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Abstract

Upper bounds on probabilities of large deviations for sums of bounded inde-
pendent random variables may be extended to handle functions which depend in
a limited way on a number of independent random variables. This ‘method of
bounded differences’ has over the last dozen or so years had a great impact in
probabilistic methods in discrete mathematics and in the mathematics of opera-
tional research and theoretical computer science. Recently Talagrand introduced
an exciting new method for bounding probabilities of large deviations, which
often proves superior to the bounded differences approach. In this paper we
introduce and survey these two approaches and some of their applications.
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1 Introduction

What do we mean by ‘concentration’ here and why should we be concerned with it?
Suppose that a random variable X has expected value E(X) = p and variance
E((X — p)?) = 0% Then Chebychev’s inequality states that

P(IX —p| > 1) <o®/t?

for any ¢ > 0. Thus for ¢ >> o the probability of deviating by more than ¢ from u
is small. However, we shall often want or need the probability of large deviations to
be wvery small, that is, we want to know that X is strongly concentrated around pu.
The archetypical concentration result is Chernoff’s bound on the tails of the binomial
distribution [14], in other words on the tails of the sums of independent identically
distributed binary (that is, {0, 1}-valued) random variables.

Theorem Let X1, X5, ..., X, be independent binary random variables, with P (X, =
1) =pand P(X; =0) =1—p for each k, and let S, =>_ Xy. Then for anyt > 0,

P(|S, — np| > nt) < 27277

Typically we shall be interested in a random variable like S, , and not in the cor-
responding ‘bounded differences’ X that make it up. The variance of S, here is
np(l — p) = n/4 when p = 1/2, and then Chebyshev’s inequality yields only that
P(|S, —np| > nt) < 1/(4nt?), which will often not be a small enough bound for us. In
some cases we shall want good bounds for their own interest, and sometimes as tools
within some larger endeavour.

As an example of the former case, consider quicksort. Quicksort 1s one of the most
important sorting algorithms, and its value rests entirely on its good typical behaviour.
It is well known that it has good average time complexity. Further, the variance of the
time taken is not too large, and so large deviations from the average are not very likely
— see for example [36, 59]. However, one would hope that large positive deviations are
very unlikely, and the bounds that can be obtained from the variance and Chebychev’s
inequality are weak. Tt turns out [49] that the method of bounded differences shows
that indeed large deviations are exceedingly unlikely (and the method yields essentially
best possible bounds). We shall meet several further examples below, including the
study of isoperimetric inequalities.

There are also many cases when we need to know concentration results as a step
towards something else. One example concerns the behaviour of the chromatic number
of a random graph — see Section 3.1 below. Concentration inequalities have become
essential tools in the probabilistic analysis of algorithms [16, 25, 63] and the study
of randomised algorithms [51], and in probabilistic methods in discrete mathematics
(in particular when we wish to use the Lovdsz Local Lemma) [3]. Some have reached
standard undergraduate text books in probability — see for example [28] section 12.2,
or [57] section 6.3.

We shall introduce the two main approaches for proving concentration results,
namely the bounded differences or martingale method and the recent method of Tala-
grand, and give several applications of each. We shall also mention briefly how some
such results can be proved using ideas from information theory.



The natural starting point is to consider sums of independent random variables,
starting with the classical Chernoff bound, introduced above. We do this in Section 2,
where we give full proofs in a form which is intended to be widely accessible, and to
generalise for the next section.

Section 3 is devoted to the martingale method. We shall not use any results about
martingales beyond understanding the definition, and indeed the first two subsections
do not even mention the word martingale. We first present the ‘independent bounded
differences inequality’. This is a special case of various more powerful inequalities which
we develop later, but it is easy to grasp and has proved to be very useful. We give
applications to bin packing, colouring random graphs, and isoperimetric inequalities
involving Hamming distances. After that we present closely related extensions of the
independent bounded differences inequality, namely Theorems 3.7, 3.8 and 3.9, and
illustrate these extensions by describing an early application concerning permutations
and a recent application to finding matchings in hypergraphs. These extensions include
some results that have been presented very recently, though they can be traced back
to earlier work.

In these first two subsections of section 3 which we have just discussed, the ap-
plications are proved but not the concentration inequalities, as it is most natural to
prove the concentration results in the framework of martingales. The third subsection
introduces martingales onto the scene. Following that, the next subsection starts by
paralleling the earlier treatment of sums of independent random variables but now
considering martingale difference sequences: we find that we can mainly re-use the
earlier proofs. Then we give a pair of more general results, Theorems 3.14 and 3.15,
which include (nearly) all the previous results, and prove them in the following subsec-
tion. Thus Theorems 3.14 and 3.15 could be regarded as the most important of all the
results discussed so far, but often a more focussed special case, such as Theorem 3.1
or 3.9, is sufficient for an application, and is then the best tool to use. We end the
section on the martingale method with a brief discussion on ‘centering’ sequences.

The final part, Section 4, introduces Talagrand’s inequality (or rather, what seems
to be the most useful of his many inequalities!). We give applications to increasing
subsequences and common subsequences, to travelling salesman tours and Steiner trees,
and to minimum spanning trees. While presenting these applications we deduce from
Talagrand’s inequality two useful ‘packaged’ results, Theorems 4.3 and 4.5, which
in fact handle all the applications in this paper. These ‘packaged’ results, which
are tailored to our applications, are in fact rather easy deductions from Talagrand’s
inequality, which itself is proved afterwards. Finally, we discuss briefly how results
from information theory may be used to derive concentration results.

We shall stick throughout to bounded discrete ‘time’, typically 1, ..., n. Thus there
are two major related topics that we shall not discuss: for analogous martingale results
in continuous time see for example [39], and for an introduction to the asymptotic
theory of large deviations see for example [20, 19, 28]. Both these topics are harder
work than the discrete case we consider, and seem to be of much less use in discrete
mathematics and theoretical computer science.



2 Inequalities for sums of bounded independent ran-
dom variables

We restate from above the 1952 Chernoff [14] bound on the tails of the binomial
distribution.

Theorem 2.1 Let 0 < p< 1, let X1, X1, ..., X,, be independent binary random vari-
ables, with P(Xy = 1) = p and P(Xy = 0) = 1 — p for each k, and let S,, = > Xj.
Then for anyt > 0,

P(|S, — np| > nt) < 220,

The sum above is over k running from 1 to n. Throughout the paper, when we write
an unadorned sum 3 or product [] the index & runs from 1 to n. The above result will
be proved below by bounding the moment generating function M (h) = E(e"») and
using Markov’s inequality, following the method introduced by Bernstein. Indeed, all
the results of this section and the next section use this method. (See [58] for a variant
of this method which yields similar results, but assuming only limited independence,
and see also [64].)

Recall that Markov’s inequality states that for a non-negative random variable X
P(X >1t) < E(X)/t for each t > 0. To prove this, we use the indicator function 14
for an event A, and note that, since X > #1x>), we have

E(X) >t E(Lp5) =t P(X > 1).

Proof of Theorem 2.1
Let m =n(p+1). Let A > 0. Then

P(Sp > m) = P(e" > ") < e "M E ("), (1)

by Markov’s (or Bernstein’s) inequality. By the independence of the random variables

Xk,
E(ehSn) — E (H thk) — HE(thk) — (1 _p+peh)n
Hence, for any h > 0,

P(S, >m) < e_hm(l —p—}—peh)”.

If 0 <t < 1—pthen we may set ¢” = % to minimise the above bound, and
we obtain

P(S, —np>nt) < e 2nt” (2)
This implies by a continuity argument that the inequality holds also for t = 1 — p. But
the inequality is trivial for =0 or £ > 1 — p, and thus it holds for all £ > 0.
Now let ¥ = 1 — X}, for each k. Then by the above result (2),
P(S, —np< —nt) = P(Z Yi —n(l —p) >nt) < e 2nt?
for any ¢t > 0. i

Hoeffding [29] presents extensions of the above theorem which can be based on the
following lemma.



Lemma 2.2 Let the random variables X1, X3, ..., X,, be independent, with 0 < X <
1 for each k. Let S, =Y Xy, let u = ES,, let p= pu/n and let ¢ = 1 — p. Then for

any 0 <t <gq,
p+t g—t\ "
P(S, — > nt) < <L) <L) .
- “\\p+t¢ q—t

Proof We follow the lines of the proof of Theorem 2.1. Let py = E(X}) for each k.
Let m = p+ nt, and let A > 0. Note that, by the convexity of the function e"® for
0 <z <1, we have e < 1 — z + ze? | and so E(e"**) < 1 — py + pre”. Thus, since
Sy, 1s the sum of the independent random variables S,,_1 and X,

B(c") “B (M)
_1)(1 — Pn +pn€h)

H(l — Pk +pk@h):

E(ehS”
E(ehS”

IN A

on iterating. Hence,
E(c"*) < (1—p+pe")",

by the arithmetic mean — geometric mean inequality. But by Markov’s inequality,
P(S, > m) <e "ME(") < e (1 —p+ pe).

Thus, for any h > 0,

P(S, —p>nt) < (6_(1’“”(1 —p+p6h)) : (3)
The desired inequality now follows on setting e¢? = %, as in the proof of
Theorem 2.1. a

Our interest is in large deviations and the above bound is good in this case, though
inequalities closer to the normal approximation of DeMoivre-Laplace are naturally
better for small deviations — see for example [9]. From the above result we may
deduce weaker but more useful bounds, which generalise the bounds in Theorem 2.1
or improve on them when p is small.

Theorem 2.3 Let the random wvariables X1, Xs,..., X, be independent, with 0 <
Xk <1 for each k. Let S, =5 Xy, let p = E(Sy), let p=p/n and let ¢ =1—p.
(a) For any t > 0,

P(|S, — p| > nt) < 2e7

(b) For any ¢ > 0,
P(Sn > (1 + 5)/1) < e~ ((1+e) In(14e)—e)p < 6——2(16-;/3).

(¢) For any ¢ > 0,
P(S, < (1—)p) <e 30,

ot



Part (a) is due to Hoeffding [29], who also discusses relationships between that result
and other similar inequalities. Results similar to parts (b) and (c) appear in [4] (in
the binomial case). For similar results in the binomial case based on Stirling’s approx-
imation to n! see [9] chapter 1. In order to prove Theorem 2.3 we need one technical
lemma.

Lemma 2.4 For all x > 0,

(1 +2z)In(1 4+ z) — x> 32?/(6 + 2z).

Proof Let
2

fi(z) = (6 + 8z + 22%) In(1 + z) — 62 — 5x”.
We want to show that fi(z) > 0 for all z > 0. Now f1(0) = 0, and f](z) = 4fa(2)
where fa(z) = (2+ ) In(1 4+ z) — 2z. Tt suffices to show that fa(z) > 0 for all z > 0.
Now f2(0) =0, and fj(z) = (14+2)" ' +1In(1+2) — 1. Now f5(0) = 0, so it suffices to
show that f5(z) > 0 for all z > 0. But f4(z) = z(1 +2)~2 > 0, and so we are done.
O

Proof of Theorem 2.3
(a) Consider p fixed, let ¢ =1 —p, and for 0 < ¢ < ¢ let

fe) =t ((pit>p+t <q zt)q_j '

S = <p(q—t)) ’

(p+1t)g

Then

and
) ==((p+0(1—(p+1)7" < —4.
Now f(0) = f'(0) = 0 and so it follows by Taylor’s theorem that for 0 < ¢ < ¢,
f(t) = (t2/2)f"(s) for some s with 0 < s < ¢. Hence f(t) < —2t%. Hence by
Lemma 2.2,
P(S, — > nt) < e (4)

By applying this result to n — S, we obtain
P(S, — < —nt) < e™, (5)

(b) To prove part (b) it is simpler to use the inequality (3) in the proof of Lemma 2.2
rather than the lemma itself. If we set ¢ = ep and ¢” = (1 + ¢) there, and use the
inequality 1 4+ z < e®, we obtain

P(Sy > (14+ ) < (147071 +ep)) " < ((140)70+9e) ™

and this gives the first inequality in (b) (see also Appendix A of [3]). The second
inequality in (b) follows from Lemma 2.4.



(c) Let the function f be as in (a) above, and let h(z) = f(—zp) for 0 < z < 1.
Then h'(z) = —pf'(—zp) and

Wiw) = r'f(cen) = - (1- r);(gq T =T

Thus we may use Taylor’s theorem as above to see that h(z) < —pz?/2, and then
Lemma 2.2 completes the proof. a

The first inequality in part (b) yields useful results for very large deviations. In
particular,
P(Sh > 2u) < et (6)

Also,
P(Sn > (5/1) S 6—5(1n5—5+1)u S e—éln(é/e)u

and so, if § > 2e, then
P(S, > op) <2700 7)

The second inequality in part (b) yields immediately that
P(Sp > (14 )u) < e 357" (8)

for 0 < e < 1, which is often a sufficiently precise inequality in applications, see for
example [4]. Hoeffding also gives the following extension of part (a) above to the case
when the ranges of the summands may differ.

Theorem 2.5 Let the random variables X1, ..., X, be independent, with ap < Xj <

by for each k, for suitable constants ay,by. Let S, = > Xg and let p = E(Sy). Then
for anyt >0,
P50 — pl > ) < 2e=21 Llbammn)®.

To prove this result we need one lemma, from [29].

Lemma 2.6 Let the random variable X satisfy E(X) = 0 and a < X < b, where a
and b are constants. Then for any h > 0

E(th) < e%hE(b—a)z.

Proof Since e"* gives a convex function of z, for a < z < b

r—a b—=z
6h:z:< ehb+ EhaJ
—b—-a b—a

and so

€

b—a b—a
= (1—p)e P 4 pcll7Pl
= eP(1—p+pe¥) = W

E(th) < b ha a ht

where p = —a/(b—a), y= (b—a)h and f(z) = —pz + In(1 — p + pe”). But

T

P

= —pt
p+ (1 —ple®

f(x) = —P+m



and so

11 . p(l _p)e—x l
Fle) = pr(—peo)2 =1

(since the geometric mean is at most the arithmetic mean). Also f(0) = f/(0) = 0,
and hence by Taylor’s theorem

1
yZ — g(b —(1)2}7,2,

O —

fly) <
which gives the desired inequality. m]
Proof of Theorem 2.5 By Lemma 2.6, for A > 0
E(hSn-m) = E(Hemxk—E(Xk)))

— H E (Eh(Xk—E(Xk)))

e¥h D (bk—ar)?

INA

Hence by Markov’s inequality,

P(S, —p>1) < e ME(S0)
o~ ht+%h? E(bk—akﬂ

IN

Now set h = 4t/ (by — ax)? to obtain
P(S — i > 1) < =2 ltwmow)?,
Finally, replace X by —X to obtain
P(Sy — < —1) < e 2/ L bema)?)
and thus complete the proof. m]

Much work has also been done on tail bounds for the sum S, when, as well as
knowing bounds on the ranges of the summands X, we know bounds on their variances
var(Xy) — see for example [7, 29]. The following result builds on work of Bernstein
(see [7] and [29] equation (2.13)). We shall develop more general results along these
lines later. The reader may notice the similarity to part (b) of Theorem 2.3.

Theorem 2.7 Let the random variables X1, ..., X, be independent, with Xy—E(X) <
b for each k. Let S, =Y Xi, and let S, have expected value pi and variance V (the
sum of the variances of the Xy ). Then for any t > 0,

P(Sp —p>t)
S 6_(V/b2)((1+5) ln(1+f)_€) wher@ €= bt/v (9)
< o~ TEETIVY | (10)

oo



In typical applications of the inequality (10), the ‘error’ term bt/3V will be negligible.
Suppose for example that the random variables X have the same bounded distribu-
tion, with positive variance 0%, and so V' = no?. Then for ¢ = o(n), the bound in (10)

is e_(l‘*‘o(l))%. This is the natural ‘target’, since by the Central Limit Theorem S, —u
is asymptotically normal with mean 0 and variance V.

In the proof of Theorem 2.5 above we used Lemma 2.6 to give a bound on the
moment generating function for a bounded random variable with expected value 0. In
order to prove Theorem 2.7, we now need a related result, see [65].

Lemma 2.8 Let
g@)=s+ 5+ g+ = —1-z)/
if © £ 0. Then the function g is increasing; and, if the random variable X satisfies

E(X)=0 and X <b, then
E(E‘X) < eg(b)var(X).

Proof To show that g is increasing, note that for z # 0,

g (z) =x73((x — 2)e” + 2+ ),
and so it suffices to show that h(z) = (2 —2)e” + 2+ z satisfies h(z) > 0 for all z. Now
h(0) =0 and A'(z) = (z — 2)e” + 1. Then A'(0) = 0 and h"(z) = ze”, so h'(z) < 0 for

z <0 and A'(z) > 0 for z > 0, and thus indeed h(z) > 0 for all z as required.
For the second part of the lemma, note that

e =1+z+2’g(z) <1+az+27g(h)
for < b. Hence, if E(X) =0 and X < b, then
B(eX) < 1+ g(b)var(X) < es®var(0),
as required. m]

Proof of Theorem 2.7 The proof follows the lines of the proof of Theorem 2.5 above.
By Lemma 2.8, for any A

B("(5» =) = ] B (hXemBX) < gathtn®y,

Hence by Markov’s inequality, for any h > 0
P(S, — p > 1) < e ME(MEnTI) < mhtahinTY, (11)

To minimise this bound we set h = %ln(l + g—f), and then we obtain (9), and finally
Lemma 2.4 yields (10).

Inequalities for maxima
All the theorems above on sums of independent random variables can be strength-
ened to refer to maxima. Since we have no natural applications in the present context



for these strengthenings, we restrict ourselves to a comment here and then say a little
more at the end of subsection 3.5.
Each of the theorems is based on the elementary Bernstein inequality

P(Z >t) < e ME(e"?) for each h > 0.

Consider for example the Chernoff Theorem, Theorem 2.1, where S, = > X; and
tn = E(Sy): to prove this result we may apply the above inequality with 7 = S, — puy,
where p, = E(S,) = np, that is we use the inequality

P(Sy — pin > 1) < e ME("Sn~#n)) for each h > 0.
However, a stronger inequality holds. Let Sk = Zle X; and px = E(Sg): then
P(max(Sy — pz) > t) < e ME("5n~#n)) for each h > 0.

Here the maximum is over £k = 1,...,n. Thus the same proof as before shows that,
for any ¢t > 0,
P(max(|Sk — kp|) > nt) < 2¢™ 277

However, in typical applications of concentration inequalities in discrete mathematics
or theoretical computer science, we do not start with the X and then wish to inves-
tigate the sums S1,S55,.... we start with a random quantity Z of interest and then
define further random variables X}, such that Z =3 X} in order to investigate 7, so
that we are not interested for example in S, _1.

Not only may the theorems above on sums of independent random variables be
strengthened to refer to maxima, but also this holds for many of the more general
results in the next section, as they are also based on the Bernstein inequality — see the
comment at the end of subsection 3.5.

3 Martingale methods

We shall make some introductory comments about martingales in subsection 3.3 below.
No knowledge of martingales will be required in the first two subsections below! Indeed,
they will not be mentioned, though we shall see later that the inequalities presented
in these subsections are most naturally understood in the context of martingales, and
indeed they could be called closet martingale results.

3.1 The independent bounded differences inequality

In this subsection, we introduce and give several applications for the ‘independent
bounded differences inequality’, Theorem 3.1 below, from [45]. This result is a special
case of Theorem 3.7 below (and thus also of Theorem 3.14), but it has proved very
useful and is immediately accessible and so we discuss it first. (We should insist
below that the function f be appropriately integrable: we ignore such details here and
throughout the paper.)

Theorem 3.1 Let X = (X1, Xa,..., X,) be a family of independent random variables
with Xy taking values in a set A for each k. Suppose that the real-valued function f
defined on [ Ay satisfies

[F(x) = F(x')] < ex (12)

10



whenever the vectors x and x’ differ only in the kth co-ordinate. Let i be the expected
value of the random variable f(X). Then for any t > 0,

P(f(X)—p>1) <e /2%, (13)
The inequality (13) is ‘one-sided’. If we apply it to —f we obtain
P(f(X)—p < —t) < e 22k, (14)
and so we have deduced the ‘two-sided’ inequality
P(|f(X) = | > 1) < 2677 2ek, (15)

A similar comment holds for most of the one-sided results we present.

If we let each set Ay = {0, 1} and let f(x) = > zp we obtain Theorem 2.1 above;
and 1if each set Ay is a bounded set of numbers we obtain Theorem 2.5. We consider a
variety of applications below. We do not prove Theorem 3.1 at this point, as the proof
is most naturally set in the framework of martingales and we shall shortly develop
more general results — see in particular Theorem 3.7 below.

3.1.1 Bin packing

Our first application is quick and easy. Given an n-vector x = (z1,...,2,) where
0 < 2 < 1 for each k, let B(x) be the least number of unit size bins needed to store
items with these sizes. We assume that the items have independent random sizes. Let
X = (X1,...,Xpn) be a family of independent random variables each taking values in
[0,1]. Then the bounded differences condition (12) holds with each ¢; = 1, and so (as
noted in [45, 54]) it follows from Theorem 3.1 that

P(|B(X) - p| > 1) < 2e7277, (16)

where pu is the expected value of B(X). Thus if w(n) = oo as n — oo, then the
probability that B(X) deviates from its mean by more than w(n)\/n tends to 0 as
n — oco. We may say that B(X) is concentrated within width O(y/n). For a similar
result on random knapsacks see [45]. (For finer concentration results on bin packing
that use also the variance of the random variables X}, see [68, 42].)

3.1.2 Random graphs

In Theorem 3.1 we may take Ag as a set of edges in a graph, as in the results below —
see for example [10, 12]. Recall that the random graph G, , has vertices 1,...,n and
the possible edges appear independently with probability p.

Lemma 3.2 Let (A1,...,An) be a partition of the edge set of the complete graph
K, into m blocks; and suppose that the graph function f satisfies |f(G) — f(G')] < 1
whenever the symmetric difference E(G)AE(G') of the edge-sets is contained in a
single block Ax. Then the random variable Y = f(Gy p) satisfies

P(Y —E(Y)>t) <e /™ for t > 0.



This result follows directly from Theorem 3.1 with each ¢; = 1. The next two results
are immediate consequences of Lemma 3.2: for the former let Ax be the set of edges
{j, k} where j < k, and for the latter let the blocks Ag be singletons. We may think
of ‘exposing’ the random graph step-by-step: at step k& we expose which edges in the
set Ag are present.

Lemma 3.3 Suppose that the graph function f satisfies |f(G) — f(G')] <1 whenever
G’ can be obtained from G by changing edges incident with a single vertex. Then the
corresponding random variable Y = f(G p) satisfies

P(Y —E(Y)>t)<e 2/ for t > 0.

When we consider the chromatic number x(G) and let Y = x(Grp) (and use the
two-sided version of the last lemma), we find that

P(Y —E(Y)] > 1) < 27277, (17)

which is (a slight sharpening of) the early result of Shamir and Spencer [60] which was
important in introducing martingale methods into this area.

Lemma 3.4 Suppose that the graph function f satisfies |f(G) — f(G')] <1 whenever
G and G’ differ in only one edge. Then the corresponding random variable Y = f(G, ,)
satisfies

P(Y —E(Y)>1t) <e /" for t >0.

Perhaps the most exciting application of the bounded differences method uses this
lemma. Tt is the proof by Bollobas [11] of what was a long-standing conjecture about
the chromatic number x (G, ;) of random graphs. Consider a constant edge probability
p with 0 < p< 1 and let ¢ =1 — p. Then for any ¢ > 0,

n

< np) < (1
o S X(Gn) S (149

P<(1—e) 2107; n)—)las n — 00.
(For a more precise result see [46].)

The lower bound part of the proof is easy: the interest is in establishing the upper
bound for x(Gr,p). The key step in the proof is to show that the probability p(n) that
G p fails to contain a stable (independent) set with s(n) = [(2 — ¢) log, n] vertices is

very small, say

B(n) =0(e™"7). (18)
To see how this will yield the upper bound on x(G, ), let 72 = [n/log2 n] and call a
set W of at least 7 vertices in G, , bad if it contains no stable set of size at least s(7).
The probability that there is a bad set is at most 2"p(il) = o(1). But if there is no
bad set W, then we can repeatedly colour a stable set of size at least s(72) and delete

it, until there remain fewer than n vertices, which may each get a new colour. The
total number of colours used by this procedure is then at most

n/s(R) + i = (i + o(1))n/ log, n.

Thus we wish to see that (18) is true. The clever idea is to consider not just big
stable sets but packings of such sets. Given a graph G on n vertices, define f(G) to
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be the maximum number of stable sets of size s(n) which pairwise contain at most
one common vertex. If graphs G and G’ differ in only one edge then f(G) and f(G')
differ by at most 1. Let X, = f(Grp). It is not hard to check that p = E(X,) is
large, say at least ns for n sufficiently large. Hence by (the other one-sided version
of) Lemma 3.4, the probability p(n) that G, , has no stable set of size s(n) equals

E
3

P(X, = 0) = P(Xp — in < —pin) < e/ <7t

for n sufficiently large.

3.1.3 Hamming distances and isoperimetric inequalities

Next let us consider an application of the independent bounded differences inequal-
ity Theorem 3.1 involving Hamming distances in product spaces, and corresponding
isoperimetric inequalities. This application will link in with our discussion later on
Talagrand’s inequality and on the use of ideas from information theory to prove con-
centration results.

Let Q1,...,9Qy, be probability spaces, and let € denote the product space [ Q.
Let X = (Xy,...,X,) be a family of independent random variables with X}, taking
values in Q. Recall that for points x = (21,...,2,) and y = (y1,...,yn) in Q, the
Hamming distance dp(x,y) is the number of indices i such that z; # y;. We can use
the independent bounded differences inequality to show that for any subset A of Q
such that P(X € A) is not too small, the probability that a random point X is ‘close’
to A is near 1. Recall that the Hamming distance from a point x to a set A is defined
by setting dg(x, A) to be inf{dy(x,y):y € A}.

Theorem 3.5 Let X = (X1,...,X,) be a family of independent random variables
and let A be a subset of the product space. Then for anyt > 0,

P(X € A) P(dy (X, A) > t) < e7t/?, (19)

Let us rephrase this result before we prove it. Define the ¢-fattening of a subset A of
Q to be the set of points x € Q such that dy(x, A) < t, and let the measure v(A) be
P(X € A). Then (19) says that

V(A)(1 = v(A)) < e7t/4,
Thus if v(A) > 1 then v(Ay) > 1— 2¢=%"/4_ Tn particular, when each random variable
X}, is uniformly distributed on the set Q5 = {0, 1} we obtain an isoperimetric inequality

for the n-cube — see for example [37, 45, 63].

Proof of Theorem 3.5 Let p=P(X € A) and let p = E(dg(X, A)). We may assume
that p > 0. By the independent bounded differences inequality, for ¢ > 0

P(dm(X,A) —p>t) < e/, (20)
and

P(dp (X, A) = p < —t) <72/, (21)
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Now dp(x,A) = 0 if and only if x € A, so if we take ¢ = p in the inequality (21)
above, we obtain

p=P(X€A)=P(dn(X,A)— p < —p) < e/,
and so )
p< (bnin(1/p)%, = 1o say.
Now use this bound in the inequality (20) above, to find
P(dy (X, A) >t +1) < e 2/,
Thus for ¢t > 15 we have
P(dp(X, A) > 1) < e~ 2t=t0)/n. (22)
Now (t — a)? > t%/4 for t > 2a, so if we take t > 2t in the inequality (22) we obtain
P(dy (X, A)>t) <e /2
But for 0 < ¢ < 2t;, the right hand side above is at least ¢=266/" = p = P(A). Thus
min (P(X € A), P(dg (X, A) > t)) < et/
for any t > 0. m]

We may generalise the above discussion. Let a = (a1, ..., a,) > 0 be an n-vector
of non-negative real numbers. Recall that the (Ls) norm is given by

llad|= (D ak)?,

and we call & a unit vector if it has norm ||e||= 1. For points x = (#1,...,2,) and
Yy = (y1,...,yn) in Q, the a-Hamming distance d,(x,y) is the sum of the values o;
over those indices ¢ such that #; # y;. Thus when « is the all 1’s vector, it has norm
/1 and a-Hamming distance is just the same as Hamming distance. Also, for a subset

A of Q, we define

rol—

do(x,A) = inf{ds(x,y) : y € A}

Exactly the same proof as for Theorem 3.5 yields the following extension of it.

Theorem 3.6 Let X = (X1,...,X,) be a family of independent random variables, let
a be a non-negative unit n-vector, and let A be a subset of the product space. Then
for anyt >0,

P(X € A) P(dy(X, A) > t) < e */2

Similar results appear in [50, 68, 69]. The central result of Section 4, namely Tala-
grand’s inequality Theorem 4.1, looks rather similar to Theorem 3.6 but is in fact far
more powerful, since it refers not just to one unit vector a but simultaneously to all
such vectors.

The above result will give us back a result like Theorem 3.1, centered around a
median rather than the mean. Let us see how to do this. Consider a function f defined
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on [] Ax as there, and let ¢ be the vector (c1,...,¢,). Then the bounded differences
condition (12), that |f(x) — f(x’)| < ¢x whenever the vectors x and x’ differ only in
the kth co-ordinate, is equivalent to the condition that | f(x) — f(x')| < dc(x,x'). Now
assume that the condition (12) holds. Let

Ao ={y €[] Ak : f(y) < a}.
Consider an x € [[ Ag. For each y € A,,
F(x) < f(y) +de(xy) < atde(x,y),
and so, minimising over such y,
£ < a -+ de(x, Aa).
Let ¢ =||c||, and let « be the unit vector ¢/c along ¢. If f(x) > a + ¢ then
do(x, Ag) = de(x, Aa)/c > (f(x) —a)/c > t/c.
Hence by Theorem 3.6, for any ¢ > 0,
P(f(X) < a) P(f(X) > a+1) < P(X € Ay) P(do(X, Ag) > t/c) < e7/2

Now let m be a median of f(X), that is P(f(X) < m) > 1 and P(f(X) > m) > 1.
Taking a = m above gives

P(f(X) > m+1) < 2712, (23)
and taking a = m — ¢t we have
P(f(X) <m—t) <2 t/2 (24)

The above two inequalities are like the conclusion of Theorem 3.1, at least if we are
not too bothered about constants. They refer to concentration about the median m
rather than the mean y = E(f(X)), but that makes little difference since the concen-
tration inequalities themselves imply that |z —m| is small. Indeed, the inequalities (23)
and (24) together with Lemma 4.6 in subsection 4.2 below show that

| —m| < V2me. (25)

So it is not important whether we refer to median or mean, and Theorem 3.6 and
Theorem 3.1 are quite similar.

3.2 Extensions

In this subsection we refine the independent bounded differences inequality, Theo-
rem 3.1, and the Bernstein inequality, Theorem 2.7, to obtain more widely applicable
results, namely Theorems 3.7, 3.8 and 3.9, but at the cost of some added complication.
We shall deduce these theorems later as immediate consequences of martingale theo-
rems (though they do not themselves mention martingales!). Theorems such as these
have recently proved useful when the random variables X correspond to answering
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questions such as whether two given vertices are adjacent in a random graph, and the
question asked at time k& may depend on the answers to previous questions — see for
example [32, 2, 26]. We shall give part of an argument from [2] concerning hypergraph
matchings at the end of this subsection.

Let X = (Xy,...,X,) be a family of random variables with X} taking values
in a set A, and let f be a real-valued function defined on [] Ax. Typically the
random variables Xy will be independent but we shall not assume this here. We define
quantities which measure the variability of the random variable f(X) when the random
variables X1,..., Xg_1 are fixed. These quantities correspond to deviation, range and
variance. It is convenient to note first an easy bound on variance. If the random
variable X satisfies E(X) =0 and a < X < b, then

var(X) = E(X(X — a)) < E(b(X —a)) = |ab] < (b— a)?/4. (26)

Let x; € A; foreach i = 1,...,k — 1, and let B denote the event that X; = x; for
each ¢ = 1,...,k — 1. Let the random variable Y be distributed like X} conditional
on the event B (so if k = 1 then Y is distributed like X; with no conditioning, and
if the random variables X} are independent then for each k the random variable Y is
distributed like X} ). For z € Ay let

9(z) = E(f(X) | B, X = 2) - E(f(X) | B).
If the random variables X}, are independent then we may write g(z) as
E(f(l‘l, ey L1, I,Xk-}-l, .. ,Xn)) — E(f(l‘l, .. ~;$k—1;Xk,Xk+1, .. ,Xn))

The function g(z) measures how much the expected value of f(X) changes if it is
revealed that X} takes the value z. Observe that E(g(Y)) = 0.

Let devt(z1,...,zk_1) be sup{g(z) : = € A}, the positive deviation of g(Y), and
similarly let dev(zq,...,25—1) be sup{|g(z)| : © € Ax}, the deviation of g(Y). (If we
denote E(f(X)) by u, then for each x = (21,...,2,) € [[ Ax we have

|f(x) — pl gZdev(Il,...,mk_l). (27)

This inequality may be combined (or ‘interpolated’) with other inequalities like The-
orem 3.1 — see [55, 38].) Let ran(z1,...,zx—1) denote sup{|g(z) — g(y)| : z,y € Ax},
the range of g(Y). Also, denote the variance of g(Y) by var(z1,...,z5-1).

For x € [ Ak, let the sum of squared ranges be

n

R*(x) = E(ran(ml, conxko1))?

k=1
and let the marimum sum of squared ranges #* be the supremum of the values R%(x)
over all x € [ Agx. Similarly let the sum of variances be

n

V(x) = Zvar(ml, Ce ZRo1),

k=1

and let the mazimum sum of variances v be the supremum of the values V (x) over all
x € [] Ax. Observe that V(x) < R?(x)/4 for each x by (26), and so ¢ < 7#%/4. It is

also of interest to note that

var(f(X)) = E(V(X)) <o,
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as is shown just before Theorem 3.14 below. Finally here, let maxdevt be the
maximum of all the positive deviation values dev(z1,...,2z5_1), over all choices of
k and the z;, and similarly let maxdev be the maximum of all the deviation values
dev(zy, ..., 2p—1).

Example Define the function f : {0,1}® — {0, 1} by letting f(x) be 0 on (0,0, 0), (0, 1,0), (1,0, 1)
and be 1 otherwise. Let X = (X1, X2, X3) be a family of independent random vari-

ables with P(X; = 0) = P(X; = 1) = 3 for each k. Thus E(f(X)) = 5/8, and
var(f(X)) =5/8 — (5/8)? = 15/64.

At the ‘root’, ¢(0) = E(f(0, X2, X3)) —E(f(X)) = / 5/8 = —1/8, and similarly
g(1) =3/4—5/8=1/8. Thus ran() = 1/4, dev*t() = dev() = 1/8 and var() = 1/64.

What happens if X; = 1?7 We have E(f(X) | X1 =
and so g(0) = E(f(1,0, X3))—3/4 = —1/4 and g(1) =
ran(1) = 1/2, dev*t (1) = dev(1) = 1/4, and wvar(1) =
and var(1,0) = 1/4.

Now let x = (1,0, 1) (or (1,0,0)). The corresponding sum of squared ranges R?(x)
is ran()?+ran(1)?+ran(1,0)? = 1/16+1/4+1 = 21/16, which in fact equals #2. The
corresponding sum of variances V' (x) is var()+var(1)+wvar(1,0) = 15/6441/64+1/4 =
1/2, which in fact equals .

1
2

v

1) ( (1, X5, X3)) = 3/4,
E(f(1,1,X3))—3/4 = 1/4. Thus

/16 Slmllarly, ran(1,0) =1

We are now ready to state the frist of our more general results, which extends the
independent bounded differences inequality, Theorem 3.1.

Theorem 3.7 Let X = (X1,...,X,) be a family of random variables with Xy, taking
values in a set Ag, and let f be a bounded real-valued function defined on [] Ak. Let
p denote the mean of f(X), and let #? denote the marimum sum of squared ranges.
Then for anyt > 0,
P(f(X) = > ) <217,
More generally, let B be any ‘bad’ subset of [] Ak, such that R*(x) < r? for each
x & B. Then
P(f(X)—p>t)<e /" 4 P(X € B).

The first inequality above of course yields
P(f(X) —p < 1) <e 7
by considering —f (as in the comment after Theorem 3.1), and thus
P(|f(X) = pl > ) < 272777 (28)

If for each k = 1,...,n we let 7 be the supremum of the values ran(z1, ..., zx_1) over
all choices of the z;, then of course 72 is at most Y 7. This bound for #? yields Corol-
lary 6.10 of [45]. Further, it yields also the independent bounded differences inequality,
Theorem 3.1. For suppose that f satisfies the bounded differences condition (12) in
that theorem. Let 1 < k < n and let ; € A; for i = 1,...,k — 1. We shall see that
ran(zq,...,z5-1) < cg, 50 72 < Y 72 < S c?, and then Theorem 3.1 follows. To see
this, for each z € Ay let Z; be the random variable f(z1,...,25-1, 2, Xg41,..., Xn)-
Then |Z; — Z,| < cx. Hence, in the notation introduced before the statement of the
last theorem, for any z,y € A

l9(2) = 9(¥)| = [E(Zz) — E(Zy)| < E(|Zz = Zy]) < s
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Thus ran(z1,...,25-1) < cx, as required.

Observe that the above argument will in fact yield a slightly stronger form of
Theorem 3.1. Denote Y ¢ by ¢*. The theorem will still hold if we weaken the
assumption on f to the condition that for each x there exists a ¢ (possibly depending
on x) such that 5" ¢ < ¢?, and |f(x) — f(x')] < ¢ whenever the vectors x and x’
differ only in the kth co-ordinate. The inequality of Talagrand that we shall meet later
has a similar flavour.

Let us give one application of the above result, Theorem 3.7, before we go on to give
extensions of the Bernstein theorem, Theorem 2.7. This application is from Maury [44],
and was, together with [1], one of the first uses of a concentration inequality outside
probability theory.

Permutation graphs

Let S, denote the set of all n! permutations or linear orders on {1,...,n}. The
permutation graph G, has vertex set S, , and two vertices o and 7 are adjacent when
o1~ ! is a transposition, that is when 7 can be obtained from ¢ by swapping the order
of two elements. We are interested in isoperimetric inequalities for this graph. Given
aset A C S, and ¢t > 0, the ¢t-fattening A; of A consists of the vertices in G, at graph
distance less than ¢ from some vertex in A. Thus, we want lower bounds on |4;| in
terms of |A|, or upper bounds on 1 — |A;|/n!. We shall show that

(JAI/n!) (1 = |A]/nl) < em*72m. (29)
Think of a linear order in S,, as an n-tuple x = (21, ..., z,) where the zj are distinct.
Let aq,...,ag be distinct and let B be the set of linear orders x € S, such that
r1 = ay,..., Ty = ag. For x distinct from the a; let B; be the set of x € B with

zp41 = z. Let f be any function on S, satisfying the Lipschitz or unit change condition
|f(x) — f(y)] < 1if x and y are adjacent in Gy

Now let X be uniformly distributed over S, . In the notation introduced before the
last theorem above, consider

9(z) =E(f(X) | X € B;) - E(f(X) | X € B).

For any relevant distinct z and y, there is a bijection ¢ between B, and B, such that
x and ¢(x) are adjacent in G,. (We simply swap the positions of z and y.) Thus
E(f(X)| X € By) = E(f(¢(X)) | X € B;). It follows that

l9(z) =g = [E(f(X) - f(¢(X)) [ X € B;)|
E(lf(X) - f(¢(X))[ | X € B;) < 1.

IN

Hence by Theorem 3.7,

P(f(X) - E(f(X)) > t) < 727/,

Now let us specialise to the case when f(x) is the graph distance between x and the
set A. We may proceed exactly as in the proof of Theorem 3.5 above (after the first
two inequalities) to show (29) as required. For related results and extensions see for

example [50, 10, 45, 37, 68].

The next result extends the Bernstein theorem, Theorem 2.7.
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Theorem 3.8 Let X = (X1,...,X,) be a family of random variables with Xy, taking
values in a set Ay, and let f be a real-valued function defined on || Ax. Let p denote
the mean of f(X). Let b = maxdevt and let v be the mazimum sum of variances, both
of which we assume to be finite. Then for any t > 0,

P(f(X) = p > 1) < ¢ FOROTT

More generally, let B be any ‘bad’ subset of [ Agx such that V(x) < wv for each x ¢ B.
Then

P(f(X) = p>1) < e” W0FCTwY + P(X € B).

As with Theorem 2.7 above, in typical applications of this result the ‘error term’ bt/3v
is negligible. Also, the ‘bad set’” B if present at all is such that P(X € B) is negligible.
If we use the bounds V (x) < R?(x)/4 for each x and ¢ < #?/4, we can nearly obtain the
bound in Theorem 3.7 for small ¢. If for each &k = 1,...,n we let 95 be the maximum
of the values var(zy,...,2x_1) over all choices of the z;, then ¢ is at most > 0y. If
we use this bound for ¥ together with the discussion below, we obtain a result related
to inequalities used by Kim [35] in his marvellous R(3,¢) paper. However, the present
more general result is needed for certain applications — see for example [32, 2, 26] and
the example below.

Observe that if a random variable X has mean 0 and takes only two values, with
probabilities p and 1 — p, then the two values are —pr and (1 — p)r where r is the
range of X, and var(X) = p(1 — p)r? < pr? — see also (26) above. Thus if p is small
so is var(X) and we can get tight bounds on deviations. Let us state one corollary of
Theorem 3.8, which is a tightening of the martingale inequality in [2].

Theorem 3.9 Let X = (X1,...,X,) be a family of random variables with Xy, taking
values in a set Ag, and let f be a bounded real-valued function defined on [] Ak. Let
p denote the mean of f(X), let b denote the marimum deviation mazdev, and let 7*
denote the marimum sum of squared ranges. Suppose that, for any given values taken
by X1,...,Xg_1, the random variable Xy, takes at most two values, and if it can take
two values then the smaller of the probabilities is at most p, where p < % Then for
any t > 0,

P(If(X) - ul > 1) < 2¢” FECHGTZ.

As with Theorems 2.7 and 3.8 above, we hope to be able to ignore the ‘error term’
t2

bt/3pr2. The important term in the bound is e~ 2»7% | which is significantly better

2
(smaller) than the corresponding term ¢~ 57 from Theorem 3.7 when p=o0(1). In the
next subsection we describe an application where this difference is crucial.

3.2.1 An application to hypergraph matchings

A matching in H is a set of pairwise disjoint edges. Let k > 3 be a fixed integer, and
consider a k-uniform d-regular simple hypergraph H on n vertices. (Thus each edge
contains exactly k vertices, each vertex is contained in exactly d edges, and each pair of
distinct edges meet in at most one vertex.) Tt is shown in [2] that such a hypergraph H
contains a matching covering all but a vanishing proportion of the vertices as n — co.
(Earlier results showed that the proportion of vertices that could not be covered tended
to zero, but perhaps slowly.)
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The idea of the proof is to find such a matching by repeatedly taking random ‘bites’
(like large ‘Rodl nibbles’ — see for example [3]). We take such a bite as follows. Form
a set X of edges by choosing the edges independently with probability 1/d. Call an
edge ‘isolated’ if it meets no other edge in X. Let M consist of the isolated edges in
X — these will form part of the final matching. Now delete from H all the vertices
in the edges in M and all the edges meeting these vertices, forming a hypergraph
H* on the vertex set V*, and take the next bite from H*. We must show that H*
is approximately regular of appropriately smaller degree. (Many details have been
omitted, in particular a neat degree stabilisation technique, but they do not affect the
idea that we wish to illustrate.) A key part of the proof is to check that each vertex
degree in H* is close to its expected value with high probability, and that is what we
now proceed to do. (We need the probability of a significant deviation to be very small
since the next step in the proof is to use the Lovész Local Lemma: when using a ‘Rodl
nibble’ often a second moment bound suffices — see for example [3].)

For each vertex v € V let 7, be the number of edges £ € H containing v such
that F'\ {v} C V*. Observe that if v € V* then 7, equals the degree of v in H*. (By
defining 7, in this way we need not worry about whether or not the vertex v is in
V*.) Tt turns out that it suffices to consider a fixed vertex v € V, and show that for

1
t = o(d2) we have
1 2
P(|Z, — B(Z,)| > tdZ) < e~ %),

(See Claim 2 in [2].) Let us see how we can obtain this result from Theorem 3.9. Recall

that Theorem 3.9 gives a bound of roughly 6_2;7 as long as the deviation ¢ is not too
large.

For each edge E € H, let the random variable Xg = 1 if E appears in the random
set X and let Xg = 0 if not. Thus P(Xg = 1) = p = 1/d, and we shall be in business
as long as the maximum sum of squared ranges #? = maxyx R%(x) is O(d?). (In order
to use Theorem 3.7 we could tolerate only #2 = O(d), which is no use here.)

Call an edge in H primary if it contains the vertex v, secondary if it not primary
but meets a primary edge, and tertiary if it is not primary or secondary but meets a
secondary edge. Let &, & and &3 denote the sets of primary, secondary and tertiary
edges respectively, and note that |&1] = d, |€2] < (k — 1)d? and |&5] < (k — 1)2d>. Let
& be the union of the sets &;.

The random variable 7, is determined by the values of the random variables Xg
for E € £. Let Q be the set of binary vectors x indexed by £. For each x € Q let f(x)
be the corresponding value of the degree 7,. Let x,y € Q differ only in co-ordinate
F,where F € £. If F € & then |f(x) — f(y)| < 1. If F € & then |f(x) — f(y)| < k%

So far the contribution to the term R?(x) is at most
|E1] + |Ealk* < kPd* = O(d?),

which as we saw above is small enough. Similarly, if F € & then |f(x) — f(y)] < k2.
However, we cannot tolerate a contribution to R%(x) of order d3, so we must do better.

Let x € Q. Call an edge F' € & important if zp+ = 1 and F’ meets no other
edges F" € & with zps = 1. There are at most (k — 1)d important edges, and so at
most k2d? tertiary edges can meet an important edge. Further, if y € Q differs from
x only in co-ordinate F' for some tertiary edge F' which meets no important edge then

f(x) = f(y). Thus we can bound R%*(x) by k°d? + (k?d*)k* < 2k%d?, and so the
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maximum sum of squared ranges #? < 2kd?. Since each P(Xp = 1) = 1/d we may
now use Theorem 3.9 to show that

1
P(Z, ~ E(Z,)| > 1d7) < 2exp |-

= 2exp | — 1 )
4k8(1 4+ t/(6k*d2))

2 1
and this bound is at most e~ (") for ¢ = O(d2).

3.3 Martingales

We give here a brief introduction to the theory of martingales, focussing on the case
when the underlying probability space is finite. For much fuller introductions see for
example [28] or [72].

The starting point is a probability space (2, F, P). Thus Q is the non-empty set of
all ‘elementary outcomes’, F is the set of ‘events’, and P is the probability measure.
The collection F of events must be suitably closed under unions, intersections and
complements, and is assumed to be a o-field. A o-field on Q is a collection G of
subsets of © which contains the empty set, and is closed under complementation (if
A € G then Q\ A € G) and under countable unions (if Ay, As,... € G then their union
is in G). Tt follows that such a collection G is also closed under countable intersections.
In many applications the underlying set €2 is finite, and the o-field F of events is the
collection of all subsets of Q. Let us assume in the meantime that € is finite, though
what we say is either true in general or at least tells the right story.

Corresponding to any o-field G on  there is a partition of £ into non-empty sets,
the blocks of the partition, such that the o-field G is the collection of all sets which are
unions of blocks. Corresponding to the o-field of all subsets of €2 is the partition of Q
into singleton blocks. Suppose that we have a o-field G contained in F. Any function
on €2 which 1s constant on the blocks of G i1s called G-measurable. A random variable
is an F-measurable real-valued function X defined on €2, so that in the case when F
consists of all subsets of Q any real-valued function defined on €2 is a random variable.

The ezpectation of X conditional on G, E(X | G), is the G-measurable function
where the constant value on each block of G is the average value of X on the block.
This is a very important notion. We may see that E(X | F) = X (that is, E(X |
F)(w) = X (w) for each w € Q) ; and if G is the trivial o-field {#}, Q} corresponding to
the trivial partition of € into one block, then E(X | G) is the constant function with
constant value E(X). Key properties of conditional expectations that we shall need
are that if G; C G5 then

E(E(X [ G2)) =E(X [G1) (30)
and so in particular
E(E(X |9)) = E(X), (31)
and
E(XY |G) = XE(Y | G) if X is G-measurable. (32)
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The supremum of X in G, sup(X | G), is the G-measurable random variable which
takes the value at w equal to the maximum value of X over the block containing w.
Clearly

E(X |G) <sup(X [G), (33)

and if G; C G5 then
sup(X | Gz) < sup(X | Gy). (34)

Note that each of the above results holds for each w € Q. Tt is time for an example!

Example Let Q = {0,1}", let F be the collection of all subsets of Q, let 0 < p < 1,
and for each w = (w1, ...,wy,) let P({w}) = p/(1—p)"~7 where j = 3 wy. This defines
our probability space. For each k = 1,... n define Xj(w) = wy for each w € Q. Then
X1,..., X, are independent random variables with P(X; = 1) =1 -P(X; =0) =p
for each k. Also, let Sy = X1 + -+ Xi. Let Fix be the o-field corresponding
to the partition of Q into the 2% blocks {w € Q : wy = x1,...,wr = 3} for each
(z1,...,25) € {0,1}*. Then the random variable E(S,, | F}) satisfies (for each w € Q)

E(S, | Fr)=Sk+(n—k)p=wi + - 4+ wi + (n—k)p,

and E(S, | Fn) = Sn, E(S, | Fo) = E(S,) = np and E(E(S, | Fx)) = E(Sk) + (n —
k)p = np. Also for example

E(SkS, | Fi) = SkE(Sn | Fr) = S + (n — k)pSk.
Further

sup(Sp | Fx) =S+ (n— k) < Sg—1+ (n—k + 1) = sup(Sy | Fr—1).

Another important idea is that of a filter. A nested sequence (§,Q) = Fo C F; C - --
of o-fields contained in F is called a filter. This corresponds (in the finite case) to a
sequence of increasingly refined partitions of €2, starting with the trivial partition into
one block. We may think of the filter as corresponding to acquiring information as
time goes on: at time k, we know which block of the partition corresponding to Fj
contains our random elementary outcome w. Given a filter, a sequence Xy, X1, Xo, ...
of random variables is called a martingale if E(Xy41 | Fx) = Xi for each k=0,1,....
This implies that X} is Fy-measurable (‘at time k& we know the value of X}’). Tt also
implies that E(Xj) = E(X) for each k. A sequence Y1, Y5, ... of random variables is
called a martingale difference sequence if Yy, is Fi-measurable and E(Yy | Fxz—1) =0
for each k = 1,2,....

From a martingale Xg, X1, X5, ... we obtain a martingale difference sequence by
setting Yy = X — Xi—1; and conversely from Xy and a martingale difference sequence
we obtain a martingale Xy, X1, Xg, ... by setting Xy = Xo + Ele Y;. Thus we may
focus on either form.

We shall be interested here only in finite filters (§, Q) = Fo C F; C --- C F,, where
Fn C F. Let X be a random variable and define Xy = E(X | Fg) for k =0,1,...,n.
Then Xg, X1,..., X, is a martingale, with Xq = E(X) and X, = X if X is F,-
measurable. This is called Doob’s martingale process, and for finite filters all corre-
sponding martingales may be obtained in this way. If Y7,...,Y), is the corresponding
martingale difference sequence then we have X — E(X) = > V.
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Example (continued) There is a natural filter here, namely
{Qaﬂ}zfogflg'“g]:ﬂ:fa

which corresponds to learning the values of the co-ordinates of w one by one. The
o-field Fi is the o-field generated by the random variables Xi,..., Xg; that is, the
smallest o-field G such that each of X1,..., Xj is G-measurable. Foreach k =1,...,n
let Ty be the random variable S, — kp = (X1 —p)+ -+ (Xx — p). Then E(T} |
Fr-1) = Tx—1, and so the random variables T} form a martingale, with corresponding
martingale difference sequence Xj — p.

When the underlying set € is infinite we need to be a little more careful. In
particular, the results discussed above hold with probability 1 (also called ‘almost
surely’) rather than for every w € Q; and we need to assume that various expectations
are finite. However, the sketch introduction above should give the right ideas.

The most basic inequality for a bounded martingale difference sequence is the
following lemma of Hoeffding (1963) [29], Azuma (1967) [6], which we shall refer to as
the ‘Hoeffding-Azuma inequality’.

Theorem 3.10 Let ¢y, ...,c, be constants, and let Y1, ...,Y, be a martingale differ-
ence sequence with |Yy| < g for each k. Then for any t > 0,

P Vil > 1) <2e7 20k

Suppose that Xy,..., X, are independent, with P(X; = 1) = p and P(X; = 0) =
1 —p. Set Yy = X — p and ¢ = max(p, | — p). We may then apply the above lemma
to obtain the bound in Theorem 2.1, except that the bound is weakened if p # % All
our applications will be based on less symmetrical forms of the above result, and will
thus avoid gratuitous factors less than 1 in the exponent in the bounds. In particular,
Theorem 3.10 is a special case of Theorem 3.13 below.

3.4 Martingale results

The results in this subsection extend all the earlier results. In particular, the next
result extends Lemma 2.2 on independent random variables.

Lemma 3.11 Let Y1,Ys,..., Y, be a martingale difference sequence with —ay <Yy <
1 —ay for each k, for suitable constants ag. Let a = %Z ar and let a = 1 —a. Then
for any 0 <1t < a,

P(Y Vi > i) < ((ait)m (_t)) 9

Proof Since S, = Sn—1 + Y, and S,_1 is F,,_1-measurable (and hence so is 65"—1),
we may use (31) and (32) to show that for any A,

E(c"5") = E (ehSn_lehYn) - (ehS"—lE(ehY” | Faz1)) .
Thus as in the proof of Lemma 2.2, for any h > 0,

B() = B(BE | 7))
E <€h5n_1) ((1 ~ap)e~hen 4 aneh(l—an))

H ((1 - ak)e_hak + akeh(l_ak)) ,

INA

INA
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on iterating, and we may complete the proof exactly as for Lemma 2.2. a

We may deduce more useful inequalities from this lemma, just as we obtained Theo-
rem 2.3 from Lemma 2.2.

Theorem 3.12 Let Y1,Ys,...,Y, be a martingale difference sequence with —ap <
Yr <1 —ay for each k, for suitable constants ay; and let a = %Zak‘
(a) For any t > 0,

P(|Y Vil > 1) <27/,

(b) For any € > 0,
P(Z Yy, > ean) < e~ () In(i+e)—)an o o= 50i57my

(¢) For any ¢ > 0,
12
P(ZYk < —ean) <e”2° 77,

To deduce Theorem 2.3 from Theorem 3.12, let ap = E(X}y) and Yy = Xg — ay, so
that —ap <Yy < 1—ag: then g =Y ay =na, p=aand > Yy =S, — p. The next
result extends both the independent bounded differences inequality, Theorem 3.1, and
the Hoeffding-Azuma inequality, Theorem 3.10.

Theorem 3.13 Let Yi,...,Y, be a martingale difference sequence with ar <Yy < bg
for each k, for suitable constants ag,by. Then for any t > 0,

P13 Vil > 1) < 26727/ Llbemar)®, (36)

The next pair of results, Theorems 3.14 and 3.15, are the most powerful of the mar-
tingale results we present, and include all the previous theorems (except for the first
inequality in part (b) of Theorem 2.3 and of Theorem 3.12). In particular, Theo-
rem 3.13 will follow immediately from Theorem 3.14. In order to state the two results
we need some more definitions and notation. We postpone their proofs to the next
subsection.

Let X be a bounded random variable and let G be a o-field contained in the o-field
F of all events. The conditional range of X in G, ran(X | G), is the G-measurable
function sup(X | G) + sup(—X | G). The conditional variance of X in G, var(X | G),
is E((X —Y)?| G), where Y = E(X | G). In the example in the last subsection, the
conditional range of S, in Fg, ran(S, | Fx), is the constant function n — k, and the
conditional variance var(Sy | Fi) is the constant function (n — k)p(1 — p).

Now let (§,Q) = Fo C F; C --- C F, be a filter in F. Let the bounded random
variable X be F,-measurable, and let Xg, X;,..., X,, be the martingale obtained by
setting Xy = E(X | Fg). Further, let Y7,...,Y, be the corresponding martingale
difference sequence obtained by setting Yy = X — Xi_1. For 1 < k < n, we define four
Fr_1-measurable functions rang, dev:, devy and vary as follows. We let rang denote
ran(Yy | Fx—1) ( = ran(Xi | Fr—1)); let dev: denote sup(Yy | Fx—1), let devy denote
sup(|Ye| | Fx—1), and finally we let vary denote var(Yy | Fr—1), ( = var(Xy | Fr-1)).
Note that dev] < devy < rany < 2devy, and var, < (1/4)ran} by (26).

Finally we define two random variables R? and V and four constants #2, ¢, maxdev™
and maxdev. Let the sum of squared conditional ranges R? be the random variable
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> rani, and let the mazimum sum of squared conditional ranges #? be the (essential)
supremum of the random variable R?. Let the sum of conditional variances V be the
random variable > varg, and let the mazimum sum of conditional variances ¢ be the
supremum of the random variable V. Finally let the mazimum conditional positive
deviation max devt be the supremum over all k of the random variables dev:, and let
the mazimum conditional deviation maxdev be the supremum over all k of the random
variables devy.

The random variable V is also called the ‘predictable quadratic variation’ of the
martingale (Xj), see for example [61], or the ‘increasing sequence’ associated with
(X&), see for example [20]. Note that

E(V) = E (ZE (Xx — Xg-1) | fk—l))
_® (zm(xz | For) - Xz_l))

= > (B(X}) - E(X},))
= E(XZ)—E(XS) = wvar(X).

Theorem 3.14 Let X be a bounded random variable with E(X) = u, and let (§,Q) =
FoCFLC---CFy bea filterin F. Then for anyt >0,

P(X —p>1) <e 2/ (37)
where 72 is the mazimum sum of squared conditional ranges. More generally, for any
t > 0 and any value 2,

P((X —p>t) A (R < r?) < e/, (38)

where the random variable R? is the sum of squared conditional ranges.

The earlier result Theorem 3.7 is essentially this result when the o-field Fy is the
o-field generated by X1,..., X;. Suppose that for each k= 1,...,n, we let 75 be the
supremum of the values ran(z1, ..., zx_1) over all choices of the z;. (This corresponds
to our earlier use of the notation 7, immediately after Theorem 3.7.) Then #? is at
most 5 7Z. If we use this bound for #? in Theorem 3.14 above we obtain Theorem
(6.7) of [45], which extends Theorem 3.13 above. The next result extends the earlier
results that use bounds on the variance, namely Theorems 2.7 and Theorem 3.8 (and
thus Theorem 3.9), and is close to Theorem 4.1 in [21] — see also [32, 2, 26].

Theorem 3.15 Let X be a random variable with E(X) = p, and let (§,Q) = Fy C
Fy C---CF, beafilterin F. Let b = maxdevt, the mazimum conditional positive
deviation (and assume that b is finite). Then for any t >0,

P(X—,uZt)ge_ma (39)

where ¥ is the mazimum sum of conditional variances (which is assumed to be finite).
More generally, for anyt > 0 and any value v > 0,

12

P((X = > ) A(V < v)) < e Tty (40)
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where the random variable V' 1s the sum of conditional variances.

As with the earlier results of this form, we think of the term (bt/3v) as a negligible
error term. To complete the proofs of all the results given above it suffices to prove
the last two results. We do this in the next subsection.

3.5 Remaining proofs for martingale results

The following lemma is partly based on Lemma 3.4 of Kahn [32]. The lemma itself (in
a special case) is used, rather than one of the theorems derived from it, in the proofs
in [49] concerning the concentration of the number of comparisons used by quicksort.
We shall always take Fq as the trivial o-field (8, ) when we use the lemma, but we
allow any Fy to give an easy induction.

Lemma 3.16 Let Fy C F1 C --- C F, be a filter in F, and let Y1,...,Y, be a

corresponding martingale difference sequence, where each Yy, 1s bounded above. Let the
random variable 7 be the indicator of some event. Then for any h,

E(Zehzyk | Fo) < sup (ZHE(ehY" | Fre—1) | fo) .

Proof We use induction on n. The case n = 0 is trivial, since it asserts that E(Z |
Fo) < sup(Z | Fo) as in (33). Now let » > 1 and suppose that the result holds for
n— 1. Let

n

A= Zeh Zk:z Y
and

B =7 [[E("* | Fror).
k=2
E(A

Then by the induction hypothesis, | F1) < sup(B | F1); and sup(B | F1) <

sup(B | Fo) as in (34). Hence
E(Ze"Zim Vo | Fy)) = E(MMEA|F) | Fo)
E (" sup(B | Fo) | Fo)
sup(B | Fo)E(e"* | Fy)  asin (32)

sup (Z H E(" | Fr_1) | TO) ,

k=1

IN

which completes the induction step. a
Proof of Theorem 3.14 Let Y1,...,Y, be the corresponding martingale difference
sequence. Let the random variable Z be the indicator of the event that R? < r?, so

that 0 < ZR? < 2. For any h, by Lemma 2.6,

E(ehYk |fk—1) S 6%h2r§~

26



Hence by Lemma 3.16,

E(Ze"X 1) < sup (ZHe§h2r§)
= sup ZeﬁhERE)
< eﬁhzsup(ZRz)
2 esh’r?

Thus for any h > 0, by Markov’s inequality,

P((X —p>1) A (R < 7))

P(Zeh(X_“) > eht)
e ME(ZehX 1)
o ht+ghr?

IN A

6—2t2/r2

when h = 4t/r2. O

Proof of Theorem 3.15 Let Y1,...,Y, be the corresponding martingale difference
sequence. Note that Yy < b for each k. Let the random variable 7 be the indicator of
the event that V' < v, so that 0 < ZV < v. Now as in the proof of Theorem 2.7 we
use Lemma 2.8, and the function g(z) defined there. We find that, for any A > 0,

2 + 2
E(ehYk |fk—1) S eh g(hde'uk Jvarg S Eh g(hb)uark.

Hence by Lemma 3.16,

E(Ze"X9) < sup (7] et o)
= sup (Zehzg(hb)v)
< eh2g(hb) sup (ZV)
< efﬂg(hb)v.

But now as in the proof of the last theorem,

P((X —p> AV <v) < MB(ZHX0)

<
< 6—ht+h2g(hb)v

and we may complete the proof as for Theorem 2.7. a

Inequalities for maxima

We now amplify the comment at the end of Section 2 on maxima. Let Y7,...,Y, be
a martingale difference sequence and let Sy = Y7 + - -+ Yj as usual. Let A > 0 and let
T = e"® . Then Ty,..., T, form a submartingale (as long as the T are integrable),
so we may apply Doob’s maximal inequality for submartingales — see for example [28]
section 12.6 or [72] section 14.6. We find that for any ¢t > 0,

P(max Sy, > t) = P(max Ty > ") < e ME(T},) = e " E(e"*").
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Thus all the martingale results based directly on the Bernstein inequality may be
strengthened immediately to refer to maxima, just like those in Section 2, as noted
on [29] (see also [64, 65, 66]).

This comment applies to Lemma 3.11 and Theorems 3.12 and 3.13 (and thus also
to Theorem 3.10), and to the inequalities (37) and (39) In particular for example, in
Theorem 3.13 the inequality (36) may be strengthened to read that for any ¢ > 0,

k
P(|max(}_ V)| > 1) < 2¢7 27/ 2obran)”, (41)
i=1
where the maximum is over k = 1,...,n.

3.6 Centering sequences

Given a sequence X1, Xs,... of random variables, the corresponding difference se-
quence is Y7,Ya, ... where Y3 = X — Xj;_1 (and where we set Xg = 0). Let
pp(z) = E(Yy | Xk—1 = ). We call the distribution of the sequence centering if
for each k = 2,3,... px(z) is a non-increasing function of z — see [47]. Observe that a
martingale is trivially centering, since pg(z) = 0.

The basic inequalities discussed above for a martingale difference sequence may
be extended to centering sequences with bounded differences. The most fundamental
example for the martingale inequalities involves the binomial distribution, as in The-
orem 2.1. Now we can include the hypergeometric distribution naturally in the same
inequalities — see also [29, 15].

Let (z1,...,2,) € {0,1}" with Y2 = r. Let (Z1,...,7,) be a random linear
order on the set {1,...,n}, where all n! such orders are equally likely. Let V; = zz,
and X = Zl;zl Y;. Then X}, has the hypergeometric distribution, corresponding to
counting the red elements in a random sample picked without replacement from the
set {1,...,n} with r elements painted red. We are interested in the concentration of
X. Note that E(Xy) = rk/n. But the sequence X1, X»,..., X, is centering, since

r—=

pe(z) = E(Ye [ Xeo1 = 2) = PR

which is a decreasing function of . From the centering version in [47] of Theorem 2.3(c)
above, it follows for example that, if 4 denotes E(Xy), then for any ¢ > 0,

P(Xg < (1—e)p) <e 7501

If we try to apply here the inequalities for martingales with bounded differences in the
natural way (that is, with Fj as the o-field generated by revealing the first & elements
picked), we obtain an unwanted factor < 1 in the exponent in the bound. Centering
sequences also arise naturally in occupancy or ‘balls in boxes’ problems — see [33, 47].

4 Talagrand’s inequality

4.1 The inequality

Let Qq,...,Q, be probability spaces, and let Q denote the product space. Let X =
(X1,...,Xn) be a family of independent random variables with X}, taking values in
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Q. We saw earlier that for any subset A of Q such that P(X € A) is not too small,
with high probability a random point X 1is close to A, when we consider Hamming
distance or generalised Hamming distance. It turns out to be very fruitful to consider
a related notion of distance.

Let @ = (a1,...,a,) > 0 be an n-vector of non-negative real numbers. Recall
that for points x = (z1,...,2,) and y = (y1,...,Yn) in Q, the a- Hamming distance
dy(x,y) is the sum of the values a; over those indices i such that z; # y;; and for a
subset A of Q, do(x, A) = inf{du(x,y) : y € A}. Talagrand’s conver distance dr(x, A)
is defined to be sup(dy(x, A)) where the supremum is over all choices of non-negative
unit n-vector a (that is, with |ja||=1).

By considering the n-vector a with each co-ordinate 1/4/n, we see that dp(x, A) >
do(x,A) = (1/+4/n) dg(x, A), so upper bounds on dr(x, A) give us upper bounds on
di(x, A), but we shall see that they will tell us much more. The reason for the name
‘convex distance’ will emerge later. Talagrand [68] in fact considers also other notions
of distance (see also [70]), but we shall focus only on the convex distance. We call the
following fundamental result ‘Talagrand’s inequality’.

Theorem 4.1 Let X = (X1,...,X,) be a family of independent random variables
and let A be a subset of the product space. Then for anyt > 0,

P(X € A) P(dp(X, A) > t) < e t'/4, (42)

If we consider a single non-negative unit vector a, then dp > d, and the above
result yields a form of Theorem 3.6, but it is in fact far more powerful since it refers
simultaneously to all possible generalised Hamming distances, as will be evident from
the applications below. We shall see that this power is most evident when we consider
the concentration of a function f(X) where an inequality f(x) > b typically can be
verified by examining only a few of the co-ordinate values z;, and for different vectors
x we may examine different co-ordinates. In some applications we profit greatly from
the flexibility of choosing an appropriate unit vector « for each x, rather than having
to consider say Hamming distance. Often we shall choose a to put more weight on the
“important’ or the ‘awkward’ co-ordinates of x.

Note that we must assume that the random variables X are independent, in con-
trast to the situation with the martingale results (but see the recent paper of Mar-
ton [42], which gives an extension of Talagrand’s inequality in which a limited depen-
dence is allowed). Theorems 4.3 and 4.5 below are useful specialisations of Talagrand’s
inequality, on which we base all the applications here. We shall prove Theorem 4.1
later, but before that let us consider some applications.

4.2 Some applications
4.2.1 Subsequences and configuration functions

Given a sequence x = (z1,...,2,) of real numbers, we let inc(x) denote the length
of a longest increasing subsequence. Thus ine(x) is the maximum value of |K| over
all subsets K of {1,...,n} such that the corresponding subsequence (z; : i € K) is
increasing, that is ; < z; whenever 4,5 € K with ¢ < j.

Let X = (X1,...,X,) be a family of independent random variables each taking
real values. We are interested in the concentration of the random variable ine(X). Let
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# be the mean of inc(X). Tt follows directly from the independent bounded differences
inequality, Theorem 3.1, that for any ¢ > 0,

P(Jinc(X) — p| > ) < 727", (43)

This shows that for large n, with high probability inc(X) is confined within an interval
of length O(y/n). Using Talagrand’s inequality we can deduce a much improved result.
Let m be a median for inc(X).

Theorem 4.2 For any t > 0,
P(inc(X) > m+1) < 20 /4m+0) (44)

and ,
P(inc(X) < m—t) < 2e7t/4m, (45)

With ingenuity and endeavour, the bounded differences method will give nearly as good
results — see [13]. Tt is known (see for example [63]) that, when the random variables
X all have the same continuous distribution, the median m ~ 2\/n as n — oo. Thus
the above result shows that with high probability ine(X) is confined within an interval
of length O(n%), which is the best bound known. (In particular, the mean y and the
median m must be within O(n7) of each other — see Lemma 4.6 below.)

It turns out that the approach based on Talagrand’s inequality to the longest
increasing subsequence problem will handle a general class of problems. Observe that
the function f(x) = inc(x) has the following property. For each x € Q there is a
subset K = K (x) of the index set {1,...,n} such that f(x) = | K|, and for each y € Q
we have

) > ie K yi=w}l=fx) - {i € K:y # i}l
Thus for each x € Q there is a non-negative unit n-vector a (namely the incidence

vector of the set K (x) scaled by dividing by 1/ f(x)) such that, for each y € Q we have

fy) > f(x) = Vix)da(x,y).

This is the key property. We call a function f defined on a set Q of n-vectors a
c-configuration function if it has the following property: for each x € € there is a
non-negative unit n-vector a such that, for each y € Q we have

f(y) > f(x) = Ve f(x)da(x,y).

Thus inc(x) gives a 1-configuration function, and so the next result extends the last
one. (We shall give a related example below concerning common subsequences. Also
we shall discuss concentration around the mean rather than the median in the next
subsection — see Lemma 4.6.)

Theorem 4.3 Let f be a c-configuration function, and let m be a median for f(X).
Then for anyt > 0,
P(f(X) > m +1) < 2e7" /4clm+t) (46)

and

P(f(X) < m—t) <2t /4m, (47)
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Proof
Let x € Q, and let @ be a non-negative unit n-vector such that, for any y € Q,

f(x) < fy) + Vef(x)da(x,y).
Let A, ={y € Q: f(y) < a}. Then by the above

f(x) <a+ef(x)da(x,y)

for each y € A,, and so by minimising over such y we have

f(x) <a+Vef(x)da(x, Ag) < a+ \ef(x)dr(x, Ad).
Thus if f(x) > a+t then

. f(x) —a t

since the function g(t) = (t — a)/\/t is increasing for ¢ > a. Thus for any t > 0,

P(f(X) Z a+t) S P (dT(X’Aa) Z L) :

Vela+1)

Hence by Talagrand’s inequality, for any ¢ > 0
P(f(X) <a)P(f(X) > a+1)

t
< P(X € AP | dr(X, A) >
- T ela+1)
S e 4c(22+t) .

Now we may complete the proof by appropriate choices of a in this last inequality. If
we let @ = m, then since P(f(X) < m) > 1, we obtain (46); and if we let a = m — ¢
then since P(f(X) > m) > 1, we obtain (47). O

Now let us consider a related problem concerning common subsequences of two
sequences. Given two sequences X = (21,...,2,,) and y = (Y1,..., Un,), let com(x,y)
denote the maximumlength of a common subsequence of x and y. Let X = (X1,..., X,,)
and Y = (Y1,...,Y,,) be two independent families of independent random variables.
We are interested in the concentration of the random variable com(X,Y). Let p be
the mean of com(X,Y).

As for the longest increasing subsequence problem, it follows directly from the
independent bounded differences inequality, Theorem 3.1, that, for any ¢ > 0,

P(lcom(X,Y) — p| > t) < 2e~ 2/ (m4n2), (48)

This shows that, when say ny = ns = n and n is large, with high probability

com(X,Y) is confined within an interval of length O(n%) Using the above result on
c-configuration functions we may obtain a similar result. For, if we regard com(x,y)
as a function of (n; + nsg) variables in the natural way, then it is a 2-configuration
function. So, if we let m be a median for com(X,Y), we obtain
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Theorem 4.4 For anyt > 0,
P(com(X,Y) > m +1t) < 2=t /80m+0) (49)

and ,
P(com(X,Y) < m—1) < 27t /8m, (50)

Consider the case when n; = ny = n and n is large, and when the random variables
X; all have the same (fixed) discrete distribution F. Tt is easy to see (using super-
additivity) that there is a constant dp > 0 (depending on the distribution F') such
that

E(com((X1,...,Xn), Y1,...,Ya))/n — dF,

and the corresponding result holds for the median. But if say F' is the uniform dis-
tribution on the set {1,..., N} where N is large, then the constant dp will be very
small, and then the theorem above improves on (48).

4.2.2 Two geometric applications

We now consider applications to the lengths of travelling salesman tours and Steiner
trees in the unit square. We shall use the following general result, which is derived
from Talagrand’s inequality, Theorem 4.1, and which is similar to Theorem 4.3.

Theorem 4.5 Let X = (X1,...,X,) be a family of independent random variables
with Xy taking values in a set Qi, and let Q = [[Qx. Let the real-valued function
f on Q satisfy the condition that, for each x € Q, there exists a non-negative unit
n-vector a such that

F(x) < f(y) + eda(x,y) for eachy € Q. (51)

Then o
P(|f(X) = m| >t) <de™" /1

where m is a median of f(X). The same conclusion holds if the condition (51) is
replaced by
Fy) < f(x) + edo(x,y) for eachy € Q. (52)

Part of the power of this result arises from the asymmetry, that we do not require that
both conditions (51) and (52) hold — either one will do. Observe that if both hold then
we have a bound on |f(x) — f(y)], and thus on the sum of squared ranges R? when
the random variables X are independent.

Proof For each real number a, let A, = {y € @ : f(y) < a}. Consider any point
x € Q. There is a non-negative unit n-vector o such that for each y € Q

f(x) < f(y) + cda(x,y),

and so
f(X) S a + Cda(X, y)

for each y € A,. By minimising over such y we see that

F(x) < a+cda(x, Ag) < a+ edrp(x, Ag).
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Thus if f(x) > a+t then dr(x, Ay) >t/c. Hence
P(f(X) <a)P(f(X) >a+t) < P(Xe A)P(dr(X, Aq) > t/c)

—t2/4c?
< et

by Talagrand’s inequality, Theorem 4.1. If we let @ = m we obtain
P(f(X) > m+1) <2e7"/%

and similarly if we let @ = m — ¢ we obtain
P(f(X) <m—1) <270/,

which completes the proof for the case when condition (51) holds.

Suppose now that condition (52) holds (but not necessarily condition (51)). Let
g(x) = —f(x). Then g satisfies condition (51), and (—m) is a median of g(X), and so
by the above

P(|f(X) = m| > 1) = P(|g(X) = (=m)| > 1) < 4e7"/*,
as required. 0

Before we consider the geometric applications, let us check that indeed, as we
mentioned earlier, it does not much matter that Theorems 4.3 and 4.5 concern con-
centration around the median m rather than the mean p, since the concentration
inequalities themselves imply that | — m| is small.

Lemma 4.6 Let the random variable Y have mean p and median m, and let a,b > 0.
(a) If P(Y —m > 1) < ae="1® for any t > 0, then p—m < (v/7/2)a/b; and so if
also P(Y —m < —t) < ae="1% for any t > 0, then |u—m| < (v7/2)av/b.

(6) If P(Y —m > t) < ae” /("% for anyt > 0, then p—m < \/7/2a\/bm +
2abe="/?" (which is O(y/m) as m — oo, assuming that a and b are constants).

Proof We have
,u—m:E(Y—m)SE((Y—m)+):/mP(Y—m>t)dt. (53)

In case (a)

/OO P(Y —m>t)dt < a/oo e~ dt = (/7/2)aV/b,

0
and so the first part of (a) follows from (53). For the second part, note that (—m) is
a median for (=Y) and P((-Y) = (-m) >#) =P(Y —m < —t). Soif P(Y —m <
—t) < ae~t/® for any t > 0, then by what we have just proved

m—p=B(=Y) - (-m) < (7/2)aV5.

In case (b), we again use (53). Now we have

/ PY-m>t)dt < / et 1PmH) gy
0 0

< a/ e_tz/%mdt%—a/ e~t?bqy
0 m
< /7/2abm + 2abe=™! %,
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O

We shall consider a family X = (Xi,...,X,) of independent random variables
where each Xj takes values in the unit square [0, 1]%. Thus here Q = ([0, 1]%)".

Travelling salesman tours

Given a point x € €, let tsp(x) be the minimum length of a travelling salesman
tour through these points. Much effort has been devoted to investigating the random
variable ¢sp(X), and to investigating its concentration in particular — see for exam-
ple [56]. Talagrand’s inequality effortlessly yields results which previously took great
ingenuity.

We need to know one deterministic result, namely that there is a constant ¢ such
that the following holds. For every n and every x € Q, there is a tour 7'(x) through
the points in x such that the sum of the squares of the lengths of the edges in this tour
is at most ¢. This may be proved for example by considering ‘space-filling curves’ — see
[53, 63]. We shall use T'(x) to define an appropriate vector a, where the co-ordinate
a corresponds to the ‘awkwardness’ of the point xj.

Given x € Q, we let [ be the sum of the lengths of the two edges incident to the
point zg in the tour T'(x). Thus 5 37 < 4c (using the fact that (a +b)? < 2a% + 2b?).
We shall see that for any y € Q,

tsp(x) < tsp(y) + ds(x,y) < tsp(y) + (2Ve)da(x,y), (54)

where « is the unit vector 3/ ||8||. Thus the function ¢sp(x) satisfies the condition (51)
in theorem 4.5 (with the value ‘c’ there being 24/c). Hence, for any ¢ > 0,

P(|tsp(X) — m| > 1) < 4e~*/10¢, (55)

where m is median for ¢sp(X). A result of this form was first proved by Rhee and
Talagrand [56], by a much more involved argument based on the martingale approach.

Tt remains then to prove (54). Let z, y denote the sets of points corresponding to
x, y respectively. If z Ny = @ then d,(x,y) is twice the length of the tour T'(x), and
so certainly the inequality (54) holds. Suppose then that z Ny # . We pick a multiset
F of edges between the points of z as follows. For each segment in the tour T'(x) of
the form a,vq,...,v;,b where a,b € z Ny and vy, ...,v; € z\ y (note that a = b if
|z Nyl = 1), we put into F' each of the edges v;v;41 doubled for i = 1,...,7— 1, and
the shorter of the edges av; and bv;, also doubled. Thus corresponding to each such
segment we obtain a cycle, containing exactly one point in y, and with the sum of the
lengths of the edges in it at most the sum of the co-ordinates of § corresponding to
the points v;. These cycles between them cover all the points in z \ y, and the sum of
the lengths of all the edges in F is at most dg(x,y).

Now let T*(y) be an optimal tour for y. Consider the (multi)graph G with vertex
set # Uy and with edge set consisting of the edges in T™(y) together with the edges
in F. The graph G is connected and each vertex degree is even, and so G has an
Eulerian tour. This tour can be shortcut to give a travelling salesman tour, which by
the triangle inequality has length no more than the sum of the lengths of the edges
in G, and this sum is at most ¢tsp(y) + dg(x,y). This completes the proof of (54), as
required.

Stelner trees

34



A Steiner tree for a set z of points in the unit square is a tree with vertex set some
set of points in the plane containing z. Given x € Q, we let st(x) denote the minimal
length of a Steiner tree for the corresponding set . We may use the tour 7'(x) exactly
as above to define a corresponding vector 3.

Now let y € Q, and let S*(y) be an optimal Steiner tree for the corresponding
set of points y. Consider the set E of edges consisting of the edges in S*(y) together
with those edges in T'(x) with at least one end in z \ y. The total length of these
edges is at most st(y) + dg(x,y), and we have already seen that > 37 < 4c. The key
observation is that the graph G on z Uy with edge set F is connected; for, since T'(x)
is connected each point in 2 is in the same component as some point in y, and since
S*(y) is connected each point in y is in the same component. Tt follows that st(x) is
at most the sum of the lengths of the edges in E, and thus st(x) < st(y) + dg(x,y).
Hence by Theorem 4.5, for ¢ > 0

P(|st(X) — m| > 1) < 4e/1%, (56)

where m is a median for st(X).

4.2.3 Random minimum spanning trees

Consider the complete graph K, with random independent edge lengths X, each
uniformly distributed on (0,1). Let L, be the corresponding random length of a
minimum spanning tree. It is known ([23]) that the expected value of L, tends to {(3)
as n — oo, where

((3)=> " ~1.202.
j=1

It is shown in [24] that L, is quite concentrated around ((3), using the method of
bounded differences; and this result is improved in [8] using Talagrand’s method.
(Also, it is shown in [30] that v/n(L, — ¢(3)) is asymptotically normally distributed.)
Both the bounded differences method and Talagrand’s method can in fact be used
to prove that L, is very highly concentrated around the value ((3) — see [48], but the
latter method is easier and will be described below. (In fact the bounded differences
approach seems to yield a slightly stronger result.) Both approaches depend on the
fact that long edges are not important. For 0 <b < 1, let Lﬁf’) be the minimum length
of a spanning tree when the edge lengths X, are replaced by min(X,, b). For simplicity
we consider here the case of a fixed deviation £ > 0. We need the following lemma.

Lemma 4.7 [/8] For anyt > 0 there exist constants ¢; > 0 and v > 0 such that if we
let b= c1/n then
P(L, —L®) >t)<e ™™™ for all n.

We shall prove the following concentration result for the minimum spanning tree length
L.

Theorem 4.8 For any t > 0 there exists 6 > 0 such that

P(|L,—C(3)|>t)<e™®  foralln.
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It is easy to see that the bound above is of the right order. For example, for each n > 5
the probability that L, > 2 is at least the probability that each edge incident with the
first four vertices has length at least 1/2, and this probability is at least (1/16).

Proof Let N = (g), and let Y = (V7,...,Yn) be a family of independent random
variables with each Y; uniformly distributed on (0, 1), corresponding to the edge lengths
in the graph K,. We may write the random variable L,, as mst(Y).

Let 0 < b < 1,and let Q = (0,b)N. Foreachi=1,..., N let X; = min(Y;,b). Then
X = (X1,...,Xn) is a family of independent random variables each taking values in
(0,5), and L;b) = mst(X).

Now consider the random variable mst(X). Let Q = (0,5)" and let x € Q. Denote
the set of edges in a corresponding minimum spanning tree by T' = T'(x). Let § = 3(x)
be the N-vector with 3; = b for i € T and §; = 0 otherwise, and let @ = a(x) be the

unit vector 3/(by/n — 1). Then for any y € Q,

mst(y) < Y wi

i€T

< DwiAy (wi—wm)t
€T €T

< mst(x) +dg(x,y)

< mst(x) +bvn da(x,y).

Thus the function mst(x) satisfies condition (52) in Theorem 4.5 with ¢ = by/n, and
so for any ¢t > 0

P(|mst(X) — m| > 1) < 4e=t/4°

where m is a median for mst(X). We may use Lemma 4.7, together with this last
inequality with b = ¢1/n, to obtain

P(|mst(Y) — m| > 2t) P(mst(Y) — mst(X) > t) + P(|mst(X) —m| > 1)

<

S e~ vn _+_4e—t2n/4cf.

Tt follows that for any ¢ > 0 there exists d; = d1(¢) > 0 such that
P(|L, —m|>1t) <e %" for all n.

Tt remains to tidy up, by replacing the m here by ¢(3) (in the spirit of Lemma 4.6).
By the above

t
[E(Ln) —m| SE(|Ln —m|) < o+ nP(|Ln —m| > 1/4) <1/3

for n sufficiently large. Also we saw earlier that for n sufficiently large, |E(L,)—((3)| <
t/3, and so |m — ((3)| < 2t/3 for n sufficiently large. Hence for n sufficiently large

P(|Ln —((3)| > ) < P(|Ln —m| > 1/3) < 77"

where §; = d1(¢/3), and the theorem follows. a
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4.3 Proof of Talagrand’s inequality

In this subsection we shall prove an extended form of theorem 4.1.

Theorem 4.9 Let X = (X1,...,X,) be a family of independent random wvariables
where Xy, takes values in a set Qi, and let A be a subset of the product space Q = [ Q.
Then

P(X € A)E (ehirXA%) <1, (57)

and so, for anyt >0,
P(X € A) P(dr (X, A) > 1) < e7'/4, (58)

The latter inequality (58) (which is Theorem 4.1) follows immediately from the
former (57) by Markov’s inequality. The scheme of the proof of (57) is as follows.
We first develop an equivalent definition of Talagrand’s distance dr. Then after two
technical lemmas we start the main proof by induction on n. We prove a claim relating
the distance dr(x, A) in dimension n + 1 to certain distances involving only the first
n co-ordinates. This claim involves a parameter A. The induction hypothesis yields
bounds for the distances in dimension n. We then optimise over A and average over
the last co-ordinate. The whole proof is neither long nor hard, but it is one of those
proofs by induction from which it is not easy to get a good feel about why the result
really is true. For a brief discussion of an alternative approach based on ideas from
information theory see the next (final) subsection.

In order to prove (58) we first develop the alternative characterisation of Tala-
grand’s convex distance dr(x, A). Fix a point x and a set A in R". Let U = U(x, A)
be the set of all binary vectors u such that starting from x we may reach a vectory € A
by changing only co-ordinates #; such that u; = 1 (and not necessarily changing all of
them). Thus 0 € U if and only if x € A. Further let V = V(x, A) be the convex hull
of the set U. The following lemma explains the term ‘convex distance’.

Lemma 4.10
dr(x, A) = min{||v||: v € V}. (59)

Proof 1If x € A then both sides above equal 0. So we may assume that x ¢ A,
and then both sides are positive. Denote the right hand side above by p. Let a =

(a1,...,a,) > 0 be a unit vector. We write a.u to denote the inner product ) aguy.
Then
do(x,A) = glnelgda(y, A) = Hg{l}a.u = E/IEIVIIICY.V, (60)

since the minimum of a linear functional over the convex hull V of the finite set U
must be achieved at a point of U. But by the Cauchy-Schwarz inequality,

a.v <[laf| [[v|=[v]| .
Thus d,(x, A) < p, and since this holds for every choice of a we deduce that dp(x, A) <
p.

For the converse result, note that the minimum in (59) is achieved, that is there
is a point v € V with norm equal to p, since V is compact. Let a be the unit vector
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v/p. Consider any point v € V. Since V is convex, the point v+ A(v —¥) isin V for
each 0 < A <1; and so

VHAv=V).(V+Av—-vV)) > V.V
This yields

2AV.(v—V)+ A2 (v—¥).(v—-v)>0,
and by considering small A we see that v.(v —v) > 0. Thus a.v > a.v = p for all
v € V. Hence by (60),

dr(x, A) > do(x, A) = Hll‘I/la V= p,
ve

and we are done. a
We need two further lemmas before we start the main proof of Talagrand’s inequal-

ity. The first is from [31, 68].

Lemma 4.11 For all0 < r <1,

. Za Ll(1-A)2 _ .
inf rPes(-N <9 _p
0<A<1 =

1 1 L
Proof For the case 0 < r < e~ 2 we may consider A = 0 and check that ex <2—¢72.
So suppose that e72 <7 < 1. Let A=14+21Inr (so 0 < A < 1). We want to show that
f(r) > 0, where f(r) is the logarithm of the ratio of the right side of the inequality to
the left side. Now

—_

f(r)y=n@2—-7)+AInr— (1 =2)2?/4=In(2—7r) +Inr + (Inr)%

Since f(1) = 0, it suffices to show that g(r) = rf’(r) < 0. Note that

(r) = 1 +1+21nr _
g\ry=r 2—r r r B

) = 0, it suffices now to show that ¢’(r) > 0. But ¢'(r) = 2 (% — ﬁ) ,
1> (r) > 0, which completes the proof. O

Since

g(1
and 1 >

3 =

1.
2—r)2"

—

The last preliminary result we need is a form of Holder’s inequality (see for example [20]
page 465) which we state and prove here for completeness, in a form useful for us.

Lemma 4.12 For any (appropriately integrable) functions f and g, and any 0 <t <
1

7

E (etf(x)e(l—t)g(x)) < (E(ef(x)))t (E(eg(x)))l_t

Proof Let a,b>0,and for 0 <t < 11let h(t) = a’b'=*. Then h'(t) = h(t )(ln(a/b))
0, so h is convex, and thus a’b'~* < ta + (1 — t)b. Now let F = E(e/(X)) and
G = E(e9X)). Then

(/) FYH(e9) /@Y= < (¢ F)ed ™) 4 (1 — 1) /G)ed™)
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Taking expected values,

E (emme(l—t)g(m) e E ((eﬂm/p)t(eg(m/g)l—t)
(t/FYE(fX)) 4 (1 = 1)/G)E(e?))

t+(1—t) =1,

A

which yields the required inequality. a

We may now start the main proof of the inequality (57). Let us write v, (A) for
P(X € A). We use induction on n. Consider first the case n = 1. Now dp(x, A) equals
0 if x € A and otherwise equals 1. So

B (cHr ) 2 51— )
But for 0 <p <1,

plp+ei(1—p)) <plp+2(1—p)=p2-p) <1,

which completes the proof of the case n = 1.

Now let n > 1, suppose that the inequality (57) holds for n, and consider the case
n+1. Denote [];_, Q& by Q™) Write HZii Qp as Q1) = Q) « Qpy1, with typical
element written as z = (x,w), where x € Q) and w € Q,41. Let A C Q(+1). For
w € Quy1, the w-section A, of A is defined by

A, ={xe QM (x,w) € A}.
The projection of A is the set B defined by
B=U,A, ={x¢€ Q) . (x,w) € A for somew € Qp41}.

We next prove an inequality relating dr(z, A) to corresponding distances between x
and the w-section and projection of A. The inequality involves a parameter A which
we shall later choose appropriately.

Claim Let z = (x,w) € Q™) x Q41 and let 0 < A < 1. Then
dr(z, A)? < Mr(x, Ay)? + (1 = N)dr(x, B)? + (1 — A)?. (61)

Proof of Claim By Lemma 4.10 above, there is a vector v € V(x, Ay) with norm
equal to dp(x, Aw), and a vector vy € V(x, B) with norm equal to dr(x, B). Now if
u € U(x,Ay) then (u,0) € U(z, A), and so if v € V(x, A,) then (v,0) € V(z, A).
Similarly, if u € U(X,B) then (u,1) € U(z, A), and so if v € V(x, B) then (v, 1) €
V(z, A). Hence both (v1,0) and (vg, 1) are in the convex set V(z, A), and so if we let

vy = A(vy,0) + (1 = A)(va, 1) = (Avy + (1 = A)vg, 1 = A),

then vz € V(z, A). By Lemma 4.10 again, dr(z, A) is at most the norm of vz. Now
the function f(t) = ¢? is convex, and so

(Aa+ (1 = A)b)? < Xa? + (1 — A)b%
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Hence

vl

(A1 + (1= X)va)|[? +(1 = A)?
< XVl H (1= 2 Jivel* (1= 2)?
= Adp(x,Au)*+ (1 = N)dr(x, B)* + (1 = M)~

A

This completes the proof of the claim.
We are now ready to tackle the induction step. For each fixed w, let E(w) denote
E (eidT«xm,A)E) —E (e%dT<<x,xn+1),A)2 | Xpy1 = w) ,

We shall first give an upper for E(w), and then average over w. Fix w, and note that
the claim gives

eddr((Xw),4)? < e (1=2)% A(gdr(X,44)%) ,(1-A)(3d7(X,B)?)
Hence by Lemma 4.12 (Holder’s inequality), we obtain
1 2 1 2 A 1 2 1-X
E(w) < PEIUES o) (e?dT(X’A“) ) E (e?dT(X’B) ) .
By the induction hypothesis applied to the two expectations above, we find that

Ew) < e¥07N (0,(4.)) 7 (wa(B)) 7Y

(3

Thus for all 0 < A <1,

where » = v, (Aw)/vn(B), and so 0 < r < 1. By Lemma 4.11, we find
E(w) < (va(B))™1(2 = va(Au)/va(B)).

Now vp(Ay) = P((X, Xpn41) € A | Xnt1 = w). We can average over the values w
taken by X,41 to obtain

Vn+1(A) E (6%dT((X:Xn+1),A)2)

IA

(v 41(A)/va(B))(2 = vn41(A) /vn(B))
= z(2—-2) <1,

where = vp41(A)/vn(B). We have now completed the proof of the induction step,
and thus of the theorem. a
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4.4 Ideas from Information Theory

There is a third main approach to proving general concentration results, which uses
ideas from information theory. Indeed, the first general concentration result seems
to have been proved and used in this context, by Ahlswede, Gdcs and Kérner [1] in
1976. Their concentration result, the ‘blowing-up lemma’, was sharpened by Csiszar
and Korner [17], and then in 1986 Marton [40] gave a simple and elegant proof. This
result resembled Theorem 3.5 above, though with a worse constant in the exponent.
The optimal constant was obtained in 1996 by Marton [41], using the same elegant
information-theoretic approach. Dembo [18] showed that the method is strong enough
to recover all of the inequalities of Talagrand in [68] (including Theorem 4.9 above),
where 1t is assumed that the random variables involved are independent. The method
is extended in [42] to handle certain cases of weak dependence. For other recent work
see [43, T1].

It 1s not clear if these ideas will lead to further new applications in discrete mathe-
matics and theoretical computer science. However, they are very elegant and powerful,
and so we try here to give a flavour of the method. We shall show how they give a
very different proof of Theorem 3.5, following [40, 41].

Let Qp,...,9Q, be finite sets, and let Q denote their product [[Q. TLet p =
(pw :w € Q) and q = (qw : w € Q) specify probability distributions on Q. Let
X = (X1,...,Xp) be a family of random variables, with X} taking values in Qy;
and let Y = (V1,...,Y,) be another such family. We shall be interested in joint
distributions for X and Y which have marginals p and q; that is, such that

PX=w)= ) P(X,Y)=(we)) =p

for each w € Q, and similarly for Y and q. We shall define a notion of distance between
the distributions p and q based on the expected Hamming distance between random
points X and Y. Observe that the expected Hamming distance between X and Y is
given by
E(dr(X,Y)) =Y P(Xi # V).
k

We define dg(p, q) to be the minimum value of E(d (X,Y)), over all choices of joint
distribution for X and Y with marginals p and q. It turns out that we may obtain
concentration results by giving an upper bound on dy(p, q) when the distribution q
is a product distribution (that is, corresponds to independent random variables).

For the key lemma, we need one last definition. The informational divergence of p
with respect to q is

D(plla) = D pon(pu/qw)-

wEN

Lemma 4.13 If q is a product distribution, then

du(p,q)” < (n/2)D(pl|q).

Using this information-theoretic lemma we shall prove the following elegant sym-
metrical inequality, closely related to Theorem 3.5. Recall that the Hamming distance
di (A, B) between two subsets A and B of Q is the minimum value of dg(z,y) over
all choices of z € A and y € B.
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b=

Theorem 4.14 Let q be a product distribution. Then
n 1

drr(A, B) < (glﬂ @) + <gln ﬁ)

Proof Let p denote the distribution with p, = q./q(A) for w € A and p, = 0
otherwise; and define the distribution r similarly corresponding to B. Then

Dplla) = > peln(pe/0.)

wEN

Z P In(1/4(A))

wEN

< In(1/¢(A)).

Similarly, D(r||q) < In(1/¢(B)). Next we use the observation that, since dp(p,r) is
the expected Hamming distance between certain random points in A and in B, it
must be at least the minimum value dp (A, B). Hence, by a triangle inequality and
the above lemma,

b=

du(A,B) < du(p,r)
< du(p,q) +du(r,q)
(EIHL)%%-(ﬁlnL)%
= \2 g4 2 q(B))
as required. a

Finally let us see that Theorem 3.5 follows directly from the last result. Let ¢ > 0
and let B = Q\ A;, the complement of the ¢-fattening of A — see the comments
immediately after Theorem 3.5. We shall take ¢(A) to be P(X € A), in the notation
there. Since di (A, B) >t, by Theorem 4.14 above we have

1
LT T S
2 M yB)) =T

we (2t

P(dH(X7A) > t) = q(B) > 1— 6_2(t_t0)2/”.

where

and so

But this is exactly the inequality (22) in the proof of Theorem 3.5, and so the theorem
follows.
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