not possible see whether there exist 𝑣 ∈ 𝑆   
such that 𝑓𝛼 𝑆 − {𝑣} ≥ 𝑓𝛼(𝑆).  

1. If yes, remove it. Go back to previous step.  

2. If not, stop and output S. 
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DS M1 M2 DS M1 M2 DS M1 M2 DS M1 M2 

Wiki ‘05 24.5
K 

451 321 .26 .43 .48 3 3 2 .02 .06 .11 

Youtube 1.9K 124 119 0.05 0.46 0.49 4 2 2 .02 .12 .14 
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 Given a set of vertices Q 

max
Q⊆𝑆⊆𝑉

  𝑓𝛼 S = max
Q⊆𝑆⊆𝑉

 𝑒 𝑆 − 𝛼(
𝑆  
2
)  

 Lemma: NP-hard problem. 
 Observation: Easy to adapt our efficient 

algorithms to this setting. 

 Local Search: Initialize S with Q and never remove 
a vertex if it belongs to Q 

 Greedy: Never peel off a vertex from Q 
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 Suppose that a set Q of scientists wants to 
organize a workshop. How do they invite 
other scientists to participate in the 
workshop so that the set of all participants, 
including Q, have similar interests ? 
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34 vertices , δ(S)= 0.81 
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               13 vertices, δ(S)=0.49 
 



 Given a microarray dataset and a set of genes 
Q, find a set of genes S that includes Q and 
they are all highly correlated.  

 Co-expression network 
 Measure gene expression across multiple samples  

 Create correlation matrix  

 Edges between genes if their correlation is > ρ. 
 A dense subgraph in a co-expression network 

corresponds to a set of highly correlated 
genes.  
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 Hardness  
 Analysis of local search algorithm  
 Other algorithms with additive 

approximation guarantees  
 Study the natural family of objectives  

max
𝑆⊆𝑉, 𝑆 ≥2

 𝑒 𝑆 − 𝛼 𝑆 𝛾 , 𝛾 > 1 
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