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Abstract. Triangle counting is an important problem in graph mining. Two frequently
used metrics in complex network analysis which require the count of triangles are the
clustering coefficients and the transitivity ratio of the graph. Triangles have been used
successfully in several real-world applications, such as detection of spamming activity,
uncovering the hidden thematic structure of the web and link recommendation in online
social networks. Furthermore, the count of triangles is a frequently used network statis-
tic in exponential random graph models. However, counting the number of triangles in
a graph is computationally expensive.

In this paper, we propose the EigenTriangle and EigenTriangleLocal algo-
rithms to estimate the number of triangles in a graph. The efficiency of our algo-
rithms is based on the special spectral properties of real-world networks, which allow
us to approximate accurately the number of triangles. We verify the efficacy of our
method experimentally in almost 160 experiments using several Web Graphs, social,
co-authorship, information and Internet networks where we obtain significant speedups
with respect to a straight-forward triangle counting algorithm.

Furthermore, we propose FastSVD, an algorithm which allows us to apply the core
idea of the EigenTriangle algorithm on graphs which do not fit in the main memory.
The main idea is a simple node sampling process according to which node i is selected
with probability di

2m
where di is the degree of node i and m is the total number of edges

in the graph. Our theoretical contributions also include a theorem which gives a closed
formula for the number of triangles in Kronecker graphs, a model of networks which
mimics several properties of real-world networks.
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1. Introduction

Finding patterns in large scale graphs, with millions and billions of edges is
attracting increasing interest with numerous applications in computer network
security (e.g., intrusion detection, spamming), in web applications (e.g., commu-
nity detection, blog analysis), in social networks such as Facebook and LinkedIn
(e.g., for link prediction) and many more. One of the operations of interest in
such a setting is the estimation of the clustering coefficients and the transitiv-
ity ratio of the graph, which effectively translates in computing the number of
triangles that each node participates in or the total number of triangles in the
graph respectively. Furthermore, triangles are a frequently used network statistic
in the exponential random graph model (Ove et al, 1986; Fienberg et al, 2009)
and naturally appear in models of real-world network evolution (Leskovec et
al, 2008). Furthermore, triangles have been used in several applications such as
spam detection (Becchetti et al, 2008), uncovering the hidden thematic structure
of the web (Eckmann et al, 2002) and for link recommendation in online social
networks (Tsourakakis et al, 2009). It is worth noting that in social networks
triangles have a natural interpretation: friends of friends are frequently friends
themselves (Wasserman et al, 1994).

However, triangle counting is computationally expensive. In this paper, we
propose the EigenTriangle and EigenTriangleLocal algorithms to com-
pute the total number of triangles and the number of triangles that each node
participates in respectively, in an undirected graph. Our algorithms work for any
type of graph but they are effective when the graph possesses certain spectral
properties. Real-world networks empirically exhibit such properties, making our
algorithms a viable option for counting triangles therein. We verify this claim ex-
perimentally, by performing 160 experiments on different types of real-world net-
works (Web Graphs, social, co-authorship, information and Internet networks).
We observe significant speedups, i.e., between 34× to 1075× faster performance,
for accuracy at least 95% compared to a straight-forward counting algorithm.

We use Lanczos method to compute the low rank eigendecomposition, and we
explain how the spectral properties of real-world networks allow Lanczos to con-
verge fast. Viewing the adjacency representation of the graph as a set of n points
in the n-dimensional Euclidean space R

n and observing that EigenTriangle

performs an optimal (in the least squares sense) projection on a k-dimensional
hyperplane, we show that at the cost of some accuracy fast SVD algorithms
can be used instead to estimate the number of triangles. Finally we give two new
laws related to triangles and a theorem providing a closed formula for the number
of triangles in Kronecker graphs (Leskovec et al, 2005), a model for generating
graphs which mimic properties of real-world networks.

The rest of the paper is organized as follows: Section 2, presents briefly ex-
isting triangle-counting methods and the Singular value Decomposition. In Sec-
tion 3 we present the EigenTriangle and EigenTriangleLocal algorithms,
for global and local triangle counting respectively and we explain why they are
efficient. Section 4 presents the experimental results on several real data sets. In
Section 5 we present a simple sampling algorithm which allows us to improve
further the underlying idea of the EigenTriangle and several other theoretical
ramifications. We conclude in Section 6.
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2. Related work

In this section we briefly present previous work related to the triangle counting
problem and basic background knowledge on the Singular Value Decomposition.

2.1. Counting Triangles

Let G(V,E), n=|V |, m=|E| be an undirected, unweighted, simple graph. A tri-
angle is a set of three fully connected nodes. In this section we briefly review
the state-of-the-art work related to the problems of global and local triangle
counting. By global we refer to the problem of counting the total number of
triangles in G and by local to the problem of counting the number of triangles
per each node. Two other problems related to triangles are (i) deciding whether
G contains a triangle or not and (ii) for each triangle in G, list the participating
nodes.

Exact Counting: The brute force approach enumerates all possible triples of
nodes resulting in a naive algorithm of O(n3) time complexity. Using this naive
algorithm we can list exactly the triangles in G. Other listing methods include
the Node Iterator and the Edge Iterator. The Node Iterator considers each one of
the n nodes and examines which pairs of its neighbors are connected. The Edge
Iterator algorithm computes for each edge the number of triangles that contain
it. Asymptotically, both methods have the same time complexity O(

∑

v∈V d2
v)

(Schank et al, 2004), which in the case of a dense graph are eventually O(n3).
For sparse graphs, these methods are significant improvements over the naive
algorithm. In (Schank et al, 2004) the forward algorithm is proposed, which is

an improvement of the Edge Iterator algorithm, with running time Θ(m
3
2 ). In

(Latapy, 2008), a further improvement of the forward algorithm is proposed,
called the compact-forward algorithm.

The algorithms with the lowest time complexity for counting triangles rely
on fast matrix multiplication. The asymptotically fastest matrix multiplication
algorithm to date is O(n2.376) (Coppersmith et al, 1987). In (Alon et al, 1997) an

algorithm of O(m
2ω

ω+1 ) ⊂ O(m1.41) time complexity and of Θ(n2) space complex-
ity is proposed to find and count triangles in a graph. In practice, listing methods
(Schank et al, 2004) are preferred against matrix-based methods because of the
prohibitive memory requirements of the latter.

Approximate Counting: In many applications such as the ones mentioned
in Section 1 the exact number of triangles is not crucial. Thus approximating
algorithms which are faster and output a high quality estimate are desirable.
Most of the approximate triangle counting algorithms have been developed in
the streaming setting. In this scenario, the graph is represented as a stream. Two
main representations of a graph as a stream are the edge stream and the incidence
stream. In the former, edges are arriving one at a time. In the latter scenario all
edges incident to the same vertex appear successively in the stream. The ordering
of the vertices is assumed to be arbitrary. A streaming algorithm produces a
relative ǫ-approximation of the number of triangles with high probability, making
a constant number of passes over the stream. However, sampling algorithms
developed in the streaming literature can be applied in the setting where the
graph fits in the memory as well.
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Monte Carlo sampling techniques have been proposed to give a fast estimate
of the number of triangles. According to such an approach, a.k.a. naive sampling,
we choose three nodes at random repetitively and check if they form a triangle
or not. If one makes

r = log(
1

δ
)

1

ǫ2
(1 +

T0 + T1 + T2

T3
)

independent trials where Ti = #triples with i edges and outputs as the estimate

of triangles the random variable T ′
3 =

(

n
3

)

Pr
i=1 Xi

r
then

(1− ǫ)T3 < T ′
3 < (1 + ǫ)T3

with probability at least 1 − δ. For graphs that have T3 = o(n2) triangles this
approach is not suitable. This is the typical case, when dealing with real-world
networks. This sampling approach is presented in (Schank et al, 2005).

In the seminal paper (Bar-Yosseff et al, 2002) the authors reduce the problem
of triangle counting efficiently to estimating moments for a stream of node triples.
Then they use the Alon-Matias-Szegedy algorithms (Alon et al, 1996) (a.k.a.
AMS algorithms) to proceed. Along the same lines, Buriol et al. in (Buriol et al,
2006) proposed two space-bounded sampling algorithms to estimate the number
of triangles. Again, the underlying sampling procedures are simple. E.g., for the
case of the edge stream representation, they sample randomly an edge and a
node in the stream and check if they form a triangle. Their algorithms are the
state-of-the-art algorithms to our knowledge. In their three-pass algorithm, in
the first pass they count the number of edges, in the second pass they sample
uniformly at random an edge (i, j) and a node k ∈ V −{i, j} and in the third pass
they test whether the edges (i, k), (k, j) are present in the stream. The number of
draws that have to be done in order to get concentration (of course these draws
are done in parallel), is of the order

r = log(
1

δ
)

2

ǫ2
(3 +

T1 + 2T2

T3
)

Even if the term T0 is missing compared to the naive sampling, the graph still
has to be fairly dense with respect to the number of triangles in order to get
an ǫ approximation with high probability. In (Becchetti et al, 2008) the semi-
streaming model for counting triangles is introduced. The authors observed that
since counting triangles reduces to computing the intersection of two sets, namely
the induced neighborhoods of two adjacent nodes, ideas from the locality sen-
sitivity hashing (Broder et al, 1998) are applicable to the problem of counting
triangles. They relax the constraint of a constant number of passes over the
edges, by allowing log n passes.

Doulion (Tsourakakis et al, KDD, 2009) proposed a new sampling procedure
which is used in the Peta-Scale graph mining project (Kang et al, 2009). The
approach of Doulion is the combinatorial perspective of the sparsification pro-
cedure proposed by (Achlioptas et al, 2001) and by (Tsourakakis, 2010) in the
multilinear setting, which has been used to speed up spectral counting approach
of (Tsourakakis, 2008) in (Tsourakakis et al, ASONAM , 2009). The algorithm
tosses a coin independently for each edge with probability p to keep the edge
and probability q = 1 − p to throw it away. In case the edge “survives”, it gets
reweighed with weight equal to 1

p
. Then, any triangle counting algorithm, such

as the node- or edge- iterator, is used to count the number of triangles t′ in G′.
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The estimate of the algorithm is the random variable T = t′

p3 . The following facts

-among others- were shown in (Tsourakakis et al, KDD, 2009):a) The estima-
tor T is unbiased, i.e., E[T ] = t and the expected speedup when a simple exact
counting algorithm as the node iterator is used, is 1/p2. The authors however did
not answer the critical question, of how small can p be? Therefore (Tsourakakis
et al, KDD, 2009) provides constant factor speedups leaving the question as a
research topic. The answer concerning p was given recently in (Tsourakakis et
al, Arxiv, 2009).

2.2. Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) (Golub et al, 1989; ?) is a powerful
matrix decomposition frequently used for dimensionality reduction (Xiang et
al, 2009; Song et al, 2009). SVD is widely used in problems involving least squares
problems, linear systems and finding a low rank representation of a matrix.
Furthermore, a wide range of applications uses SVD as its main algorithmic
tool. Notable applications of the SVD are the HITS algorithm (Kleinberg, 1999),
Latent Semantic Indexing (Deerwester et al, 1990; Papadimitriou et al, 1998),
and image compression (Demmel, 1997).

The SVD theorem states that any matrix A ∈ R
m×n can be written as a

sum of rank one matrices, i.e., A =
∑r

i=1 σiuiv
T
i , where ui, i = 1 . . . r (left

singular vectors) and vi, i = 1 . . . r (right singular vectors) are orthonormal and
the singular values are ordered in decreasing order σ1 ≥ . . . ≥ σr > 0. Here
r is the rank of A. We denote with Ak the k-rank approximation of A, i.e.,

Ak =
∑k

i=1 σiuiv
T
i . Among all matrices C ∈ R

m×n of rank at most k, Ak is the
one that minimizes ||A− C||F .

An exhaustive listing of the work related to the SVD is impossible. We report
here briefly the main result of (Drineas et al, 2004), since it is related to our work.
Therein, a fast randomized algorithm is presented to approximate the SVD of
a given matrix A. Specifically, the authors approximate the left singular vectors
and the singular values of the SVD using an appropriately sampled set of columns
of the matrix. Similarly, the right singular vectors can be approximated via a
row sampling procedure. The probability of choosing a specific column A(i) is

equal to pi = ||A(i)||2
||A||2

F

. They prove that their k-rank approximation Âk satisfies

the following form of inequality with probability at least 1-δ when the sampling
procedure picks c columns of A: ||A − Âk||

2
F ≤ ||A − Ak||

2
F + f(δ, k, c)||A||2F ,

where f(·) is a function of the three parameters k, c, δ as described in (Drineas
et al, 2004).

3. Proposed Method

In this section we present the proposed algorithms for the triangle counting
problem and explain why they are efficient when applied to a real-world network.
Table 1 gives a list of symbols and their definitions.
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Sym. Definition

G Undirected graph (no self-edges)
dmax maximum node degree
∆ total number of triangles
∆′ EigenTriangle’s estimation of ∆
~∆(G) = [∆i]i=1..n ∆i number of triangles

node i participates
~∆′(G) =

ˆ

∆′

i

˜

i=1..n
∆′

i EigenTriangleLocal’s
estimation of ∆i

m, n Number of edges and nodes.
[n] = (1..n) Node ids
A Adjacency matrix

A(i) i-th column of A
λi top-i-th eigenvalue (absolute value)
ui top-i-th eigenvector corresponding

to eigenvalue λi

Λk = [λi]i=1..k vector containing k top eigenvalues
Uk = [u1| . . . |uk] matrix containing the k top

eigenvectors as its columns
ui,j the i-th entry of the j-th eigenvector

Table 1. Definitions of symbols used.

3.1. Theorems and proofs

The following theorem connects the number of triangles in which node i partic-
ipates with the eigenvalues and eigenvectors of the adjacency matrix.

Theorem 3.1. Let G be an undirected, simple graph and A is adjacency matrix
representation. The number of triangles ∆i that node i participates in satisfies
the following equation:

∆i =

∑

j λ3
ju

2
i,j

2
(1)

where ui,j is the i-th entry of the j-th eigenvector and λj is the j-th eigenvalue
of the adjacency matrix.

Proof. Since G is undirected, A is a real, symmetric matrix. Thus, by the spectral
theorem we can diagonalize A using its eigenvalues and eigenvectors. Therefore
A = UΛUT , where Λ is a diagonal matrix containing the eigenvalues of A and
U = [u1| . . . |un] is the orthonormal matrix containing in its i-th column the
eigenvector ui corresponding to the i-th eigenvalue λi, i = 1, . . . , n. By the
orthonormality of U , it follows that A3 = UΛ3UT (⋄).

Consider now αii the i-th diagonal element of A3. αii is equal to twice (each
triangle ijk is counted twice as i → j → k → i and i → k → j → i ) the number
of closed walks of length three, i.e., the number of triangles in which node i
participates. From equation (⋄) follows that αii =

∑

j λ3
ju

2
i,j . Combining these

two facts we obtain for equation 1.

The following lemma holds, see (Godsil et al, 2001; Tsourakakis, 2008):

Lemma 3.2. The total number of triangles ∆(G) in the graph is given by the
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Algorithm 1 The EigenTriangle algorithm

Require: Adjacency matrix A (n× n)
Require: Tolerance tol
Output: ∆′(G) global triangle estimation

λ1 ← LanczosMethod(A, 1)
~Λ ← [λ1]

i ← 1 {initialize i, ~Λ}
repeat

i ← i + 1
λi ← LanczosMethod(A, i)
~Λ←

[

~Λ λi

]

until 0 ≤
|λ3

i |
P

i
j=1 λ3

j

≤ tol

∆′(G) ← 1
6

∑i
j=1 λ3

j

return ∆′(G)

sum of the cubes of the eigenvalues of the adjacency matrix divided by six, i.e.,:

∆(G) =
1

6

n
∑

i=1

λ3
i (2)

3.2. Proposed algorithms

We propose algorithms 1 and 2, the EigenTriangle and EigenTriangle-

Local algorithms respectively. The former is based on Lemma 3.2, whereas the
latter on Theorem 3.1. Both take as input the n × n adjacency matrix A and
a tolerance parameter tol. EigenTriangle keeps computing eigenvalues until
the contribution of the cube of the current eigenvalue is considered to be signifi-
cantly smaller than the sum of the cubes of the previously computed eigenvalues.
The tolerance parameter determines when the algorithm will stop looping, i.e.,
when we consider that the currently computed eigenvalue contributes little to
the total number of triangles. The idea behind them is that due to the special
spectral properties of real-world networks few iterations suffice to output a good
approximation.

Specifically, EigenTriangle starts by computing the first eigenvalue λ1.
It then computes the second eigenvalue λ2, and checks using the condition in
the repeat loop if λ2 contributes significantly or not to the current estimate of
triangles, i.e.,

∑2
j=1 λ3

j . In the former case, the algorithm keeps iterating and
computing eigenvalues until the stopping criterion is satisfied. Then, it outputs
the estimate of the total number of triangles ∆′(G) using the computed eigen-
values and equation 2. EigenTriangleLocal additionally stores the eigenvec-
tors corresponding to the top eigenvalues in order to make an estimate of ∆i

using equation 1. The repeat loop as in EigenTriangle computes eigenvalue-
eigenvector pairs until the stopping criterion is met and the for loop computes
the estimates ∆′

i of ∆i, i = 1, . . . , n.
Both algorithms use the subroutine LanczosMethod (Golub et al, 1989; Dem-



8 C.E. Tsourakakis

Algorithm 2 The EigenTriangleLocal algorithm

Require: Adjacency matrix A (n× n)
Require: Tolerance tol

Output: ~∆′(G) per node triangle estimation
〈λ1, ~u1〉 ← LanczosMethod(A, 1)
~Λ ← [λ1]
U ← [ ~u1]
i ← 1
{initialize i, ~Λ,U}
repeat

i ← i + 1
〈λi, ~ui〉 ← LanczosMethod(A, i)
~Λ←

[

~Λ λi

]

U← [U ~ui]

until 0 ≤
|λ3

i |
P

i
j=1 λ3

j

≤ tol

for j = 1 to n do

∆′
j =

Pi
k=1 u2

jkλ3
k

2
end for
~∆′(G) ← [∆′

1, ..,∆
′
n]

return ~∆′(G)

mel, 1997; Meurant, 2006) as a black box1 to compute a low-rank eigendecompo-
sition of the adjacency matrix. Lanczos method is a well studied projection based
method for solving the symmetric eigenvalue problem using Krylov subspaces.
It is based on simple matrix-vector multiplications. Furthermore, high quality
software implementing Lanczos method is publicly available (ARPACK, Parallel
ARPACK, MATLAB etc.). It is worth noting how easy it is to implement our
algorithm in a programming language that offers routines for eigenvalue com-
putation. For example, assuming that a k-rank approximation of the adjacency
matrix gives good results, the piece of MATLAB code described in algorithm 3
will output an accurate estimate of the number of triangles. This function takes
two input arguments, A and k which are the adjacency matrix representation of
the graph and the desired rank of the low rank approximation respectively.

3.3. Why is EigenTriangle successful?

Real-world networks have several special properties, such as small-worldness,
scale-freeness and self-similarity characteristics. For our work, the special spectral
properties are crucial. Figure 1(a) and Figure 1(b) show the spectra of two real-
world networks. Both are representative of the typical spectrum of a real-world
network. These figures plot the value of the eigenvalue vs. its rank. The spectrum
of Figure 1(a) corresponds to the Political Blogs network (Adamic et al, 2005),
a small network with approximately 1,2K nodes and 17K edges. The spectrum

1 For simplifying the presentation, depending on the number of output arguments, Lanczos
returns either λi only or ~ui too. The required time is (almost) the same in both cases.
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Algorithm 3 MATLAB implementation, k-rank approximation

function ∆′ = EigenTriangleLocal(A,k) {A is the adjacency matrix, k is the
required rank approximation}
n = size(A,1);
∆′ = zeros(n,1); {Preallocate space for ∆′}
opts.isreal=1; opts.issym=1; {Specify that the matrix is real and symmetric}
[u l] = eigs(A,k,’LM’,opts); {Compute top k eigenvalues and eigenvectors of
A}
l = diag(l)’;
for j=1:n do

∆′(j) = sum( l.ˆ3.*u(j,:).ˆ2)/2
end for

of Figure 1(b) corresponds to an anonymous social network with approximately
404K nodes and 2,1M edges. Notice that in the latter network, only the 800 top
eigenvalues out of the approximately 404K eigenvalues are plotted.

The following two facts which are apparent in the two figures, play a crucial
role in the effectiveness of our proposed algorithms:

1. The absolute values of the few top eigenvalues are skewed, typically following
a power law (Faloutsos et al, 1999)2,(Mihail et al, 2002),(Chung et al, 2003).

2. Moreover, the signs of the eigenvalues tend to alternate (Farkas et al, 2001)
and thus their cubes roughly cancel out.

In other words, the contribution of the bulk of the eigenvalues is negligible
compared to the contribution of the few top eigenvalues to the total number of
triangles. This fact allows us to discard the largest part of the spectrum. There-
fore we can keep just a handful of eigenvalues and approximate fast and well the
number of triangles. Experimentally 1 to 25 eigenvalues, see Figure2(a), lead to
a satisfactory approximation. The time complexity of our proposed algorithms
is O(cnnz) where nnz is the number of non zeros in the adjacency matrix, i.e.,
twice the number of edges, and c is the total number of matrix vector multi-
plications Lanczos method performs. As we explain in the next subsection, the
computation of a handful of the top eigenvalues results in a small number of
iterations c and therefore the performance of our methods is fast.

3.4. Lanczos method and Real-World Networks

First we give a brief description of Lanczos method for computing the eigenvalues
of a symmetric matrix and then we explain why it converges fast in the case of
real-world networks.

Short Description of Lanczos Method: Consider a symmetric n×n matrix
A whose eigenvalues and eigenvectors are sought and let u ∈ R

n be a given
unit vector. Lanczos method is based on the subspace spanned by the vectors

2 Even if the least squares fitting used in (Faloutsos et al, 1999) has been questioned as a
methodology of fitting power laws and better methodologies have been developed (Clauset et
al, 2009), the key property is the skewness observed in the values of the top eigenvalues rather
than the exact distribution that they follow.
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(a) Political Blogs

(b) Anonymous Social Network

Fig. 1. Spectra of two real-world networks, representative of the typical spectrum of networks
with skewed degree distributions. Both figures (a) and (b) plot the value λi versus the rank i.
Political blogs is a small network with ≈17K edges and ≈1,2K nodes. The Anonymous Social
Network has ≈404K nodes and ≈2,1M edges. Figure (b) plots only the 800 top eigenvalues.
Notice that (1) the first few eigenvalues are significantly larger than the rest, (2) which are
almost symmetric around zero and (3) cubing amplifies these effects.

u,Au, . . . , Ak−1u, also known as the Krylov subspace. Let K be the n×k matrix
K = [u|Au| . . . |Ak−1u]. For k ≤ m ≤ n, where m is the order of the minimal
polynomial of u with respect to A, matrix K has full column rank. However, since
the successive multiplications of matrix A lead the terms Aju for large j to being
almost equal to the first eigenvector, it is necessary to get a numerically better
base for this subspace. Using the Gram-Schmidt orthogonalization procedure
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we produce an orthonormal sequence of vectors u = q1, . . . , qk such that the
following three term recurrence equation holds:

Aqj = bj−1qj−1 + ajqj + bjqj+1 (3)

The coefficients aj , bj can be found by using the orthogonality properties of
the qj vectors. Let Q be the matrix Q = [q1| . . . |qk]. The matrix QT AQ is a
small k× k, tridiagonal matrix (containing the coefficients a1, . . . , ak in its main
diagonal, and the coefficients b1, . . . , bk−1 in the first diagonal above and below
the main one) whose eigenvalues typically approximate well the top k eigenvalues
of A. It is also worth noting that Lanczos method performs only matrix-vector
multiplications making it a good option for a low rank approximation of a sparse
matrix A. For more details see one of the following excellent references (Golub
et al, 1989; Demmel, 1997; Edwards et al, 1979; Cullum et al, 2002).

Convergence of Lanczos method: As we know, the eigenvalues of matrix A
are the roots of its characteristic polynomial. The latter is also known as the
secular function. When the roots of the secular function are very close, Lanczos
needs several iterations to find them. Even if there exist sophisticated methods
for finding the roots of the secular function, e.g., (Cuppen, 1981), they run into
similar problems with Newton’s method when the two roots we are trying to find
are very close (Meurant, 2006).

Since real-world networks tend to have skewed degree distributions which
imply a skewed eigenvalue distribution too, Lanczos converges fast to the top
eigenvalues because they correspond to roots of the secular function which are
well separated. Therefore, assuming that the top eigenvalues provide us a satis-
factory approximation to the total number of triangles implies that we can find
fast a good estimate of the total number of triangles.

4. Experimental Results

We conduct numerous experiments in order to answer the following question:
for at least 95% accuracy what are the speedups we can achieve for the triangle
counting problem using EigenTriangle? First, we describe the experimental
setup, and then we provide the experimental results.

4.1. Experimental set up

Each directed graph was converted into an undirected graph by ignoring the
direction of the edges. Multiple edges and self-loops were removed. The number
of nodes and edges of the networks used after the preprocessing are summarized
in table 2. 3 As the competitor for our method we chose the Node Iterator (see
section 2), a basic, non-trivial exact listing algorithm which allows us to directly
evaluate the quality of EigenTriangle and EigenTriangleLocalby com-
paring the outputs. We ran the experiments in a machine with a quad-processor
Intel Xeon 3GHz with 16GB of RAM. We express the experimental results as

3 Most of the datasets we used are publicly available. Indicative sources are : http://
arxiv.org, http://www.cise.ufl.edu/research/sparse/mat/, http://www-personal.umich.
edu/∼mejn/netdata/
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Nodes Edges Description

Social Networks

75,877 405,740 Epinions network
404,733 2,110,078 Anonymous So-

cial Network (ASN)

Co-authorship networks

27,240 341,923 Arxiv Hep-Th

Information networks

1,222 16,714 Political blogs
13,332 148,038 Reuters news,

Sept 9-11,2001.

Web graphs

2,983,494 35,048,116 Wikipedia 2006-Sep-25
3,148,440 37,043,458 Wikipedia 2006-Nov-04

Internet networks

13,579 37,448 AS Oregon
23,389 47,448 CAIDA AS 2004 to 2008

(means over 151 timestamps)

Table 2. Summary of real-world networks used.

the ratio of the clock-work times of the Node Iterator to the EigenTriangle

(speedup). All algorithms were implemented in MATLAB. For the eigenvalue
computation, we used the command eigs to which we passed a struct opts, spec-
ifying that our matrices are symmetric and real, as shown in Algorithm 3.

4.2. Total Triangle Counting

Figures 2(a), 2(b) summarize the results of the EigenTriangle algorithm when
applied to 158 real world networks. Specifically, Figure 2(a) plots the achieved
speedup versus the number of eigenvalues required to get at least 95% accuracy.
Figure 2(b) plots the speedup versus the number of edges in the graph. The
following facts are worth noting:

1. The mean number of eigenvalues required to achieve more than 95% is 6.2
with standard deviation equal to 3.2. The mean speedup is 250× with the
standard deviation equal to 123. The maximum speedup is 1159× whereas the
minimum speedup is 33.7×.

2. The speedup appears to increase as the size of the network grows. A possible
explanation for this, assuming that our degree distribution follows approxi-
mately a power law, could be that as the network grows, the maximum degrees
are getting more detached from the rest. According to (Mihail et al, 2002), the
top eigenvalues exhibit the same behavior, i.e., get more detached from the
bulk. Therefore, with a handful of eigenvalues, we get high accuracy, since their
cubes dominate the total sum of the cubes of the eigenvalues. Furthermore,
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(a) #Eigenvalues vs. Speedup

(b) Edges vs. Speedup

Fig. 2. Scatterplots of the results for 158 graphs. (a) Speedup vs. Eigenvalues: The mean
required approximation rank for ≥ 95% accuracy is 6.2. Speedups are between 33.7x and
1159x, with mean 250.(b) Speedup vs. Edges: Notice the trend of increasing speedup as the
network size grows (#edges).

due to the fast convergence of Lanczos method, EigenTriangle ouputs fast
its estimate.
An exception to the observation above is the performance of our method on the
Epinions graph. EigenTriangle needs to compute more than 20 eigenvalues
to ouput a high quality estimate, due to the specific spectrum of this graph.
This fact has as a consequence the smallest speedup observed (33.7×) which
is still significant.

3. An important issue in EigenTriangle and EigenTriangleLocal is the
choice of the tolerance parameter tol. Clearly, if the parameter is set to ǫ→ 0,
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Fig. 3. Zooming in the point enclosed by a rectange of figure 2(a). This figure plots the
accuracy obtained versus the speed-up ratio for the Wikipedia web graph (≈ 3, 1M nodes,
≈ 37M edges ). Proposed method achieves 1021x faster time, for 97.4% accuracy, compared
to a typical competitor, the Node Iterator method.

Fig. 4. Scatterplot of ∆′

i (estimated #triangles of node i) vs. ∆i (actual number) for Polblogs

using a rank 10 approximation. Relative reconstruction error is 7 ∗ 10−4 and the Pearson’s
correlation coefficient is 99.97%.
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Fig. 5. Local triangle reconstruction for three real-world networks using rank 1 to 10 approxi-
mation of the diagonal of A3. Pearson’s correlation coefficient ρ vs. approximation rank.Notice
that after rank 2 ρ is greater than 99.9% for all three networks.

both algorithms will have to compute many eigenvalues slowing down signif-
icantly their performance. An extremely small value for the parameter tol is
likely to turn the proposed algorithms into slower than other exact counting
algorithms, since computing the whole spectrum of a square n×n matrix has
time complexity O(n3) with potential convergence and numerical problems.
On the other hand, if the tolerance parameter is set to a high value, then the
accuracy of the estimate can be unsatisfactory. It is not clear how to decide
the tol parameter a priori. However, this does not render EigenTriangle

useless. A useful “rule of thumb” for practitioners based on Figure 2(a) is to
compute 5-15 eigenvalues and see how well does the sum Si of the cubes of the
eigenvalues from 1 to i compare to Si+1. This is essentially the same criterion
with the stopping criterion of the algorithms we propose. However, using this
“rule of thumb” is a practical way of running the algorithms without depend-
ing on the parameter tol.If one wants to run the algorithm as is, a choice of
tol that was satisfactory in many experiments was 0.05.

4. Figure 3 is zooming in the point enclosed with a rectangle of Figure 2(a). This
point corresponds to the Wikipedia Web graph (4 Nov. 2006 with approxi-
mately 3,1M nodes, and 37M edges). We observe that with a single eigenvalue
we get 92.8% accuracy and 1329× speedup. When the algorithm terminates,
the accuracy is 97.4%, the speedup 1021× and the rank of the required ap-
proximation equal to 7.

4.3. Local Triangle Counting

To measure the performance of the EigenTriangleLocal algorithm, we use
Pearson’s correlation coefficient ρ and the relative reconstruction error, as in
(Becchetti et al, 2008).
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RRE =
1

n

n
∑

i=1

|∆i −∆′
i|

∆i

(4)

In figure 4 we see how well ~∆′(G), i.e., the vector which contains in its i-th
coordinate our estimate of the number of triangles in which node i participates

in, approximates ~∆(G) using the top 10 eigenvalues and eigenvectors for the
Political blogs dataset. The RRE we obtain is 7 ∗ 10−4 and ρ is equal to 0.9997,
close to the ideal value 1. Figure 5 explains why our proposed methods work
well in practice. It plots ρ versus the rank of the approximation. We observe
that after the two rank approximation, for all three networks the approximation
is excellent: ρ is greater than 99.9% whereas the RRE has always order of mag-
nitude between 10−7 and 10−4. Similar results hold for the rest of the datasets
we experimented with. Finally, it is worth noting that figure 5 suggests that
the rank-10 approximation of the adjacency matrix used to produce Figure 4 is
significantly larger than the minimum one needed to obtain satisfactory results.

5. Theoretical Ramifications

In this section we extend our theoretical results in the following three ways.
First, we show a simple sampling procedure allows us to apply the core idea of
EigenTriangle on large graphs which do not fit into the main memory. The
resulting algorithm is the FastSVD and is based on the seminal work of (Drineas
et al, 2004). Secondly, using the spectral counting idea, we prove a theorem
which provides a closed formula for the number of triangles in Kronecker graphs.
Finally, we discuss about cases where the EigenTriangle algorithm still works,
even if the graph is not a “real-world” network.

5.1. Counting Triangles via Fast SVD

We consider the following simple randomized procedure to speedup further the
performance of our proposed algorithms: Given our n × n adjacency matrix A,
integers c, k such that c ≤ n, k ≤ c, we sample c integers from 1 to n, with the
probability of choosing integer i equal to Pr(i) = pi = di

2m
, where di is the degree

of node i and m is the total number of edges in the graph. Let {i1, . . . , ic} be the

indices sampled. We create a n×c matrix A′ = [ A(i1)

√
cpi1
| A

(i2)

√
cpi2
| . . . | A

(ic)

√
cpic

]. We use A′

to approximate the k top eigenvalues and eigenvectors of A, where k is assumed
to be the required rank of the approximation of the adjacency matrix which gives
us a good estimate of the number of triangles in the graph. The top k left singular

vectors û
(i)
i=1...k of A′ define a subspace which is close to the optimal k dimensional

subspace spanned by the top k left singular vectors u
(i)
i=1...k of A. In order to

approximate the right singular vectors as suggested by (Drineas et al, 2004) one
should sample rows of A. Instead, we choose to approximate the right singular
vectors using the equation V̂ T = Σ̂−1ÛT A assuming that Σ̂−1ÛT A ≈ ΣUT A.
The signs of the eigenvalue λi can be recovered by multiplying the corresponding
left and right singular vectors. For example if we had the exact SVD of A we could

determine the i-th eigenvalue by λi = σi(v
(i))T u(i). We approximate λi by λ̂i



Counting Triangles in Real-World Networks using Projections 17

Algorithm 4 The FastSVD Triangle Counting algorithm

Require: Adjacency matrix A (nxn)
Require: c, c ≤ n
Require: k, k ≤ c
Output: ∆′(G) global triangle estimation

for j = 1 to c do
Pick an integer from {1, . . . , n}, where pi = di

2m

Include A(i)
√

cpi
as a column of A′

end for
Compute the top k left singular vectors û(1), . . . , û(k) and the top k singular
values σ̂1 > . . . > σ̂k > 0 of A′

Û ← [û(1)| . . . |û(k)]

Σ̂← diag(σ̂1, . . . , σ̂k)

V̂ T ← Σ̂−1ÛT A
for j = 1 to k do

λ̂j ← σ̂jsgn((v̂(j))T û(j))
end for
∆′(G)← 1

6

∑k
i=1 λ̂3

i

return ∆′(G)

where λ̂i ← σ̂isgn((v̂(i))T û(i)). The reason that the sign function appears4 is that
the ideal situation where the inner product (v(i))T u(i) should equal either +1 or
-1 does not occur in practice. This procedure results in algorithm 4. The reason
that this procedure is theoretically sound is the seminal work of (Drineas et
al, 2004). Specifically, since our matrix is a square, symmetric matrix containing

only zeros and ones, the probabilities pi = ||A(i)||2
||A||2

F

defined in (Drineas et al, 2004)

are simplified to the expression di

2m
. Intuitively, by favoring nodes of high degree

we can recover the number of triangles approximately.
We apply Algorithm 4 on the anonymous social network, for which with 6

eigenvalues we obtain a 95.6% accuracy using Lanczos method. The obtained ac-
curacy using Algorithm 4 is 95.46% using k equal to 6 and c equal to 100. With
both algorithms we are able to compute with high accuracy an estimate of the
38036823 total triangles which exist in the graph. The speedup is not apparent
due to the overhead of the sampling procedure and the necessary multiplications
we make to find the signs of the singular values. Combined with the overall small
amount of time needed to compute the top six eigenvalues (less than 4 seconds)
the performance of EigenTriangle and Algorithm 4 are comparable. Nonethe-
less, algorithm 4 is useful, allowing us to apply the core idea of EigenTriangle

on graphs which do not fit into the main memory.

5.2. Kronecker graphs

Kronecker graphs (Leskovec et al, 2005) have attracted recent interest, because
they can be made to mimic real graphs well (Leskovec et al, 2007). In the fol-

4 The sign function sgn(·) returns the sign of its argument.
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lowing we give a closed formula that estimates the number of triangles for a
Kronecker graph. Some definitions first:

Let A be the n × n adjacency matrix of an n-node graph GA with ∆(GA)
triangles, and let B = A[k] be the k-th Kronecker power of it, that is, an nk ×
nk adjacency matrix (see (Leskovec et al, 2005) for the exact definition of the
deterministic Kronecker graph). Let GB denote the corresponding graph. Let
~λ = (λ1, .., λn) be the eigenvalues of matrix A. The following theorem holds:

Theorem 5.1 (KroneckerTRC). The number of triangles ∆(GB) of GB can
be computed from the n eigenvalues of A:

∆(GB) = 6k∆(GA)k+1 k ≥ 0. (5)

Proof. We use induction on the depth of the recursion k. For k = 0, Kroneck-

erTRC trivially holds. So the base case is true. Let KroneckerTRC hold
for some r ≥ 1. For notation simplicity, let C = A[r] with eigenvalues [µi]i=1..s

and D = A[r+1]. According to the induction assumption:

∆(GC) = 6r∆(GA)r+1

The eigenvalues of D are given by the Kronecker product ~λ ⊗ ~µ. Using these
two facts, we will now show that KroneckerTRC holds for r + 1. By Lemma
3.2, we get that the number of triangles in GD is given by the following equation:

∆(GD) =
Ps

i=1

Pn
j=1 µ3

i λ3
j

6 =
Ps

i=1 µ3
i

Pn
j=1 λ3

j

6 =
Ps

i=1 µ3
i 6∆(GA)

6 = 6∆(GA)
Ps

i=1 µ3
i

6 =

6∆(GA)6r∆(GA)r+1 = 6r+1∆(GA)r+2

Therefore KroneckerTRC holds for all k ≥ 0.

Timing results, and stochastic Kronecker graphs The above theorem re-
sults in tremendous time savings and perfect accuracy for deterministic Kro-
necker graphs. For example, experimenting on a small deterministic Kronecker
graph with 6,561 nodes and 839,808 edges coming from the 3-clique initiator
with depth of recursion equal to 7, we get 106 faster performance. As the size of
the Kronecker graph increases, we obtain arbitrarily large speedups.

It is interesting that the KroneckerTRC theorem also leads to a fast esti-
mation of triangles, even for stochastic Kronecker graphs (Leskovec et al, 2007).
Stochastic Kronecker graphs have been shown to mimic real graphs very well.
Intuitively, a stochastic Kronecker graph is like a deterministic one, with a few
random edge deletions and additions. Our experiments with a stochastic Kro-
necker graph show that these random edge manipulations have little effect on the
accuracy. Specifically, our experiments with n=6,561 and m=2,202,8085, show
that we obtain 1.5 ∗ 106× faster execution, while maintaining 99.34% accuracy.
Similar results hold for other experiments we conducted as well. Proving bounds
for the accuracy for stochastic Kronecker graphs is an interesting research direc-
tion.

5.3. Erdős-Rényi graphs

It is interesting to notice that our algorithm is guaranteed to give high accuracy
and speedup performance for random Erdős-Rényi graphs (Bollobas, 2001). This

5 Seed matrix (using MATLAB notation): [.99 .9 .9;.9 .99 .1;.9 .1 .99], depth of recursion: 7
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Fig. 6. Eigenvalue vs. rank plot of a random Erdős-Rényi graph Gn,p, with n =500 and p = 1
2
.

is due to Wigner’s semi-circle law for all but the first eigenvalue (Furedi et
al, 1981). In figure 6 we see the eigenvalue-rank plot for an Erdős-Rényi graph
with n =500 and p = 1

2 , i.e., p constant.
For example, for a graph with n = 20, 000 and p = 0.6, using EigenTri-

angleLocal with 0.05 tolerance parameter, we get 1600 faster performance
compared to the Node Iterator with relative error 5 ∗ 10−5 and Pearson’s corre-
lation coefficient almost equal to 16.

6. Conclusions

In this work, we propose the EigenTriangle and EigenTriangleLocal al-
gorithms (Tsourakakis, 2008) to estimate the total number of triangles and the
number of triangles per node respectively in an undirected, unweighted graph.
The special spectral properties which real-world networks frequently possess
make both algorithms efficient for the triangle counting problem. We showed
experimentally that our method outperforms a straight-forward, exact triangle
counting algorithm using different types of real-world networks. To our knowl-
edge, the knowledge for the bulk of the spectrum is limited in contrast to the few,
top eigenvalues (Mihail et al, 2002; Chung et al, 2003). An interesting theoretical
problem is to find the distribution of the bulk of the eigenvalues of a random
graph generated by a model which mimics real-world networks. As the underly-
ing eigendecomposition algorithm we use Lanczos method, which converges fast
as we explain in Section 3. In practice, EigenTriangle using in average a rank
six approximation of the adjacency matrix results in at least 95% accuracy, for
speedups ranging from 30× to 1000× compared to the Node Iterator algorithm.
However, this behavior is empirical and requires further theoretical justification

6 It makes no sense to apply EigenTriangle on Erdős-Rényi since we can approximate well

the total number of triangles, i.e., (
n
3

)p3.
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and understanding. More experiments is another future direction, in order to
establish to what extent real-world networks share similar spectral properties.

We also provide a simple randomized algorithm which allows us to use the
core idea of EigenTriangle on graphs which do not fit in the main memory.
The key idea behind this lies in the seminal work of (Drineas et al, 2004) and the
fact that we can find the eigendecomposition of the adjacency matrix through
its Singular Value Decomposition. Furthermore, we give a closed formula for the
number of triangles in deterministic Kronecker graphs and show that the same
formula can be used to approximate satisfactorily the number of triangles in a
stochastic Kronecker graph as well.

It is worth noting that since (Tsourakakis, 2008) other combinatorial triangle
counting algorithms have been developed (Tsourakakis et al, KDD, 2009) with
strong theoretical guarantees (Tsourakakis et al, Arxiv, 2009). These algorithms
are independent of any special spectral properties. Giving guarantees for the
performance EigenTriangle algorithm under some random graph model, e.g.,
(Chung et al, 2003) is another research direction as already mentioned. Nonethe-
less, EigenTriangle is a viable option for computing triangles in real-world
networks which also shows that restricting our input graphs to possess special
properties like those possessed empirically by real-world networks can lead us
in developing efficient algorithms. Investigating further properties of real-world
networks and developing such algorithms is another broad research direction.
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