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Abstract. 1 Tumorigenesis is an evolutionary process which involves
a significant number of genomic rearrangements typically coupled with
changes in the gene copy number profiles of numerous cells. Fluores-
cence in situ hybridization (FISH) is a cytogenetic technique which al-
lows counting copy numbers of genes in single cells. The study of can-
cer progression using FISH data has received considerably less attention
compared to other types of cancer datasets.
In this work we focus on inferring likely tumor progression pathways us-
ing publicly available FISH data. We model the evolutionary process as
a Markov chain in the positive integer cone Zg

+ where g is the number of
genes examined with FISH. Compared to existing work which oversim-
plifies reality by assuming independence of copy number changes [24,25],
our model is able to capture dependencies. We model the probability
distribution of a dataset with hierarchical log-linear models, a popu-
lar probabilistic model of count data. Our choice provides an attractive
trade-off between parsimony and good data fit. We prove a theorem of
independent interest which provides necessary and sufficient conditions
for reconstructing oncogenetic trees [8]. Using this theorem we are able to
capitalize on the wealth of inter-tumor phylogenetic methods. We show
how to produce tumor phylogenetic trees which capture the dynamics of
cancer progression. We validate our proposed method on a breast tumor
dataset.

1 Introduction

Tumors are heterogeneous masses which exhibit cellular and genomic differences
[13,20,21,22]. Cell-by-cell assay measurements allow us to study the phenomenon
of tumor heterogeneity. Fluoresence in situ hybridization (FISH) is a cytogenetic
technique which allows us to study gene copy number heterogeneity within a sin-
gle tumor. It is used to count the copy number of DNA probes for specific genes
or chromosomal regions. Understanding how tumor heterogeneity progresses is
a major problem with significant potential impact on therapeutics. An exam-
ple which illustrates the importance of heterogeneity in therapeutic resistance is
1 Topic: Cancer Genomics. Keywords: intra-tumor heterogeneity, evolutionary dynam-
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found in chronic myelogenous leukemia (CML). The presence of a subpopulation
of leukemic cells of a given type significantly influences the response to therapies
based on imatinib mesylate, causing the eventual relapse of the disease [20].

Fig. 1: Copy number genetic diversity within a tumor cell population after three
hypothetical stages of tumorigenesis. The four observed states of cells are shown
and coded with colors in the positive integer cone Z2

+.

In this work we study the phenomenon of gene copy number heterogeneity
within a single tumor. An illustration of the phenomenon of gene copy number
heterogeneity is shown in Figure 1 which shows a hypothetical cell population
of eleven somatic human cells at three stages of tumorigenesis, whose succession
is indicated by arrows. We shall describe the state of a cell as a two dimensional
point (g1, g2) in the positive integer cone Z2

+, with the obvious meaning that
the cell has g1, g2 copies of gene 1 and gene 2 respectively. Initially, all cells are
in the healthy diploid state with respect to their gene copy numbers. At the
second stage, nine cells are in state (2,2) and two cells in state (3,2). At the last
stage, only 2 cells are in the healthy state (2,2). Five, three and one cell are in
states (3,2), (2,1) and (1,1) respectively. The four observed states are shown and
coded with colors in Z2

+. Figure 1 illustrates what we observe in many tumors:
existence of multiple progression states within a single tumor.

Despite the large amount of research work on modeling tumor progression
using different types of tumor datasets, e.g., [12], the study of FISH datasets
has received considerably less attention. Specifically, two early studies of FISH
datasets were limited to either two [24,25] or three probes [19]. Pennington et al.
[24,25] develop novel computational methods for analyzing FISH data. Specif-
ically, they consider a random walk on the positive integer cone Z2

+ where at
each step a coordinate i ∈ {1, 2} is picked uniformly at random and is modified
by ∆x ∈ {0, 1,−1} with probabilities 1 − pi,1 − pi,−1, pi,1, pi,−1, i = 1, 2 re-
spectively. Given this model they optimize a likelihood-based objective over all
possible trees and parameters {pi,1, pi,−1}. Recently, Chowdhury et al. [5] pro-
posed a general procedure which can treat any number of probes. They reduce
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the study of the progression of FISH probe cell count patterns to the rectilinear
minimum spanning tree problem.

Paper contributions and roadmap. In this paper we achieve the following
contributions:

– We introduce a novel approach to analyzing FISH datasets. The main fea-
tures of our approach are its probabilistic nature which provides an attrac-
tive trade-off between parsimony and expressiveness of biological complexity
and the reduction of the problem to the well-studied inter-tumor phylogeny
inference problem. The former allows us to capture complex dependencies
between factors while the latter opens the door to a wealth of available and
established theoretical methods which exist for the inter-tumor phylogeny
inference problem.

– We prove Theorem 1 which provides necessary and sufficient conditions for
the unique reconstruction of an oncogenetic tree [8]. Based on the theorem’s
conditions, we are able to capitalize on the wealth of inter-tumor phyloge-
netic methods. However, the result is of independent interest and introduces
a set of interesting combinatorial questions.

– We validate our proposed method on a publicly available breast cancer
dataset.

The outline of this paper is as follows: Section 2 presents our proposed meth-
ods. Section 3 performs an experimental evaluation of our methods on a breast
cancer FISH dataset and an extensive biological analysis of the findings. Finally,
Section 4 concludes the paper by a discussion and a brief summary.

2 Proposed Method

In Section 2.1 we model the probability distribution of FISH data with hierar-
chical log-linear models and show how to learn the parameters of the model for
a given FISH dataset. In Section 2.2 we prove Theorem 1 which provides neces-
sary and sufficient conditions to uniquely reconstruct an oncogenetic tree [8]. We
capitalize on the theorem to harness the wealth of available methods for inter-
tumor phylogenetic inference methods [1,2,3,8,9,12,11,14]. Finally in Section 2.3
we present our proposed method.

We will make the same simplifying assumptions with existing work [24,5],
namely that only single gene duplication and loss events take place and that the
cell population is fixed. In what follows, let D = {x1, . . . , xn}, xi ∈ Zg

+ be the
input FISH dataset which measures the copy numbers of g genes in n cells taken
from the same tumor.
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2.1 Model and Fitting

Probabilistic Model: Let Xj be an integer-valued random variable which ex-
presses the copies of the j-th gene with domain Ij , j = 1, . . . , g. We model the
joint probability distribution of the random vector (X1, . . . , Xg) as

Pr [x] =
1
Z

∏
A⊆[g]

eφA(x) (1)

where x = (x1, . . . , xg) ∈ I = I1 × I2 × ...× Ig is a point of the integer positive
cone Zg

+ and Z is a normalizing constant, also known as the partition function,
which ensures that the distribution is a proper probability distribution, i.e., Z =∑

x∈I

∏
A⊆[g] e

φA(x). Each potential function φA depends only on the variables
in the subset A and is parameterized by a set of weights wA. To illustrate this,
assume g = 2 and I = {0, 1} × {0, 1}. Then,

log Pr [x] = w0 + w(1)01{x1 = 0}+ w(1)11{x1 = 1}+ w(2)01{x2 = 0}
+ w(2)11{x2 = 1}+ w(12)001{x1 = 0, x2 = 0}+ w(12)011{x1 = 0, x2 = 1}
+ w(12)101{x1 = 1, x2 = 0}+ w(12)111{x1 = 1, x2 = 1} − log Z,

where wAx A ⊆ {1, 2}, x ∈ {0, 1}|A| are the parameters of the model. This prob-
ability distribution captures the effects of different factors through parameters
wAx, A ∈ {{1}, {2}}, x ∈ {0, 1} and pairwise interactions through parameters
w(12)x, x ∈ {00, 01, 10, 11}. In general, two variables Xi, Xj are defined to be
directly associated if there exists at least one non-zero (or bounded away signif-
icantly from zero) parameter including the two variables. We define Xi, Xj to
be indirectly associated if there exists a chain of overlapping direct associations
that relate Xi, Xj .
We impose the following restriction on the probabilistic model shown in equa-
tion (1): If A ⊆ B and wA = 0 then wB = 0. This restriction reduces significantly
the size of the parameter space, but allows to express complex dependencies not
captured by existing work [24,25]. Since a typical FISH dataset contains detailed
measurements for a handful of genes from few hundred cells the combination of
these two features is crucial to avoid overfitting and obtain biological insights at
the same time. Furthermore, it is worth emphasizing that in terms of biological
interpretation the assumption is natural: if a set A of genes does not interact,
then any superset of A maintains that property. This class of models are known
as hierararchical log-linear models [4].

Learning the Parameters: Learning the parameters w of a hierarchical log-
linear model is a well-studied problem, e.g., [4]. An extensive survey of learning
methods can be found in [26]. Schmidt et al. [27] propose to maximize a penal-
ized log-likelihood of the dataset D where the penalty is an overlapping group
l1-regularization term with respect to the norms of the groups. Specifically, a
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spectral projected gradient method is proposed as a sub-routine for solving the
following regularization problem:

min
w
−

n∑
i=1

log Pr [xi|w] +
∑

A⊆[g]

λA

( ∑
{B|B⊆A}

||wB ||22
)1/2 (2)

2.2 Unique Reconstruction of Oncogenetic Trees

Our main theoretical result in this section is motivated by the following natural
sequence of questions:

Can we use any of the existing inter-tumor progression methods [12] on the
intra-tumor progression problem? How will the resulting tree capture the evo-
lutionary dynamics of cancer progression, i.e., how do we enforce that state
(. . . , i, . . .) is reached either through (. . . , i + 1, . . .) or (. . . , i − 1, . . .) given our
single gene duplication and loss event assumption?

An answer to this question is given in Section 2.3. Motivated by our intention
to capitalize on inter-tumor phylogenetic methods such as [8,9], we consider a
fundamental problem concerning oncogenetic trees [8]. What are the necessary
and sufficient conditions to reconstruct them? Theorem 1 is likely to be of inde-
pendent interest and contributes to the understanding of oncogenetic trees [8].
We briefly review the necessary definitions to state our result. Let T = (V,E, r)
be an oncogenetic tree, i.e., a rooted branching2, on V and let r ∈ V be the root
of T . Given a finite family F = {A1, ...Aq} of sets of vertices, i.e., Ai ⊆ V (T )
for i = 1, . . . , q, where each Ai is the vertex set of a rooted sub-branching of
T , what are the necessary and sufficient conditions, if any, which allow us to
uniquely reconstruct T?

Theorem 1. The necessary and sufficient conditions to uniquely reconstruct the
branching T from the family F are the following:

1. For any two distinct vertices x, y ∈ V (T ) such that (x, y) ∈ E(T ), there
exists a set Ai ∈ F such that x ∈ Ai and y /∈ Ai.

2. For any two distinct vertices x, y ∈ V (T ) such that y ⊀ x and x ⊀ y3 there
exist sets Ai, Aj ∈ F such that x ∈ Ai, y /∈ Ai and x /∈ Aj and y ∈ Aj.

Proof. First we prove the necessity of conditions 1,2 and then their sufficiency
to reconstruct T . In the following we shall call a branching T consistent with
the family set F if all sets Ai ∈ F are vertices of rooted sub-branchings of T .

Necessity: For the sake of contradiction, assume that Condition 1 does not
hold. Then, the two branchings shown in Figure 2(a) are both consistent with
F and therefore we cannot reconstruct T . Similarly, assume that Condition 2
does not hold. Specifically assume that for all j such that x ∈ Aj , then y ∈ Aj

too (for the symmetric case the same argument holds). Then, both branchings
in Figure 2(b) are consistent with F and therefore T is not reconstructable.
2 Each vertex has in-degree at most one and there are no cycles.
3 We use the notation u ≺ v (u ⊀ v) to denote that u is (not) a descendant of v in T .
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(a) (b)

Fig. 2: Illustration of necessity conditions of Theorem 1, (a) condition 1 (b)
condition 2.

Sufficiency: Let x ∈ V (T ) and Px be the path from the root to x, i.e.,
Px = {r, . . . , x}. Also, define Fx to be the intersection of all sets in the family
F that contain vertex x, i.e., Fx =

⋂
Ai

x ∈ Ai ∈ F
. We prove that Fx = Px. Since

by definition, Px ⊆ Fx we need to show that Fx ⊆ Px. Assume that the latter
does not hold. Then, there exists a vertex v ∈ V (T ) such that v /∈ Px, v ∈ Fx.
We consider the following three cases.
• Case 1 (x ≺ v): Since every Ai ∈ F is the vertex set of a rooted sub-branching,
v ∈ Px by definition.
• Case 2 (v ≺ x): By condition 1 and an easy inductive argument, there exists
Ai such that x ∈ Ai, v /∈ Ai. Therefore, v /∈ Fx.
• Case 3 (x ⊀ v, v ⊀ x): By condition 2, there exists Ai such that x ∈ Ai and
v /∈ Ai. Therefore, in combination with the definition of Fx we obtain v /∈ Fx.

In all three cases, we obtain a contradiction and therefore v ∈ Fx ⇒ v ∈ Px,
showing that Fx = Px. Given this fact, it is easy to reconstruct the branching T .
We sketch the algorithm: compute for each x the set Fx and from Fx reconstruct
the ordered version of the path Px, i.e., (r → v1 → .. → x) using sets in F whose
existence is guaranteed by condition 1. ut

A natural question is whether one can extend Theorem 1 to more complex
classes of oncogenetic models, such as directed acyclic graphs (DAGs) [12]. The
answer is negative. For instance, the oncogenetic tree with edges 1 → 2, 1 → 3
and the DAG with edges 1 → 2, 1 → 3, 2 → 3 are indistinguishable. Another
example is shown in Figure 3.

Oncogenetic tree reconstruction algorithms [8] and more generally established
inter-tumor cancer progression methods [12] receive as input a family of sets,
where each set represents the set of mutations observed in a single tumor. Recall,
that in the case of intra-tumor cancer progression the typical input is a multiset of
points in the positive integer cone where each point is the copy-gene number state
of a given cell. For instance, for the tumor shown in the final step of tumorigenesis
in Figure 1, the input would be D = {(2, 2)× 2, (3, 2)× 5, (2, 1)× 3, (1, 1)× 1}.
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Fig. 3: Extending Theorem 1 to oncogenetic directed acyclic graphs (DAGs)
[12] is not possible. For instance, the oncogenetic tree and the DAG are indis-
tinguishable in terms of the generated families of sets.

Based on the insights from the proof of Theorem 1, we convert a FISH dataset
to a dataset suitable for inter-tumor cancer progression inference. Specifically,
we assume we are given a FISH dataset and an algorithm f which infers an
evolutionary model of cancer progression from several tumors. Notice that f
could be any inter-tumor phylogenetic method, see [12].

For each cell in state x = (x1, . . . , xg) we generate a family of sets of “muta-
tions” as follows: for every gene i ∈ [g] whose number of copies xi is greater than
2 we generate xi − 1 sets in order to enforce that the gene has c + 1 copies if at
a previous stage had c copies, c = 2, .., xi− 1. For instance if gene i has 4 copies,
we generate the sets {gene− i−mut− 2}, {gene− i−mut− 2, gene− i−mut−
3}, {gene−i−mut−2, gene−i−mut−3, gene−i−mut−4} which show how the
gene obtained 2 extra copies The case xi < 2 is treated in a similar way. Finally,
we generate a set sf for each cell which contains all mutations that led to state
x. For instance, for the state (0, 3) sf = {gene− 1−mut− 2, gene− 1−mut−
1, gene− 1−mut− 0, gene− 2−mut− 2, gene− 2−mut− 3}. Upon creating
the dataset F we use it as input to f(), an existing intra-tumor phylogenetic
method, see [12].

Using the conversion above, based on condition 1 of Theorem 1 the output
of an inter-tumor phylogenetic method will capture the dynamic nature of the
process, which will be consistent with our assumptions of single gene duplication
and loss events and Ockham’s razor, e.g.,, the evolutionary sequence 2 → 3 → 4
rather than 2 → 3 → 4 → 5 → 4.

2.3 Progression Inference

Define B = [mini∈[n] xi1,maxi∈[n] xi1]× ..× [mini∈[n] xig,maxi∈[n] xig] to be the
minimum enclosing box of D, where xij is the number of copies of gene j in the
i-th cell, i ∈ [n], j ∈ [g]. Given the observed data we can calculate the empirical
probability π̃(s) of any state s ∈ B as the fraction |{q:q∈D,q=s|}|

n . The number
of states in B grows exponentially fast for any typical FISH dataset. We sum-
marize parsimoniously this distribution as described in Section 2.1. Specifically,
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we learn the parameters w of the hierararchical log-linear model by maximizing
the overlapping l1 penalized log-likelihood of equation (2) as described in [26].
We allow only second-order interactions between factors. It is worth mention-
ing that k-way interactions, k ≥ 3 can be embedded in the model as well, see
Chapter 6 [26], but we prefer not to avoid overfitting. Alternatively we can allow
higher order interactions but then a penalty term for the model complexity (e.g.,
AIC, BIC) should be taken into account. Let π be the distribution specified by
the learned parameters. We define a Metropolis-Hastings chain with stationary
distribution π [17] . Initially, all n cells will be in the diploid state (2, . . . , 2).
Notice that all we need to compute during the execution of the chain are ratios
of the form π(x)/π(y), which saves us from the computational cost of computing
the normalization constant Z. We simulate the chain k times in order to draw
m ≥ 1 samples from the probability distribution. Finally we use the conversion
described in Section 2.2 to infer a tumor phylogeny.

There exists a subtle issue that arises in practice: there exist states of B
which are not observed in the dataset D. We surpass this problem by adding
one fictitious sample to each state b ∈ B. From a Bayesian point of view this is
equivalent to smoothing the data with an appropriately chosen Dirichlet prior.

To summarize, our proposed method consists of the following steps: (1) Given
a FISH dataset D we learn the parameters of a hierararchical log-linear model
with pairwise potentials. (2) Given the learned parameters we can compute the
probability distribution on Zg. Let π be the resulting distribution. We define
a Metropolis-Hastings chain with stationary distribution π. Initially cells are in
the healthy diploid state (2, . . . , 2). (3) Draw m ≥ 1 samples from the probabil-
ity distribution by running the Metropolis-Hastings chain simulation m times.
(4) Convert the resulting FISH samples to inter-tumor phylogenetic datasets
by following the procedure of Section 2.2. (5) Use an inter-tumor phylogenetic
method [12] to infer a tumor phylogenetic tree.

Finally, an interesting perspective on our modeling which makes a conceptual
connection to [5] is the following: upon learning the parameters of the hierarar-
chical log-linear model, the probability distribution over B assigns implicitly
weights on the edges of the positive integer di-grid Zg (each undirected edge
of the grid is substituted by two directed edges) according to the Metropolis-
Hastings chain. Therefore, both our method and [5] assign weights to the edges of
the positive integer grid. This perspective opens two natural research directions
which we leave open for future research. First, instead of simulating the Markov
chain, one proceed could find an appropriate subgraph of the weighted di-grid,
e.g., a maximum weighted branching rooted at the diploid state. Secondly, it is
natural to ask whether there exists a natural probabilistic interpretation of the
method in [5].
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3 Experimental Results

Experimental Setup: In this paper, we show the results of validating our method
on a breast cancer dataset from a collection of publicly available FISH datasets
which can be found at ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data/.

We used the following third-party publicly available code in our implementa-
tions: hierarchical log-linear fitting code4 [26], distance based oncogenetic trees
[9], FISH progression trees [5] and graphviz for visualization purposes. Our rou-
tines are implemented in MATLAB. The number of simulations was set to
m = 10. We experimented both with smaller values for parameter m (m ≥ 2)
and the choice of log-linear fitting method, see [6], and we found that our results
are robust.

Table 2 provides a short description of the six genes that are analyzed in our
trees. The breast tumor dataset consists of 187 points in Z6

+.

Gene Cytogenetic Band Description

cox-2 1q25.2-q25.3 oncogene

myc 8q24 oncogene

ccnd1 11q13 oncogene

cdh1 16q22.1 tumor suppressor gene

p53 17p13.1 tumor suppressor gene

znf217 20q13.2 oncogene

Table 1: Genes are shown in the first column and their cytogenetic positions
in the second. The third column describes whether a gene is an oncogene or a
tumor suppressor gene.

Results and Analysis: Figures 4 and 5 show the cancer phylogenetic trees of
a ductal carcinoma in situ (DCIS) obtained by our method and [5] respectively.
Our tree is a distance based phylogenetic tree produced by using our reduction
of intra-tumor phylogenetic inference to inter-tumor phylogenetic inference as
described in Section 2.3. We observe that the tree of [5] does not explain the 27
different states that appear in the dataset. For instance the state (4, 8, 4, 4, 2, 2, 4)
accounts for 0.0053% of the appearing states and is discarded by [5] but is taken
into account by our method. Since there is no ground truth available to us it is
hard to reach any indisputable conclusion. However, we found that our findings
are strongly supported by oncogenetic literature.

The mutational events captured in our phylogenetic tree highlight putative
sequential events during progression from ductal carcinoma in situ (DCIS) to
invasive breast carcinoma. The first mutational events are highlighted in red.
Initially one allele of p53 and cdh1 are lost. Concurrent loss of cdh1 function and
p53 inactivation act synergistically in the formation, progression and metastasis
of breast cancer [7]. Moreover, following the first mutational events, the next

4 Schmidt’s code does not scale well to more than 6-7 variables.

ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees/data/
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Fig. 4: (best viewed on screen) Cancer phylogenetic tree for a breast cancer
tumor obtained by our method. Leaves of the tree are colored in the following
way: the root-event leaf is in yellow; the first change in the copy number profile
is in red color; euploid states are in green; states with copy number gain/loss
are shown in blue/orange. The first changes are losses of one gene copy of genes
p53 and cdh1.

changes occur in ccnd1, myc and znf217 which are oncogenes participating in
cell cycle regulation, proliferation and cancer progression. Specifically, as shown
by single invasive ductal carcinoma (IDC) cell analysis copy number loss of cdh1
is common in DCIS. Furthermore, copy number gains of myc are a common
feature in the transition from DCIS to IDC [13]. This is consistent with our
results. The synergy between p53 and cdh1 appears also in the tree of Figure 5
but at the last stages of the progression. Finally, Figure 6 shows the inferred
direct associations among genes.

4 Conclusion

In this work we develop a novel approach to studying FISH datasets, a type
of dataset which has received considerably less attention to other types of can-
cer datasets. Compared to prior work we take a probabilistic approach which
provides good data fit, avoids overfitting and captures complex dependencies
among factors. Motivated by our intention to capitalize on inter-tumor phylo-
genetic methods we prove a theorem which provides necessary and sufficient
conditions for reconstructing oncogenetic trees [8]. Using these conditions, we
show one way to perform intra-tumor phylogenetic inference by opening the
door to the wealth of established inter-tumor phylogenetic techniques [12]. We
model the evolutionary dynamics as a Markov chain in the positive integer cone
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Fig. 5: Cancer phylogenetic tree for a breast cancer tumor obtained by [5]. Nodes
with dotted borders represent Steiner nodes, i.e., states that do not appear in the
dataset. Green and red edges model gene gain and loss respectively. The weight
value on each edge does not have the semantics of probability, but it is the
rectilinear distance between the two connected states. See [5] for further details.
The weight on each node describes the fraction of cells in the FISH dataset with
the particular copy number profile.
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Zg
+ where g is the number of genes examined with FISH. Finally, we validate

our approach to a breast cancer FISH dataset.

Fig. 6: Direct associations among genes inferred from fitting a hierarchical log-
linear model to a ductal carcinoma in situ FISH dataset.

Our work leaves numerous problems open for future research. Improved mod-
els need to be developed that remove the simplifying assumption of a fixed cell
population and take the clonal evolution model into account [23], namely cancer
is initiated once multiple mutations occur in a random single cell which gives
birth to the uncontrolled proliferation of cancerous cells. Secondly, clustering
patients and finding consensus FISH progression trees per cluster is another in-
teresting problem. Furthermore, we plan to experiment with (a) other choices of
inter-tumor phylogenetic methods and (b) fitting approaches that allow higher
order interactions but will also account for the increased complexity of the re-
sulting model. Finally, using features from our inferred trees as features for
classification is an interesting question, see [5].
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