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1 Introdu
tionThe laws of large numbers of 
lassi
al probability theory state that sumsof independent random variables are, under very mild 
onditions, 
lose totheir expe
tation with a large probability. Su
h sums are the most basi
examples of random variables 
on
entrated around their mean. More re
entresults reveal that su
h a behavior is shared by a large 
lass of generalfun
tions of independent random variables. The purpose of these notes isto give an introdu
tion to some of these general 
on
entration inequalities.The inequalities dis
ussed in these notes bound tail probabilities of gen-eral fun
tions of independent random variables. Several methods have beenknown to prove su
h inequalities, in
luding martingale methods pioneeredin the 1970's by Milman, see Milman and S
he
htman [62℄ (see also thein�uential surveys of M
Diarmid [59℄, [60℄), information-theoreti
 methods(see Alhswede, Gá
s, and Körner [1℄, Marton [53℄, [54℄,[55℄, Dembo [24℄,Massart [56℄ and Rio [69℄), Talagrand's indu
tion method [78℄,[76℄,[77℄ (seealso Lu
zak and M
Diarmid [50℄, M
Diarmid [61℄, Pan
henko [64, 65, 66℄and the so-
alled �entropy method�, based on logarithmi
 Sobolev inequal-ities, developed by Ledoux [46℄,[45℄, see also Bobkov and Ledoux [12℄, Mas-sart [57℄, Rio [69℄, Bou
heron, Lugosi, and Massart [14℄, [15℄, and Bousquet[16℄. Also, various problem-spe
i�
 methods have been worked out in ran-dom graph theory, see Janson, �u
zak, and Ru
i«ski [40℄ for a survey.
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2 Basi
sTo make these notes self-
ontained, we �rst brie�y introdu
e some of thebasi
 inequalities of probability theory.First of all, re
all that for any nonnegative random variable X,EX =

∫∞

0

P{X � t}dt .This implies Markov's inequality: for any nonnegative random variable X,and t > 0, P{X � t} � EX
t
.If follows from Markov's inequality that if φ is a stri
tly monotoni
allyin
reasing nonnegative-valued fun
tion then for any random variable X andreal number t, P{X � t} = P{φ(X) � φ(t)} � Eφ(X)

φ(t)
.An appli
ation of this with φ(x) = x2 is Chebyshev's inequality: if X is anarbitrary random variable and t > 0, thenP{|X−EX| � t} = P{

|X−EX|2 � t2} � E h|X −EX|2
i

t2
=

Var{X}

t2
.More generally taking φ(x) = xq (x � 0), for any q > 0 we haveP{|X −EX| � t} � E [|X−EX|q]

tq
.In spe
i�
 examples one may 
hoose the value of q to optimize the ob-tained upper bound. Su
h moment bounds often provide with very sharpestimates of the tail probabilities. A related idea is at the basis of Cher-no�'s bounding method. Taking φ(x) = esx where s is an arbitrary positivenumber, for any random variable X, and any t > 0, we haveP{X � t} = P{esX � est} � EesX

est
.3



In Cherno�'s method, we �nd an s > 0 that minimizes the upper bound ormakes the upper bound small. Even though Cherno� bounds are never asgood as the best moment bound (see Exer
ise 1), in many 
ases they areeasier to handle.The Cau
hy-S
hwarz inequality states that if the random variables Xand Y have �nite se
ond moments (E[X2] < ∞ and E[Y2] < ∞), then
|E[XY]| � qE[X2]E[Y2].We may use this to prove a one-sided improvement of Chebyshev's inequal-ity:Theorem 1 
hebyshev-
antelli inequality. Let t � 0. ThenP{X−EX � t} � Var{X}Var{X} + t2

.Proof. We may assume without loss of generality that EX = 0. Then forall t
t = E[t− X] � E[(t− X)1{X<t}].(where 1 denotes the indi
ator fun
tion). Thus for t � 0 from the Cau
hy-S
hwarz inequality,
t2 � E[(t− X)2]E[12

{X<t}]

= E[(t− X)2]P{X < t}

= (Var{X} + t2)P{X < t},that is, P{X < t} � t2Var{X} + t2
,and the 
laim follows. 2We end this se
tion by re
alling a simple asso
iation inequality due toChebyshev (see, e.g., [37℄). We note here that asso
iation properties mayoften be used to derive 
on
entration properties. We refer the reader tothe survey of Dubdashi and Ranjan [30℄4



Theorem 2 
hebyshev's asso
iation inequality. Let f and g benonde
reasing real-valued fun
tions de�ned on the real line. If X isa real-valued random variable, thenE[f(X)g(X)] � E[f(X)]E[g(X)]| .If f is nonin
reasing and g is nonde
reasing thenE[f(X)g(X)] � E[f(X)]E[g(X)]| .Proof. Let the random variable Y be distributed as X and independent ofit. If f and g are nonde
reasing, (f(x) − f(y))(g(x) − g(y)) � 0 so thatE[(f(X) − f(Y))(g(X) − g(Y))] � 0 .Expand this expe
tation to obtain the �rst inequality. The proof of these
ond is similar. 2A powerful generalization of the above is the well-known FKG inequalityof Fortuin, Kasteleyn, and Ginibre [33℄. A real-valued fun
tion f de�nedon Rn is said to be nonde
reasing (nonin
reasing) if it is nonde
reasing(nonin
reasing) in ea
h variable.Theorem 3 fkg inequality. Let f, g : Rn → R be nonde
reasing fun
-tions. If Xn
1 = (X1, . . . , Xn) is a random variable taking values in Rn,then E[f(Xn

1)g(Xn
1)] � E[f(Xn

1)]E[g(Xn
1)]| .If f is nonin
reasing and g is nonde
reasing thenE[f(Xn

1)g(Xn
1)] � E[f(Xn

1)]E[g(Xn
1)]| .Proof. Again, it su�
es to prove the �rst inequality. We pro
eed by in-du
tion. For n = 1 the statement is just Chebyshev's asso
iation inequality.Now suppose the statement is true for m < n. ThenE[f(Xn

1)g(Xn
1)] = EE[f(Xn

1)g(Xn
1)|X1, . . . , Xn−1]� E [E[f(Xn

1)|X1, . . . , Xn−1]E[g(Xn
1)|X1, . . . , Xn−1]]5



be
ause given X1, . . . , Xn−1, both f and g are nonde
reasing fun
tions of the
n-th variable. Now it's obvious from the assumption that both f 0(Xn−1

1 ) =E[f(Xn
1)|X1, . . . , Xn−1] and g 0(Xn−1

1 ) = E[g(Xn
1)|X1, . . . , Xn−1] are nonde-
reasing fun
tions, so by the indu
tion hypothesis,E[f 0(Xn−1

1 )g 0(Xn−1
1 )] � E[f 0(Xn−1

1 )]E[g 0(Xn−1
1 )] = E[f(Xn

1)]E[g(Xn
1)]|as desired. 2Exer
isesExer
ise 1 moments vs. 
hernoff bounds. Show that moment boundsfor tail probabilities are always better than Cherno� bounds. More pre-
isely, let X be a nonnegative random variable and let t > 0. The bestmoment bound for the tail probability P{X � t} is minqE[Xq]t−q wherethe minimum is taken over all positive integers. The best Cherno� boundis infs>0E[es(X−t)]. Prove thatmin

q
E[Xq]t−q � inf

s>0
E[es(X−t)].Exer
ise 2 first and se
ond moment methods. Show that if X is anonnegative integer-valued random variable then P{X 6= 0} � EX. Showalso that P{X = 0} � Var(X)Var(X) + (EX)2

.Exer
ise 3 subgaussian moments. We say that a random variable X hasa subgaussian distribution if there exists a 
onstant c > 0 su
h that for all
s > 0, E[esX] � ecs2 . Show that there exists a universal 
onstant K su
hthat if X is subgaussian, then for every positive integer q,

(E[Xq
+])

1/q � Kpcq .Exer
ise 4 subgaussian moments�
onverse. Let X be a random vari-able su
h that there exists a 
onstant c > 0 su
h that
(E[Xq

+])
1/q � p

cq6



for every positive integer q. Show that X is subgaussian. More pre
isely,show that for any s > 0, E[esX] � p
2e1/6eces2/2 .Exer
ise 5 subexponential moments. We say that a random variable Xhas a subexponential distribution if there exists a 
onstant c > 0 su
h thatfor all 0 < s < 1/c, E[esX] � 1/(1− cs). Show that if X is subexponential,then for every positive integer q,

(E[Xq
+])

1/q � 4c

e
q .Exer
ise 6 subexponential moments�
onverse. Let X be a randomvariable su
h that there exists a 
onstant c > 0 su
h that

(E[Xq
+])

1/q � cqfor every positive integer q. Show that X is subexponential. More pre
isely,show that for any 0 < s < 1/(ec),E[esX] � 1

1− ces
.
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3 Sums of independent random variablesIn this introdu
tory se
tion we re
all some simple inequalities for sums ofindependent random variables. Here we are primarily 
on
erned with upperbounds for the probabilities of deviations from the mean, that is, to obtaininequalities for P{Sn −ESn � t}, with Sn =
∑n

i=1Xi, where X1, . . . , Xn areindependent real-valued random variables.Chebyshev's inequality and independen
e immediately implyP{|Sn −ESn| � t} � Var{Sn}

t2
=

∑n

i=1Var{Xi}

t2
.In other words, writing σ2 = 1

n

∑n

i=1Var{Xi},P{������ 1n n∑

i=1

Xi −EXi

������ � ǫ} � σ2

nǫ2
.This simple inequality is at the basis of the weak law of large numbers.To understand why this inequality is unsatisfa
tory, re
all that, undersome additional regularity 
onditions, the 
entral limit theorem states thatP{s

n

σ2

0� 1
n

n∑

i=1

Xi −EXi

1A � y} → 1−Φ(y) � 1p
2π

e−y2/2

y
,from whi
h we would expe
t, at least in a 
ertain range of the parameters,something like P{

1

n

n∑

i=1

Xi −EXi � ǫ} � e−nǫ2/(2σ2). (1)Clearly, Chebyshev's inequality is way o� mark in this 
ase, so we shouldlook for something better. In the sequel we prove some of the simplest
lassi
al exponential inequalities for the tail probabilities of sums of inde-pendent random variables whi
h yield signi�
antly sharper estimates.3.1 Hoe�ding's inequalityCherno�'s bounding method, des
ribed in Se
tion 2, is espe
ially 
onve-nient for bounding tail probabilities of sums of independent random vari-8



ables. The reason is that sin
e the expe
ted value of a produ
t of indepen-dent random variables equals the produ
t of the expe
ted values, Cherno�'sbound be
omesP{Sn −ESn � t} � e−stE 24exp0�s n∑

i=1

(Xi −EXi)

1A35
= e−st

n∏

i=1

E hes(Xi−EXi)
i (by independen
e). (2)Now the problem of �nding tight bounds 
omes down to �nding a goodupper bound for the moment generating fun
tion of the random variables

Xi−EXi. There are many ways of doing this. For bounded random variablesperhaps the most elegant version is due to Hoe�ding [39℄:Lemma 1 hoeffding's inequality. Let X be a random variable withEX = 0, a � X � b. Then for s > 0,E hesX
i � es2(b−a)2/8.Proof. Note that by 
onvexity of the exponential fun
tion

esx � x − a

b− a
esb +

b− x

b− a
esa for a � x � b.Exploiting EX = 0, and introdu
ing the notation p = −a/(b− a) we getEesX � b

b− a
esa −

a

b− a
esb

=
�
1− p+ pes(b−a)

�
e−ps(b−a)def

= eφ(u),where u = s(b− a), and φ(u) = −pu+ log(1− p+ peu). But by straight-forward 
al
ulation it is easy to see that the derivative of φ is
φ 0(u) = −p+

p

p+ (1− p)e−u
,9



therefore φ(0) = φ 0(0) = 0. Moreover,
φ 00(u) =

p(1− p)e−u

(p+ (1− p)e−u)
2
� 1

4
.Thus, by Taylor's theorem, for some θ 2 [0, u],

φ(u) = φ(0) + uφ 0(0) +
u2

2
φ 00(θ) � u2

8
=
s2(b− a)2

8
. 2Now we may dire
tly plug this lemma into (2):P{Sn −ESn � t}� e−st

n∏

i=1

es2(bi−ai)
2/8 (by Lemma 1)

= e−stes2
∑n

i=1(bi−ai)
2/8

= e−2t2/
∑n

i=1(bi−ai)
2 (by 
hoosing s = 4t/

∑n

i=1(bi − ai)
2).Theorem 4 hoeffding's tail inequality [39℄. Let X1, . . . , Xn beindependent bounded random variables su
h that Xi falls in the interval

[ai, bi] with probability one. Then for any t > 0 we haveP{Sn −ESn � t} � e−2t2/
∑n

i=1(bi−ai)
2and P{Sn −ESn � −t} � e−2t2/

∑n
i=1(bi−ai)

2

.The theorem above is generally known as Hoe�ding's inequality. Forbinomial random variables it was proved by Cherno� [19℄ and Okamoto[63℄.This inequality has the same form as the one we hoped for based on(1) ex
ept that the average varian
e σ2 is repla
ed by the upper bound
(1/4)

∑n

i=1(bi − ai)
2. In other words, Hoe�ding's inequality ignores in-formation about the varian
e of the Xi's. The inequalities dis
ussed nextprovide an improvement in this respe
t.10



3.2 Bernstein's inequalityAssume now without loss of generality that EXi = 0 for all i = 1, . . . , n.Our starting point is again (2), that is, we need bounds for E hesXi

i. Intro-du
e σ2
i = E[X2

i ], and
Fi =

∞∑

r=2

sr−2E[Xr
i]

r!σ2
i

.Sin
e esx = 1+ sx+
∑∞

r=2 s
rxr/r!, we may writeE hesXi

i
= 1+ sE[Xi] +

∞∑

r=2

srE[Xr
i]

r!

= 1+ s2σ2
iFi (sin
e E[Xi] = 0.)� es2σ2

i
Fi .Now assume that the Xi's are bounded su
h that |Xi| � c. Then for ea
h

r � 2, E[Xr
i] � cr−2σ2

i .Thus,
Fi � ∞∑

r=2

sr−2cr−2σ2
i

r!σ2
i

=
1

(sc)2

∞∑

r=2

(sc)r

r!
=
esc − 1− sc

(sc)2
.Thus, we have obtained E hesXi

i � es2σ2
i

esc−1−sc

(sc)2 .Returning to (2) and using the notation σ2 = (1/n)
∑
σ2

i , we getP{
n∑

i=1

Xi > t

} � enσ2(esc−1−sc)/c2−st.Now we are free to 
hoose s. The upper bound is minimized for
s =

1

c
log�1+

tc

nσ2

�
.Resubstituting this value, we obtain Bennett's inequality [9℄:11



Theorem 5 bennett's inequality. Let X1, . . ., Xn be independentreal-valued random variables with zero mean, and assume that |Xi| � cwith probability one. Let
σ2 =

1

n

n∑

i=1

Var{Xi}.Then for any t > 0,P{
n∑

i=1

Xi > t

} � exp −
nσ2

c2
h

�
ct

nσ2

�!
.where h(u) = (1+ u) log(1+ u) − u for u � 0.The message of this inequality is perhaps best seen if we do some furtherbounding. Applying the elementary inequality h(u) � u2/(2+2u/3), u � 0(whi
h may be seen by 
omparing the derivatives of both sides) we obtaina 
lassi
al inequality of Bernstein [10℄:Theorem 6 bernstein's inequality. Under the 
onditions of the pre-vious theorem, for any ǫ > 0,P{

1

n

n∑

i=1

Xi > ǫ

} � exp −
nǫ2

2σ2 + 2cǫ/3

!
.We see that, ex
ept for the term 2cǫ/3 in the denominator of the expo-nent, Bernstein's inequality is qualitatively right when we 
ompare it withthe 
entral limit theorem (1). Bernstein's inequality points out one moreinteresting phenomenon: if σ2 < ǫ, then the upper bound behaves like

e−nǫ instead of the e−nǫ2 guaranteed by Hoe�ding's inequality. This mightbe intuitively explained by re
alling that a Binomial(n, λ/n) distribution
an be approximated, for large n, by a Poisson(λ) distribution, whose tailde
reases as e−λ.
12



Exer
isesExer
ise 7 Let X1, . . . , Xn be independent random variables, taking theirvalues from [0, 1]. Denoting m = ESn, show that for any t � m,P{Sn � t} � �
m

t

�t�n −m

n− t

�n−t

.Hint: Pro
eed by Cherno�'s bounding.Exer
ise 8 
ontinuation. Use the previous exer
ise to show thatP{Sn � t} � �
m

t

�t

et−m,and for all ǫ > 0, P{Sn � m(1+ ǫ)} � e−mh(ǫ),where h is the fun
tion de�ned in Bennett's inequality. Finally,P{Sn � m(1− ǫ)} � e−mǫ2/2.(see, e.g., Karp [41℄, Hagerup and Rüb [36℄).Exer
ise 9 Compare the �rst bound of the previous exer
ise with thebest Cherno� bound for the tail of a Poisson random variable: let Y bea Poisson(m) random variable. Show thatP{Y � t} � inf
s>0

E hesY
i

est
=

�
m

t

�t

et−m.Use Stirling's formula to show thatP{Y � t} � P{Y = t} � �
m

t

�t

et−m 1p
2πt

e−1/(12t+1),Exer
ise 10 sampling without repla
ement. Let X be a �nite setwith N elements, and let X1, . . . , Xn be a random sample without repla
e-ment from X and Y1, . . . , Yn a random sample with repla
ement from X .Show that for any 
onvex real-valued fun
tion f,Ef0� n∑

i=1

Xi

1A � Ef0� n∑

i=1

Yi

1A .13



In parti
ular, by taking f(x) = esx, we see that all inequalities derived forthe sums of independent random variables Yi using Cherno�'s boundingremain true for the sum of the Xi's. (This result is due to Hoe�ding [39℄.)
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4 The Efron-Stein inequalityThe main purpose of these notes is to show how many of the tail inequali-ties for sums of independent random variables 
an be extended to generalfun
tions of independent random variables. The simplest, yet surprisinglypowerful inequality of this kind is known as the Efron-Stein inequality. Itbounds the varian
e of a general fun
tion. To obtain tail inequalities, onemay simply use Chebyshev's inequality.Let X be some set, and let g : Xn → R be a measurable fun
tion of
n variables. We derive inequalities for the di�eren
e between the randomvariable Z = g(X1, . . . , Xn) and its expe
ted value EZ when X1, . . . , Xn arearbitrary independent (not ne
essarily identi
ally distributed!) randomvariables taking values in X .The main inequalities of this se
tion follow from the next simple result.To simplify notation, we write Ei for the expe
ted value with respe
t tothe variable Xi, that is, EiZ = E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn].Theorem 7 Var(Z) � n∑

i=1

E h(Z−EiZ)
2
i
.Proof. The proof is based on elementary properties of 
onditional ex-pe
tation. Re
all that if X and Y are arbitrary bounded random variables,then E[XY] = E[E[XY|Y]] = E[YE[X|Y]].Introdu
e the notation V = Z−EZ, and de�ne

Vi = E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1], i = 1, . . . , n.Clearly, V =
∑n

i=1Vi. (Thus, V is written as a sum of martingale di�er-
15



en
es.) Then Var(Z) = E 2640� n∑

i=1

Vi

1A2
375

= E n∑

i=1

V2
i + 2E∑

i>j

ViVj

= E n∑

i=1

V2
i ,sin
e, for any i > j,EViVj = EE [ViVj|X1, . . . , Xj] = E [VjE [Vi|X1, . . . , Xj]] = 0 .To bound EV2

i , note that, by independen
e of the Xi,E[Z|X1, . . . , Xi−1] = E �E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

�
,and therefore

V2
i = (E[Z|X1, . . . , Xi] −E[Z|X1, . . . , Xi−1])

2

=

�E �E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn]

����X1, . . . , Xi

��2� E �(E[Z|X1, . . . , Xn] −E[Z|X1, . . . , Xi−1, Xi+1, . . . , Xn])
2
����X1, . . . , Xi

�(by Jensen's inequality)
= E �(Z−EiZ)

2
����X1, . . . , Xi

�
.Taking expe
ted values on both sides, we obtain the statement. 2Now the Efron-Stein inequality follows easily. To state the theorem, let

X 01, . . . , X 0n form an independent 
opy of X1, . . . , Xn and write
Z 0i = g(X1, . . . , X

0
i, . . . , Xn) .Theorem 8 efron-stein inequality (efron and stein [32℄, steele[74℄). Var(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i16



Proof. The statement follows by Theorem 7 simply by using (
ondition-ally) the elementary fa
t that if X and Y are independent and identi
allydistributed random variables, then Var(X) = (1/2)E[(X−Y)2], and thereforeEi

h
(Z−EiZ)

2
i

=
1

2
Ei

h
(Z− Z 0i)2

i
. 2Remark. Observe that in the 
ase when Z =

∑n

i=1Xi is a sum of indepen-dent random variables (of �nite varian
e) then the inequality in Theorem8 be
omes an equality. Thus, the bound in the Efron-Stein inequality is,in a sense, not improvable. This example also shows that, among all fun
-tions of independent random variables, sums, in some sense, are the least
on
entrated. Below we will see other eviden
es for this extremal propertyof sums.Another useful 
orollary of Theorem 7 is obtained by re
alling that, forany random variable X, Var(X) � E[(X−a)2] for any 
onstant a 2 R. Usingthis fa
t 
onditionally, we have, for every i = 1, . . . , n,Ei

h
(Z−EiZ)

2
i � Ei

h
(Z− Zi)

2
iwhere Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) for arbitrary measurable fun
tions

gi : Xn−1 → R of n − 1 variables. Taking expe
ted values and usingTheorem 7 we have the following.Theorem 9 Var(Z) � n∑

i=1

E h(Z− Zi)
2
i
.In the next two se
tions we spe
ialize the Efron-Stein inequality andits variant Theorem 9 to fun
tions whi
h satisfy some simple easy-to-verifyproperties.4.1 Fun
tions with bounded di�eren
esWe say that a fun
tion g : Xn → R has the bounded di�eren
es propertyif for some nonnegative 
onstants c1, . . . , cn,sup

x1,...,xn,
x0

i
2X |g(x1, . . . , xn) − g(x1, . . . , xi−1, x

0
i, xi+1, . . . , xn)| � ci , 1 � i � n .17



In other words, if we 
hange the i-th variable of g while keeping all theothers �xed, the value of the fun
tion 
annot 
hange by more than ci.Then the Efron-Stein inequality implies the following:Corollary 1 If g has the bounded di�eren
es property with 
onstants
c1, . . . , cn, then Var(Z) � 1

2

n∑

i=1

c2
i .Next we list some interesting appli
ations of this 
orollary. In all 
asesthe bound for the varian
e is obtained e�ortlessly, while a dire
t estimationof the varian
e may be quite involved.Example. bin pa
king. This is one of the basi
 operations resear
hproblems. Given n numbers x1, . . . , xn 2 [0, 1], the question is the fol-lowing: what is the minimal number of �bins� into whi
h these numbers
an be pa
ked su
h that the sum of the numbers in ea
h bin doesn't ex-
eed one. Let g(x1, . . . , xn) be this minimum number. The behavior of

Z = g(X1, . . . , Xn), when X1, . . . , Xn are independent random variables, hasbeen extensively studied, see, for example, Rhee and Talagrand [68℄, Rhee[67℄, Talagrand [76℄. Now 
learly by 
hanging one of the xi's, the value of
g(x1, . . . , xn) 
annot 
hange by more than one, so we haveVar(Z) � n

2
.However, sharper bounds may be proved by using Talagrand's 
onvex dis-tan
e inequality dis
ussed later.Example. longest 
ommon subsequen
e. This problem has beenstudied intensively for about 20 years now, see Chvátal and Sanko� [20℄,Deken [23℄, Dan£ík and Paterson [22℄, Steele [73, 75℄, The simplest versionis the following: Let X1, . . . , Xn and Y1, . . . , Yn be two sequen
es of 
oin�ips. De�ne Z as the length of the longest subsequen
e whi
h appears inboth sequen
es, that is,

Z = max{k : Xi1 = Yj1 , . . . , Xik = Yjk ,where 1 � i1 < � � � < ik � n and 1 � j1 < � � � < jk � n}.18



The behavior of EZ has been investigated in many papers. It is knownthat E[Z]/n 
onverges to some number γ, whose value is unknown. Itis 
onje
tured to be 2/(1 +
p
2), and it is known to fall between 0.75796and 0.83763. Here we are 
on
erned with the 
on
entration of Z. A mo-ment's thought reveals that 
hanging one bit 
an't 
hange the length of thelongest 
ommon subsequen
e by more than one, so Z satis�es the boundeddi�eren
es property with ci = 1. Consequently,Var{Z} � n,(see Steele [74℄). Thus, by Chebyshev's inequality, with large probability,

Z is within a 
onstant times pn of its expe
ted value. In other words, itis strongly 
on
entrated around the mean, whi
h means that results aboutEZ really tell us about the behavior of the longest 
ommon subsequen
eof two random strings.Example. uniform deviations. One of the 
entral quantities of sta-tisti
al learning theory and empiri
al pro
ess theory is the following: let
X1, . . . , Xn be i.i.d. random variables taking their values in some set X , andlet A be a 
olle
tion of subsets of X . Let µ denote the distribution of X1,that is, µ(A) = P{X1 2 A}, and let µn denote the empiri
al distribution:

µn(A) =
1

n

n∑

i=1

1{Xi2A} .The quantity of interest is
Z = sup

A2A |µn(A) − µ(A)|.If limn→∞ EZ = 0 for every distribution of the Xi's, then A is 
alled auniform Glivenko-Cantelli 
lass, and Vapnik and Chervonenkis [82℄ gave abeautiful 
ombinatorial 
hara
terization of su
h 
lasses. But regardless ofwhat A is, by 
hanging one Xi, Z 
an 
hange by at most 1/n, so regardlessof the behavior of EZ, we always haveVar(Z) � 1

2n
.19



For more information on the behavior of Z and its role in learning theorysee, for example, Devroye, Györ�, and Lugosi [28℄, Vapnik [81℄, van derVaart and Wellner [79℄, Dudley [31℄.Next we show how a 
loser look at the Efron-Stein inequality implies asigni�
antly better bound for the varian
e of Z. We do this in a slightlymore general framework of empiri
al pro
esses. Let F be a 
lass of real-valued fun
tions (no boundedness is assumed!) and de�ne Z = g(X1, . . . , Xn) =supf2F ∑n

j=1 f(Xj). Observe that, by symmetry, the Efron-Stein inequalitymay be rewritten asVar(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i

=

n∑

i=1

E h(Z− Z 0i)21Z0
i
<Z

i
.Let f� 2 F denote the (random) fun
tion whi
h a
hieves the supremum inthe de�nition of Z, that is, Z =

∑n

j=1 f
�(Xj). Then 
learly,

(Z− Z 0i)21Z0
i
<Z � (f�(Xi) − f�(X 0i))2and therefore Var(Z) � E 24sup

f2F n∑

i=1

(f(Xi) − f(X 0i))2

35� E 24sup
f2F n∑

i=1

�
2f(Xi)

2 + 2f(X 0i)2
�35� 4E 24sup

f2F n∑

i=1

f(Xi)
2

35 .For fun
tions f 2 F are taking values in the interval [−1, 1], then from justthe bounded di�eren
es property we derived Var(Z) � 2n. The new boundmay be a signi�
ant improvement whenever the maximum of the varian
es
∑n

i=1 f(Xi)
2 of the fun
tions in F is small. More importantly, in derivingthe new bound we have not assumed any boundedness of the fun
tions f.The exponential tail inequality due to Talagrand [77℄ extends this varian
einequality, and is one of the most important re
ent results of the theoryof empiri
al pro
esses, see also Ledoux [46℄, Massart [57℄, Rio [69℄, andBousquet [16℄. 20



Example. first passage time in oriented per
olation. Consider adire
ted graph su
h that a weight Xi is assigned to ea
h edge ei su
h thatthe Xi are nonnegative independent random variables with se
ond momentEX2
i = σ2. Let v1 and v2 be �xed verti
es of the graph. We are interestedin the total weight of the path from v1 to v2 with minimum weight. Thus,

Z = min
P

∑

ei2P

Xiwhere the minimum is taken over all paths P from v1 to v2. Denote theoptimal path by P�. By repla
ing Xi with X 0i, the total minimum weight
an only in
rease if the edge ei is on P�, and therefore
(Zi − Z 0i)21Z0

i
>Z � (X 0i − Xi)

21ei2P� � X 0i21ei2P� .Thus, Var(Z) � E∑

i

X 0i21ei2P� = σ2E∑

i

1ei2P� � σ2Lwhere L is the length of the longest path between v1 and v2.Example. minimum of the empiri
al loss. Con
entration inequalitieshave been used as a key tool in re
ent developments of model sele
tionmethods in statisti
al learning theory. For the ba
kground we refer tothe the re
ent work of Kolt
hinskii Pan
henko [43℄, Massart [58℄, Bartlett,Bou
heron, and Lugosi [5℄, Lugosi and Wegkamp [52℄, Bousquet [17℄.Let F denote a 
lass of {0, 1}-valued fun
tions on some spa
e X . Forsimpli
ity of the exposition we assume that F is �nite. The results remaintrue for general 
lasses as long as the measurability issues are taken 
areof. Given an i.i.d. sample Dn = (hXi, Yii)i�n of n pairs of random variableshXi, Yii taking values in X � {0, 1}, for ea
h f 2 F we de�ne the empiri
alloss
Ln(f) =

1

n

n∑

i=1

ℓ(f(Xi), Yi)where the loss fun
tion ℓ is de�ned on {0, 1}2 by
ℓ(y, y 0) = 1y6=y0 .21



In nonparametri
 
lassi�
ation and learning theory it is 
ommon to sele
tan element of F by minimizing the empiri
al loss. The quantity of interestin this se
tion is the minimal empiri
al lossbL = inf
f2F Ln(f).Corollary 1 immediately implies that Var(bL) � 1/(2n). However, a more
areful appli
ation of the Efron-Stein inequality reveals that bLmay be mu
hmore 
on
entrated than predi
ted by this simple inequality. Getting tightresults for the �u
tuations of bL provides better insight into the 
alibrationof penalties in 
ertain model sele
tion methods.Let Z = nbL and let Z 0i be de�ned as in Theorem 8, that is,

Z 0i = min
f2F 24∑

j6=i

ℓ(f(Xj), Yj) + ℓ(f(Xi
0), Yi

0)35where hXi
0, Yi

0i is independent of Dn and has the same distribution ashXi, Yii. Now the 
onvenient form of the Efron-Stein inequality is the fol-lowing: Var(Z) � 1

2

n∑

i=1

E h(Z− Z 0i)2
i

=

n∑

i=1

E h(Z− Z 0i)21Z0
i
>Z

iLet f� denote a (possibly non-unique) minimizer of the empiri
al risk sothat Z =
∑n

j=1 ℓ(f
�(Xj), Yj). The key observation is that

(Z− Z 0i)21Z0
i
>Z � (ℓ(f�(Xi

0), Yi
0) − ℓ(f�(Xi), Yi))

21Z0
i
>Z

= ℓ(f�(X 0i), Y 0i)1ℓ(f�(Xi),Yi)=0 .Thus,
n∑

i=1

E h(Z− Z 0i)21Z0
i
>Z

i � E ∑

i:ℓ(f�(Xi),Yi)=0

EX0
i
,Y 0

i
[ℓ(f�(X 0i), Y 0i)] � nEL(f�)where EX0

i
,Y 0

i
denotes expe
tation with respe
t to the variables X 0i, Y 0i and forea
h f 2 F , L(f) = Eℓ(f(X), Y) is the true (expe
ted) loss of f. Therefore,the Efron-Stein inequality implies thatVar(bL) � EL(f�)

n
.22



This is a signi�
ant improvement over the bound 1/(2n) whenever EL(f�)is mu
h smaller than 1/2. This is very often the 
ase. For example, wehave
L(f�) = bL− (Ln(f�) − L(f�)) � Z

n
+ sup

f2F (L(f) − Ln(f))so that we obtainVar(bL) � EbL
n

+
E supf2F(L(f) − Ln(f))

n
.In most 
ases of interest, E supf2F(L(f) − Ln(f)) may be bounded by a
onstant (depending on F) times n−1/2 (see, e.g., Lugosi [51℄) and then these
ond term on the right-hand side is of the order of n−3/2. For exponential
on
entration inequalities for bL we refer to Bou
heron, Lugosi, and Massart[15℄.Example. kernel density estimation. Let X1, . . . , Xn be i.i.d. samplesdrawn a

ording to some (unknown) density f on the real line. The densityis estimated by the kernel estimate

fn(x) =
1

nh

n∑

i=1

K

 
x− Xi

h

!
,where h > 0 is a smoothing parameter, and K is a nonnegative fun
tionwith ∫

K = 1. The performan
e of the estimate is measured by the L1 error
Z = g(X1, . . . , Xn) =

∫

|f(x) − fn(x)|dx.It is easy to see that
|g(x1, . . . , xn) − g(x1, . . . , x

0
i, . . . , xn)| � 1

nh

∫ �����K�x− xi

h

�
− K

 
x− x 0i
h

!�����dx� 2

n
,so without further work we getVar(Z) � 2

n
.23



It is known that for every f, pnEg → ∞ (see Devroye and Györ� [27℄)whi
h implies, by Chebyshev's inequality, that for every ǫ > 0P{����� ZEZ − 1

����� � ǫ} = P {|Z−EZ| � ǫEZ} � Var(Z)

ǫ2(EZ)2
→ 0as n → ∞. That is, Z/EZ → 0 in probability, or in other words, Z isrelatively stable. This means that the random L1-error behaves like itsexpe
ted value. This result is due to Devroye [25℄, [26℄. For more on thebehavior of the L1 error of the kernel density estimate we refer to Devroyeand Györ� [27℄, Devroye and Lugosi [29℄.4.2 Self-bounding fun
tionsAnother simple property whi
h is satis�ed for many important examples isthe so-
alled self-bounding property. We say that a nonnegative fun
tion

g : Xn → R has the self-bounding property if there exist fun
tions gi :Xn−1 → R su
h that for all x1, . . . , xn 2 X and all i = 1, . . . , n,
0 � g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn) � 1and also

n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn)) � g(x1, . . . , xn) .Con
entration properties for su
h fun
tions have been studied by Bou
heron,Lugosi, and Massart [14℄, Rio [69℄, and Bousquet [16℄. For self-boundingfun
tions we 
learly have
n∑

i=1

(g(x1, . . . , xn) − gi(x1, . . . , xi−1, xi+1, . . . , xn))
2 � g(x1, . . . , xn) .and therefore Theorem 9 impliesCorollary 2 If g has the self-bounding property, thenVar(Z) � EZ .24



Next we mention some appli
ations of this simple 
orollary. It turnsout that in many 
ases the obtained bound is a signi�
ant improvementover what we would obtain by using simply Corollary 1.Remark. relative stability. Bounding the varian
e of Z by its ex-pe
ted value implies, in many 
ases, the relative stability of Z. A se-quen
e of nonnegative random variables (Zn) is said to be relatively stableif Zn/EZn → 1 in probability. This property guarantees that the random�u
tuations of Zn around its expe
tation are of negligible size when 
om-pared to the expe
tation, and therefore most information about the sizeof Zn is given by EZn. If Zn has the self-bounding property, then, byChebyshev's inequality, for all ǫ > 0,P{����� ZnEZn

− 1

����� > ǫ} � Var(Zn)

ǫ2(EZn)2
� 1

ǫ2EZn

.Thus, for relative stability, it su�
es to have EZn → ∞.Example. empiri
al pro
esses. A typi
al example of self-boundingfun
tions is the supremum of nonnegative empiri
al pro
esses. Let Fbe a 
lass of fun
tions taking values in the interval [0, 1] and 
onsider
Z = g(X1, . . . , Xn) = supf2F ∑n

j=1 f(Xj). (A spe
ial 
ase of this is men-tioned above in the example of uniform deviations.) De�ning gi = g 0for i = 1, . . . , n with g 0(x1, . . . , xn−1) = supf2F ∑n−1

j=1 f(Xj) (so that Zi =supf2F ∑n
j=1

j6=i
f(Xj)) and letting f� 2 F be a fun
tion for whi
h Z =

∑n

j=1 f
�(Xj),one obviously has

0 � Z− Zi � f�(Xi) � 1and therefore
n∑

i=1

(Z− Zi) � n∑

i=1

f�(Xi) = Z.(Here we have assumed that the supremum is always a
hieved. The mod-i�
ation of the argument for the general 
ase is straightforward.) Thus,by Corollary 2 we obtain Var(Z) � EZ. Note that Corollary 1 impliesVar(Z) � n/2. In some important appli
ations EZ may be signi�
antlysmaller than n/2 and the improvement is essential.25



Example. radema
her averages. A less trivial example for self-bounding fun
tions is the one of Radema
her averages. Let F be a 
lass offun
tions with values in [−1, 1]. If σ1, . . . , σn denote independent symmet-ri
 {−1, 1}-valued random variables, independent of the Xi's (the so-
alledRadema
her random variables), then we de�ne the 
onditional Radema
heraverage as
Z = E 24sup

f2F n∑

j=1

σjf(Xj)|X
n
1

35 .(Thus, the expe
ted value is taken with respe
t to the Radema
her variablesand Z is a fun
tion of the Xi's.) Quantities like Z have been known tomeasure e�e
tively the 
omplexity of model 
lasses in statisti
al learningtheory, see, for example, Kolt
hinskii [42℄, Bartlett, Bou
heron, and Lugosi[5℄, Bartlett and Mendelson [7℄, Bartlett, Bousquet, and Mendelson [6℄. Itis immediate that Z has the bounded di�eren
es property and Corollary 1implies Var(Z) � n/2. However, this bound may be improved by observingthat Z also has the self-bounding property, and therefore Var(Z) � EZ.Indeed, de�ning
Zi = E 26664supf2F n∑

j=1

j6=i

σjf(Xj)|X
n
1

37775it is easy to see that 0 � Z−Zi � 1 and ∑n

i=1(Z−Zi) � Z (the details areleft as an exer
ise). The improvement provided by Lemma 2 is essentialsin
e it is well-known in empiri
al pro
ess theory and statisti
al learningtheory that in many 
ases when F is a relatively small 
lass of fun
tions, EZmay be bounded by something like Cn1/2 where the 
onstant C depends onthe 
lass F , see, e.g., Vapnik [81℄, van der Vaart and Wellner [79℄, Dudley[31℄.Con�guration fun
tionsAn important 
lass of fun
tions satisfying the self-bounding property 
on-sists of the so-
alled 
on�guration fun
tions de�ned by Talagrand [76, se
-tion 7℄. Our de�nition, taken from [14℄ is a slight modi�
ation of Tala-grand's. 26



Assume that we have a property P de�ned over the union of �niteprodu
ts of a set X , that is, a sequen
e of sets P1 � X , P2 � X�X , . . . , Pn �Xn. We say that (x1, . . . xm) 2 Xm satis�es the property P if (x1, . . . xm) 2
Pm. We assume that P is hereditary in the sense that if (x1, . . . xm) satis�es
P then so does any subsequen
e (xi1 , . . . xik) of (x1, . . . xm). The fun
tion
gn that maps any tuple (x1, . . . xn) to the size of a largest subsequen
esatisfying P is the 
on�guration fun
tion asso
iated with property P.Corollary 2 implies the following result:Corollary 3 Let gn be a 
on�guration fun
tion, and let Z = gn(X1, . . . , Xn),where X1, . . . , Xn are independent random variables. ThenVar(Z) � EZ .Proof. By Corollary 2 it su�
es to show that any 
on�guration fun
tionis self bounding. Let Zi = gn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn). The 
ondition
0 � Z−Zi � 1 is trivially satis�ed. On the other hand, assume that Z = kand let {Xi1 , . . . , Xik } � {X1, . . . , Xn} be a subsequen
e of 
ardinality k su
hthat fk(Xi1 , . . . , Xik) = k. (Note that by the de�nition of a 
on�gurationfun
tion su
h a subsequen
e exists.) Clearly, if the index i is su
h that
i /2 {i1, . . . , ik} then Z = Zi, and therefore

n∑

i=1

(Z− Zi) � Zis also satis�ed, whi
h 
on
ludes the proof. 2To illustrate the fa
t that 
on�guration fun
tions appear rather natu-rally in various appli
ations, we des
ribe some examples originating fromdi�erent �elds.Example. number of distin
t values in a dis
rete sample. Let
X1, . . . , Xn be independent, identi
ally distributed random variables takingtheir values on the set of positive integers su
h that P{X1 = k} = pk, and let
Z denote the number of distin
t values taken by these n random variables.Then we may write

Z =

n∑

i=1

1{Xi 6=X1,...,Xi 6=Xi−1},27



so the expe
ted value of Z may be 
omputed easily:EZ =

n∑

i=1

∞∑

j=1

(1− pj)
i−1pj.It is easy to see that E[Z]/n → 0 as n → ∞ (see Exer
ise 13). But how
on
entrated is the distribution of Z? Clearly, Z satis�es the boundeddi�eren
es property with ci = 1, so Corollary 1 implies Var(Z) � n/2 so

Z/n → 0 in probability by Chebyshev's inequality. On the other hand, itis obvious that Z is a 
on�guration fun
tion asso
iated to the property of�distin
tness�, and by Corollary 3 we haveVar(Z) � EZwhi
h is a signi�
ant improvement sin
e EZ = o(n).Example. v
 dimension. One of the 
entral quantities in statisti
allearning theory is the Vapnik-Chervonenkis dimension, see Vapnik andChervonenkis [82, 83℄, Blumer, Ehrenfeu
ht, Haussler, and Warmuth [11℄,Devroye, Györ�, and Lugosi [28℄, Anthony and Bartlett [3℄, Vapnik [81℄,et
.LetA be an arbitrary 
olle
tion of subsets of X , and let xn
1 = (x1, . . . , xn)be a ve
tor of n points of X . De�ne the tra
e of A on xn

1 bytr(xn
1) = {A \ {x1, . . . , xn} : A 2 A} .The shatter 
oe�
ient, (or Vapnik-Chervonenkis growth fun
tion) of A in

xn
1 is T(xn

1) = |tr(xn
1)|, the size of the tra
e. T(xn

1) is the number of di�erentsubsets of the n-point set {x1, . . . , xn} generated by interse
ting it withelements of A. A subset {xi1 , . . . , xik } of {x1, . . . , xn} is said to be shatteredif 2k = T(xi1 , . . . , xik). The v
 dimensionD(xn
1) of A (with respe
t to xn

1) isthe 
ardinality k of the largest shattered subset of xn
1 . From the de�nitionit is obvious that gn(xn

1) = D(xn
1) is a 
on�guration fun
tion (asso
iated tothe property of �shatteredness�, and therefore if X1, . . . , Xn are independentrandom variables, then Var(D(Xn

1)) � ED(Xn
1) .28



Example. in
reasing subsequen
es. Consider a ve
tor xn
1 = (x1, . . . , xn)of n di�erent numbers in [0, 1]. The positive integers i1 < i2 < � � � < imform an in
reasing subsequen
e if xi1 < xi2 < � � � < xim (where i1 � 1and im � n). Let L(xn

1) denote the length of a longest in
reasing subse-quen
e. gn(xn
1) = L(xn

1) is a 
learly a 
on�guration fun
tion (asso
iatedwith the �in
reasing sequen
e� property), and therefore if X1, . . . , Xn areindependent random variables su
h that they are di�erent with probabilityone (it su�
es if every Xi has an absolutely 
ontinuous distribution) thenVar(L(Xn
1)) � EL(Xn

1). If the Xi's are uniformly distributed in [0, 1] then itis known that EL(Xn
1) ∼ 2

p
n, see Logan and Shepp [49℄, Groeneboom [35℄.The obtained bound for the varian
e is apparently loose. A di�
ult resultof Baik, Deift, and Johansson [4℄ implies that Var(L(Xn

1)) = O(n1/3).For early work on the 
on
entration on L(X) we refer to Frieze [34℄,Bollobás and Brightwell [13℄, and Talagrand [76℄.Exer
isesExer
ise 11 Assume that the random variables X1, . . . , Xn are indepen-dent and binary {0,1}-valued with P{Xi = 1} = pi and that g has thebounded di�eren
es property with 
onstants c1, . . . , cn. Show thatVar(Z) � n∑

i=1

c2
ipi(1− pi).Exer
ise 12 Complete the proof of the fa
t that the 
onditional Radema
heraverage has the self-bounding property.Exer
ise 13 Consider the example of the number of distin
t values in adis
rete sample des
ribed in the text. Show that E[Z]/n → 0 as n → ∞.Cal
ulate expli
itely Var(Z) and 
ompare it with the upper bound obtainedby Theorem 9.Exer
ise 14 Let Z be the number of triangles in a random graph G(n, p).Cal
ulate the varian
e of Z and 
ompare it with what you get by using theEfron-Stein inequality to estimate it. (In the G(n, p) model for randomgraphs, the random graph G = (V, E) with vertex set V (|V | = n) and edge29



set E is generated by starting from the 
omplete graph with n verti
es anddeleting ea
h edge independently from the others with probability 1 − p.A triangle is a 
omplete three-vertex subgraph.)

30



5 The entropy methodIn the previous se
tion we saw that the Efron-Stein inequality serves as apowerful tool for bounding the varian
e of general fun
tions of indepen-dent random variables. Then, via Chebyshev's inequality, one may easilybound the tail probabilities of su
h fun
tions. However, just as in the 
aseof sums of independent random variables, tail bounds based on inequalitiesfor the varian
e are often not satisfa
tory, and essential improvements arepossible. The purpose of this se
tion is to present a methodology whi
hallows one to obtain exponential tail inequalities in many 
ases. The pur-suit of su
h inequalities has been an important topi
s in probability theoryin the last few de
ades. Originally, martingale methods dominated the re-sear
h (see, e.g., M
Diarmid [59℄, [60℄, Rhee and Talagrand [68℄, Shamirand Spen
er [71℄) but independently information-theoreti
 methods werealso used with su

ess (see Alhswede, Gá
s, and Körner [1℄, Marton [53℄,[54℄,[55℄, Dembo [24℄, Massart [56℄, Rio [69℄, and Samson [70℄). Talagrand'sindu
tion method [78℄,[76℄,[77℄ 
aused an important breakthrough both inthe theory and appli
ations of exponential 
on
entration inequalities. Inthis se
tion we fo
us on so-
alled �entropy method�, based on logarithmi
Sobolev inequalities developed by Ledoux [46℄,[45℄, see also Bobkov andLedoux [12℄, Massart [57℄, Rio [69℄, Bou
heron, Lugosi, and Massart [14℄,[15℄, and Bousquet [16℄. This method makes it possible to derive exponen-tial analogues of the Efron-Stein inequality perhaps the simplest way.The method is based on an appropriate modi�
ation of the �tensoriza-tion� inequality Theorem 7. In order to prove this modi�
ation, we need tore
all some of the basi
 notions of information theory. To keep the materialat an elementary level, we prove the modi�ed tensorization inequality fordis
rete random variables only. The extension to arbitrary distributions isstraightforward.5.1 Basi
 information theoryIn this se
tion we summarize some basi
 properties of the entropy of adis
rete-valued random variable. For a good introdu
tory book on infor-mation theory we refer to Cover and Thomas [21℄.31



Let X be a random variable taking values in the 
ountable set X withdistribution P{X = x} = p(x), x 2 X . The entropy of X is de�ned by
H(X) = E[− logp(X)] = −

∑

x2X p(x) logp(x)(where log denotes natural logarithm and 0 log 0 = 0). If X, Y is a pair ofdis
rete random variables taking values in X � Y then the joint entropy
H(X, Y) of X and Y is de�ned as the entropy of the pair (X, Y). The 
ondi-tional entropy H(X|Y) is de�ned as

H(X|Y) = H(X, Y) −H(Y) .Observe that if we write p(x, y) = P{X = x, Y = y} and p(x|y) = P{X =

x|Y = y} then
H(X|Y) = −

∑

x2X ,y2Y p(x, y) logp(x|y)from whi
h we see that H(X|Y) � 0. It is also easy to see that the de�ningidentity of the 
onditional entropy remains true 
onditionally, that is, forany three (dis
rete) random variables X, Y, Z,
H(X, Y|Z) = H(Y|Z) +H(X|Y, Z) .(Just add H(Z) to both sides and use the de�nition of the 
onditionalentropy.) A repeated appli
ation of this yields the 
hain rule for entropy:for arbitrary dis
rete random variables X1, . . . , Xn,

H(X1, . . . , Xn) = H(X1)+H(X2|X1)+H(X3|X1, X2)+� � �+H(Xn|X1, . . . , Xn−1) .Let P and Q be two probability distributions over a 
ountable set X withprobability mass fun
tions p and q. Then the Kullba
k-Leibler divergen
eor relative entropy of P and Q is
D(PkQ) =

∑

x2X p(x) log p(x)q(x)
.Sin
e log x � x − 1,

D(PkQ) = −
∑

x2X p(x) log q(x)p(x)
� −

∑

x2X p(x) q(x)p(x)
− 1

!
= 0 ,32



so that the relative entropy is always nonnegative, and equals zero if andonly if P = Q. This simple fa
t has some interesting 
onsequen
es. Forexample, if X is a �nite set with N elements and X is a random variablewith distribution P and we take Q to be the uniform distribution over Xthen D(PkQ) = logN−H(X) and therefore the entropy of X never ex
eedsthe logarithm of the 
ardinality of its range.Consider a pair of random variables X, Y with joint distribution PX,Y andmarginal distributions PX and PY. Noting that D(PX,YkPX� PY) = H(X) −

H(X|Y), the nonnegativity of the relative entropy implies that H(X) �
H(X|Y), that is, 
onditioning redu
es entropy. It is similarly easy to seethat this fa
t remains true for 
onditional entropies as well, that is,

H(X|Y) � H(X|Y, Z) .Now we may prove the following inequality of Han [38℄Theorem 10 han's inequality. Let X1, . . . , Xn be dis
rete randomvariables. Then
H(X1, . . . , Xn) � 1

n− 1

n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn)Proof. For any i = 1, . . . , n, by the de�nition of the 
onditional entropyand the fa
t that 
onditioning redu
es entropy,
H(X1, . . . , Xn)

= H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1, Xi+1, . . . , Xn)� H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(Xi|X1, . . . , Xi−1) i = 1, . . . , n .Summing these n inequalities and using the 
hain rule for entropy, we get
nH(X1, . . . , Xn) � n∑

i=1

H(X1, . . . , Xi−1, Xi+1, . . . , Xn) +H(X1, . . . , Xn)whi
h is what we wanted to prove. 2We �nish this se
tion by an inequality whi
h may be regarded as aversion of Han's inequality for relative entropies. As it was pointed out by33



Massart [58℄, this inequality may be used to prove the key tensorizationinequality of the next se
tion.To this end, let X be a 
ountable set, and let P and Q be probabil-ity distributions on Xn su
h that P = P1 � � � � � Pn is a produ
t mea-sure. We denote the elements of Xn by xn
1 = (x1, . . . , xn) and write

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn) for the (n − 1)-ve
tor obtained by leav-ing out the i-th 
omponent of xn
1 . Denote by Q(i) and P(i) the marginaldistributions of x(i) a

ording to Q and P, that is,

Q(i)(x(i)) =
∑

x2X Q(x1, . . . , xi−1, x, xi+1, . . . , xn)and
P(i)(x(i)) =

∑

x2X P(x1, . . . , xi−1, x, xi+1, . . . , xn)

=
∑

x2X P1(x1) � � �Pi−1(xi−1)Pi(x)Pi+1(xi+1) � � �Pn(xn) .Then we have the following.Theorem 11 han's inequality for relative entropies.
D(QkP) � 1

n − 1

n∑

i=1

D(Q(i)kP(i))or equivalently,
D(QkP) � n∑

i=1

�
D(QkP) −D(Q(i)kP(i))

�
.Proof. The statement is a straightforward 
onsequen
e of Han's inequality.Indeed, Han's inequality states that

∑

xn
1
2Xn

Q(xn
1) logQ(xn

1) � 1

n− 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logQ(i)(x(i)) .Sin
e
D(QkP) =

∑

xn
1
2Xn

Q(xn
1) logQ(xn

1) −
∑

xn
1
2Xn

Q(xn
1) logP(xn

1)34



and
D(Q(i)kP(i)) =

∑

x(i)2Xn−1

�
Q(i)(x(i)) logQ(i)(x(i)) −Q(i)(x(i)) logP(i)(x(i))

�
,it su�
es to show that

∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n− 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logP(i)(x(i)) .This may be seen easily by noting that by the produ
t property of P, wehave P(xn
1) = P(i)(x(i))Pi(xi) for all i, and also P(xn

1) =
∏n

i=1Pi(xi), andtherefore
∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n

n∑

i=1

∑

xn
1
2Xn

Q(xn
1)
�logP(i)(x(i)) + logPi(xi)

�
=

1

n

n∑

i=1

∑

xn
1
2Xn

Q(xn
1) logP(i)(x(i)) +

1

n

∑

xn
1
2Xn

Q(xn
1) logP(xn

1) .Rearranging, we obtain
∑

xn
1
2Xn

Q(xn
1) logP(xn

1) =
1

n − 1

n∑

i=1

∑

xn
1
2Xn

Q(xn
1) logP(i)(x(i))

=
1

n − 1

n∑

i=1

∑

x(i)2Xn−1

Q(i)(x(i)) logP(i)(x(i))where we used the de�ning property of Q(i). 25.2 Tensorization of the entropyWe are now prepared to prove the main exponential 
on
entration in-equalities of these notes. Just as in Se
tion 4, we let X1, . . . , Xn be in-dependent random variables, and investigate 
on
entration properties of
Z = g(X1, . . . , Xn). The basis of Ledoux's entropy method is a powerfulextension of Theorem 7. Note that Theorem 7 may be rewritten asVar(Z) � n∑

i=1

E hEi(Z
2) − (Ei(Z))2

i35



or, putting φ(x) = x2,Eφ(Z) − φ(EZ) � n∑

i=1

E [Eiφ(Z) − φ(Ei(Z))] .As it turns out, this inequality remains true for a large 
lass of 
onvexfun
tions φ, see Be
kner [8℄, Lataªa and Oleszkiewi
z [44℄, Ledoux [46℄,and Chafaï [18℄. The 
ase of interest in our 
ase is when φ(x) = x log x. Inthis 
ase, as seen in the proof below, the left-hand side of the inequalitymay be written as the relative entropy between the distribution indu
edby Z on Xn and the distribution of Xn
1 . Hen
e the name �tensorizationinequality of the entropy�, (see, e.g., Ledoux [46℄).Theorem 12 Let φ(x) = x log x for x > 0. Let X1 . . . , Xn be independentrandom variables taking values in X and let f be a positive-valuedfun
tion on Xn. Letting Y = f(X1, . . . , Xn), we haveEφ(Y) − φ(EY) � n∑

i=1

E [Eiφ(Y) − φ(Ei(Y))] .Proof. We only prove the statement for dis
rete random variables X1 . . . , Xn.The extension to the general 
ase is te
hni
al but straightforward. The the-orem is a dire
t 
onsequen
e of Han's inequality for relative entropies. Firstnote that if the inequality is true for a random variable Y then it is also truefor cY where c is a positive 
onstant. Hen
e we may assume that EY = 1.Now de�ne the probability measure Q on Xn by
Q(xn

1) = f(xn
1)P(xn

1)where P denotes the distribution of Xn
1 = (X1, . . . , Xn). Then 
learly,Eφ(Y) −φ(EY) = E[Y log Y] = D(QkP)whi
h, by Theorem 11, does not ex
eed ∑n

i=1

�
D(QkP) −D(Q(i)kP(i))

�.However, straightforward 
al
ulation shows that
n∑

i=1

�
D(QkP) −D(Q(i)kP(i))

�
=

n∑

i=1

E [Eiφ(Y) −φ(Ei(Y))]36



and the statement follows. 2The main idea in Ledoux's entropy method for proving 
on
entrationinequalities is to apply Theorem 12 to the positive random variable Y = esZ.Then, denoting the moment generating fun
tion of Z by F(s) = E[esZ], theleft-hand side of the inequality in Theorem 12 be
omes
sE hZesZ

i
−E hesZ

i logE hesZ
i

= sF 0(s) − F(s) log F(s) .Our strategy, then is to derive upper bounds for the derivative of F(s) andderive tail bounds via Cherno�'s bounding. To do this in a 
onvenient way,we need some further bounds for the right-hand side of the inequality inTheorem 12. This is the purpose of the next se
tion.5.3 Logarithmi
 Sobolev inequalitiesRe
all from Se
tion 4 that we denote Zi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn)where gi is some fun
tion over Xn−1. Below we further develop the right-hand side of Theorem 12 to obtain important inequalities whi
h serve asthe basis in deriving exponential 
on
entration inequalities. These inequal-ities are 
losely related to the so-
alled logarithmi
 Sobolev inequalities ofanalysis, see Ledoux [46, 47, 48℄, Massart [57℄.First we need the following te
hni
al lemma:Lemma 2 Let Y denote a positive random variable. Then for any
u > 0, E[Y log Y] − (EY) log(EY) � E[Y log Y − Y logu− (Y − u)] .Proof. As for any x > 0, log x � x− 1, we havelog uEY � uEY − 1 ,hen
e EY log uEY � u−EYwhi
h is equivalent to the statement. 237



Theorem 13 a logarithmi
 sobolev inequality. Denote ψ(x) =

ex − x − 1. Then
sE hZesZ

i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZψ (−s(Z− Zi))
i
.Proof. We bound ea
h term on the right-hand side of Theorem 12. Notethat Lemma 2 implies that if Yi is a positive fun
tion of X1, . . . , Xi−1, Xi+1, . . . , Xn,then Ei(Y log Y) −Ei(Y) logEi(Y) � Ei [Y(logY − log Yi) − (Y − Yi)]Applying the above inequality to the variables Y = esZ and Yi = esZi , onegets Ei(Y log Y) −Ei(Y) logEi(Y) � Ei

h
esZψ(−s(Z− Zi))

iand the proof is 
ompleted by Theorem 12. 2The following symmetrized version, due to Massart [57℄, will also beuseful. Re
all that Z 0i = g(X1, . . . , X
0
i, . . . , Xn) where the X 0i are independent
opies of the Xi.Theorem 14 symmetrized logarithmi
 sobolev inequality. If ψis de�ned as in Theorem 13 then

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZψ (−s(Z− Z 0i))i .Moreover, denote τ(x) = x(ex − 1). Then for all s 2 R,
sE hZesZ

i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(−s(Z− Z 0i))1Z>Z0
i

i
,

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(s(Z 0i − Z))1Z<Z0
i

i
.

38



Proof. The �rst inequality is proved exa
tly as Theorem 13, just by notingthat, just like Zi, Z 0i is also independent of Xi. To prove the se
ond andthird inequalities, write
esZψ (−s(Z− Z 0i)) = esZψ (−s(Z− Z 0i))1Z>Z0

i
+ esZψ (s(Z 0i − Z))1Z<Z0

i
.By symmetry, the 
onditional expe
tation of the se
ond term may be writ-ten asEi

h
esZψ (s(Z 0i − Z))1Z<Z0

i

i
= Ei

h
esZ0

iψ (s(Z− Z 0i))1Z>Z0
i

i
= Ei

h
esZe−s(Z−Z0

i
)ψ (s(Z− Z 0i))1Z>Z0

i

i
.Summarizing, we haveEi

h
esZψ (−s(Z− Z 0i))i

= Ei

h�
ψ (−s(Z− Z 0i)) + e−s(Z−Z0

i
)ψ (s(Z− Z 0i))� esZ1Z>Z0

i

i
.The se
ond inequality of the theorem follows simply by noting that ψ(x)+

exψ(−x) = x(ex − 1) = τ(x). The last inequality follows similarly. 25.4 First example: bounded di�eren
es and moreThe purpose of this se
tion is to illustrate how the logarithmi
 Sobolevinequalities shown in the previous se
tion may be used to obtain powerfulexponential 
on
entration inequalities. The �rst result is rather easy toobtain, yet it turns out to be very useful. Also, its proof is prototypi
al inthe sense that it shows, in a transparent way, the main ideas.Theorem 15 Assume that there exists a positive 
onstant C su
h that,almost surely,
n∑

i=1

(Z− Z 0i)21Z>Z0
i
� C .Then for all t > 0, P [Z−EZ > t] � e−t2/4C .39



Proof. Observe that for x > 0, τ(−x) � x2, and therefore, for any s > 0,Theorem 14 implies
sE hZesZ

i
−E hesZ

i logE hesZ
i � E 24esZ

n∑

i=1

s2(Z− Z 0i)21Z>Z0
i

35� s2CE hesZ
i
,where we used the assumption of the theorem. Now denoting the momentgenerating fun
tion of Z by F(s) = E hesZ

i, the above inequality may bere-written as
sF 0(s) − F(s) log F(s) � Cs2F(s) .After dividing both sides by s2F(s), we observe that the left-hand side isjust the derivative of H(s) = s−1 log F(s), that is, we obtain the inequality

H 0(s) � C .By l'Hospital's rule we note that lims→0H(s) = F 0(0)/F(0) = EZ, so byintegrating the above inequality, we get H(s) � EZ+sC, or in other words,
F(s) � esEZ+s2C .Now by Markov's inequality,P [Z > EZ+ t] � F(s)e−sEZ−st � es2C−st .Choosing s = t/2C, the upper bound be
omes e−t2/4C. Repla
e Z by −Zto obtain the same upper bound for P [Z < EZ− t]. 2It is 
lear from the proof that under the 
ondition
n∑

i=1

(Z− Z 0i)2 � Cone has the two-sided inequalityP [|Z−EZ| > t] � 2e−t2/4C .An immediate 
orollary of this is a subgaussian tail inequality for fun
tionsof bounded di�eren
es. 40



Corollary 4 bounded differen
es inequality. Assume the fun
tion
g satis�es the bounded di�eren
es assumption with 
onstants c1, . . . , cn,then P [|Z−EZ| > t] � 2e−t2/4Cwhere C =

∑n

i=1 c
2
i.We remark here that the 
onstant appearing in this 
orollary may beimproved. Indeed, using the martingale method, M
Diarmid [59℄ showedthat under the 
onditions of Corollary 4,P [|Z−EZ| > t] � 2e−2t2/C(see the exer
ises). Thus, we have been able to extend Corollary 1 to anexponential 
on
entration inequality. Note that by 
ombining the varian
ebound of Corollary 1 with Chebyshev's inequality, we only obtainedP [|Z−EZ| > t] � C

2t2and therefore the improvement is essential. Thus the appli
ations of Corol-lary 1 in all the examples shown in Se
tion 4.1 are now improved in anessential way without further work.Example. hoeffding's inequality in hilbert spa
e. As a simpleillustration of the power of the bounded di�eren
es inequality, we derivea Hoe�ding-type inequality for sums of random variables taking values ina Hilbert spa
e. In parti
ular, we show that if X1, . . . , Xn are independentzero-mean random variables taking values in a separable Hilbert spa
e su
hthat kXik � ci/2 with probability one, then for all t � 2pC,P 24





 n∑

i=1

Xi







 > t35 � e−t2/2Cwhere C =
∑n

i=1 c
2
i. This follows simply by observing that, by the triangleinequality, Z = k∑n

i=1Xik satis�es the bounded di�eren
es property with
41




onstants ci, and thereforeP 24





 n∑

i=1

Xi







 > t35 = P 24





 n∑

i=1

Xi







−E 





 n∑

i=1

Xi







 > t−E 





 n∑

i=1

Xi







35� exp0�−
2 (t−E k∑n

i=1Xik)2

C

1A .The proof is 
ompleted by observing that, by independen
e,E 





 n∑

i=1

Xi







 � vuuutE 





 n∑

i=1

Xi







2

=

vuuut n∑

i=1

E kXik2 � C .However, Theorem 15 is mu
h stronger than Corollary 4. To understandwhy, just observe that the 
onditions of Theorem 15 do not require that ghas bounded di�eren
es. All that's required is thatsup
x1,...,xn,

x0
1
,...,x0

n2X n∑

i=1

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
0
i, xi+1, . . . , xn)|2 � n∑

i=1

c2
i ,an obviously mu
h milder requirement. The next appli
ation is a goodexample in whi
h the bounded di�eren
es inequality does not work, yetTheorem 15 gives a sharp bound.Example. the largest eigenvalue of a random symmetri
 matrix.Here we derive, using Theorem 15, a result of Alon, Krivelevi
h, and Vu[2℄. Let A be a symmetri
 real matrix whose entries Xi,j, 1 � i � j � n areindependent random variables with absolute value bounded by 1. If Z = λ1is the largest eigenvalue of A, thenP [Z > EZ+ t] � e−t2/16 .The property of the largest eigenvalue we need is that if v = (v1, . . . , vn) 2Rn is an eigenve
tor 
orresponding to the largest eigenvalue λ1 with kvk =

1, then
λ1 = vTAv = sup

u:kuk=1

uTAu .42



To use Theorem 15, 
onsider the symmetri
 matrix A 0
i,j obtained by repla
-ing Xi,j in A by the independent 
opy X 0i,j, while keeping all other variables�xed. Let Z 0i,j denote the largest eigenvalue of the obtained matrix. Thenby the above-mentioned property of the largest eigenvalue,

(Z− Z 0i,j)1Z>Z0
i,j

� �
vTAv− vTA 0

i,jv
�1Z>Z0

i,j

=
�
vT(A−A 0

i,jv
�1Z>Z0

i,j
=
�
vivj(Xi,j − X 0i,j)�+� 2|vivj| .Therefore,

∑

1�i�j�n

(Z− Z 0i,j)21Z>Z0
i,j
� ∑

1�i�j�n

4|vivj|
2 � 40� n∑

i=1

v2
i

1A2

= 4 .The result now follows from Theorem 15. Note that by the Efron-Stein in-equality we also have Var(Z) � 4. A similar exponential inequality, thoughwith a somewhat worst 
onstant in the exponent, 
an also be derived forthe lower tail. In parti
ular, Theorem 20 below implies, for t > 0,P [Z < EZ− t] � e−t2/16(e−1) .Also noti
e that the same proof works for the smallest eigenvalue as well.Alon, Krivelevi
h, and Vu [2℄ show, with a simple extension of the argu-ment, that if Z is the k-th largest (or k-th smallest) eigenvalue then theupper bounds be
omes e−t2/(16k2), though it is not 
lear whether the fa
tor
k−2 in the exponent is ne
essary.5.5 Exponential inequalities for self-bounding fun
tionsIn this se
tion we prove exponential 
on
entration inequalities for self-bounding fun
tions dis
ussed in Se
tion 4.2. Re
all that a variant of theEfron-Stein inequality (Theorem 2) implies that for self-bounding fun
tionsVar(Z) � E(Z) . Based on the logarithmi
 Sobolev inequality of Theorem13 we may now obtain exponential 
on
entration bounds. The theoremappears in Bou
heron, Lugosi, and Massart [14℄ and builds on te
hniquesdeveloped by Massart [57℄. 43



Re
all the de�nition of following two fun
tions that we have alreadyseen in Bennett's inequality and in the logarithmi
 Sobolev inequalitiesabove:
h (u) = (1+ u) log (1+ u) − u (u � −1),and ψ(v) = sup

u�−1

[uv− h(u)] = ev − v− 1 .Theorem 16 Assume that g satis�es the self-bounding property. Thenfor every s 2 R, logE hes(Z−EZ)
i � EZψ(s) .Moreover, for every t > 0,P [Z � EZ+ t] � exp �−EZh� tEZ��and for every 0 < t � EZ,P [Z � EZ− t] � exp �−EZh�−

tEZ��By re
alling that h(u) � u2/(2+2u/3) for u � 0 (we have already usedthis in the proof of Bernstein's inequality) and observing that h(u) � u2/2for u � 0, we obtain the following immediate 
orollaries: for every t > 0,P [Z � EZ+ t] � exp "− t2

2EZ+ 2t/3

#and for every 0 < t � EZ,P [Z � EZ− t] � exp "− t2

2EZ# .Proof. We apply Lemma 13. Sin
e the fun
tion ψ is 
onvex with ψ (0) =

0, for any s and any u 2 [0, 1] , ψ(−su) � uψ(−s). Thus, sin
e Z −

Zi 2 [0, 1], we have that for every s, ψ(−s (Z− Zi)) � (Z− Zi)ψ(−s) andtherefore, Lemma 13 and the 
ondition ∑n

i=1(Z− Zi) � Z implies that
sE hZesZ

i
−E hesZ

i logE hesZ
i � E 24ψ(−s)esZ

n∑

i=1

(Z− Zi)

35� ψ(−s)E hZesZ
i
.44



Introdu
e eZ = Z − E [Z] and de�ne, for any s, �F(s) = E heseZi. Then theinequality above be
omes
[s− ψ(−s)]

�F0(s)�F(s) − log �F(s) � EZψ(−s) ,whi
h, writing G(s) = log F(s), implies
(1− e−s)G0 (s) −G (s) � EZψ (−s) .Now observe that the fun
tion G0 = EZψ is a solution of the ordinarydi�erential equation (1− e−s)G0 (s)−G (s) = EZψ (−s). We want to showthat G � G0. In fa
t, if G1 = G −G0, then

(1− e−s)G01 (s) −G1 (s) � 0. (3)Hen
e, de�ning �G(s) = G1 (s) /(es − 1), we have
(1− e−s) (es − 1) �G0(s) � 0.Hen
e �G0 is non-positive and therefore �G is non-in
reasing. Now, sin
e eZ is
entered G01 (0) = 0. Using the fa
t that s(es−1)−1 tends to 1 as s goes to 0,we 
on
lude that �G(s) tends to 0 as s goes to 0. This shows that �G is non-positive on (0,∞) and non-negative over (−∞, 0), hen
e G1 is everywherenon-positive, therefore G � G0 and we have proved the �rst inequality ofthe theorem. The proof of inequalities for the tail probabilities may be
ompleted by Cherno�'s bounding:P [Z−E [Z] � t] � exp "− sup

s>0

(ts−EZψ (s))

#and P [Z−E [Z] � −t] � exp "− sup
s<0

(−ts−EZψ (s))

#
.The proof is now 
ompleted by using the easy-to-
he
k (and well-known)relations sup

s>0

[ts−EZψ (s)] = EZh (t/EZ) for t > 0sup
s<0

[−ts−EZψ(s)] = EZh(−t/EZ) for 0 < t � EZ.
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5.6 Combinatorial entropiesTheorems 2 and 16 provide 
on
entration inequalities for fun
tions havingthe self-bounding property. In Se
tion 4.2 several examples of su
h fun
-tions are dis
ussed. The purpose of this se
tion is to show a whole new
lass of self-bounding fun
tions that we 
all 
ombinatorial entropies.Example. v
 entropy. In this �rst example we 
onsider the so-
alledVapnik-Chervonenkis (or v
) entropy, a quantity 
losely related to the v
dimension dis
ussed in Se
tion 4.2. Let A be an arbitrary 
olle
tion ofsubsets of X , and let xn
1 = (x1, . . . , xn) be a ve
tor of n points of X . Re
allthat the shatter 
oe�
ient is de�ned as the size of the tra
e of A on xn

1 ,that is,
T(xn

1) = |tr(xn
1)| = |{A \ {x1, . . . , xn} : A 2 A}| .The v
 entropy is de�ned as the logarithm of the shatter 
oe�
ient, thatis,
h(xn

1) = log2T(x
n
1) .Lemma 3 The v
 entropy has the self-bounding property.Proof. We need to show that there exists a fun
tion h 0 of n− 1 variablessu
h that for all i = 1, . . . , n, writing x(i) = (x1, . . . , xi−1, xi+1, . . . , xn),

0 � h(xn
1) − h 0(x(i)) � 1 and

n∑

i=1

�
h(xn

1) − h 0(x(i))
� � h(xn

1).We de�ne h 0 the natural way, that is, as the entropy based on the n − 1points in its arguments. Then 
learly, for any i, h 0(x(i)) � h(xn
1), and thedi�eren
e 
annot be more than one. The nontrivial part of the proof isto show the se
ond property. We do this using Han's inequality (Theorem10).Consider the uniform distribution over the set tr(xn

1). This de�nes arandom ve
tor Y = (Y1, . . . , Yn) 2 Yn. Then 
learly,
h(xn

1) = log2 |tr(xn
1)(x)| =

1ln 2H(Y1, . . . , Yn)46



where H(Y1, . . . , Yn) is the (joint) entropy of Y1, . . . , Yn. Sin
e the uniformdistribution maximizes the entropy, we also have, for all i � n, that
h 0(x(i)) � 1ln 2H(Y1, . . . , Yi−1, Yi+1, . . . , Yn).Sin
e by Han's inequality

H(Y1, . . . , Yn) � 1

n − 1

n∑

i=1

H(Y1, . . . , Yi−1, Yi+1, . . . , Yn)|,we have
n∑

i=1

�
h(xn

1) − h 0(x(i))
� � h(xn

1)as desired. 2The above lemma, together with Theorems 2 and 15 immediately implythe following:Corollary 5 Let X1, . . . , Xn be independent random variables taking theirvalues in X and let Z = h(Xn
1) denote the random v
 entropy. ThenVar(Z) � E[Z], for t > 0P [Z � EZ+ t] � exp "− t2

2EZ+ 2t/3

#
,and for every 0 < t � EZ,P [Z � EZ− t] � exp "− t2

2EZ# .Moreover, for the random shatter 
oe�
ient T(Xn
1), we haveE log2 T(X

n
1) � log2ET(Xn

1) � log2eE log2T(X
n
1) .Note that the left-hand side of the last statement follows from Jensen'sinequality, while the right-hand side by taking s = ln 2 in the �rst inequalityof Theorem 16. This last statement shows that the expe
ted v
 entropyE log2 T(X

n
1) and the annealed v
 entropy are tightly 
onne
ted, regardless47



of the 
lass of sets A and the distribution of the Xi's. We note here thatthis fa
t answers, in a positive way, an open question raised by Vapnik [80,pages 53�54℄: the empiri
al risk minimization pro
edure is non-trivially
onsistent and rapidly 
onvergent if and only if the annealed entropy rate
(1/n) log2E[T(X)] 
onverges to zero. For the de�nitions and dis
ussion werefer to [80℄.The proof of 
on
entration of the v
 entropy may be generalized, in astraightforward way, to a 
lass of fun
tions we 
all 
ombinatorial entropiesde�ned as follows.Let xn

1 = (x1, . . . , xn) be an n-ve
tor of elements with xi 2 Xi to whi
hwe asso
iate a set tr(xn
1) � Yn of n-ve
tors whose 
omponents are elementsof a possibly di�erent set Y. We assume that for ea
h x 2 Xn and i � n, theset tr(x(i)) = tr(x1, . . . , xi−1, xi+1, . . . , xn) is the proje
tion of tr(xn

1) alongthe ith 
oordinate, that is,tr(x(i)) =
{
y(i) = (y1, . . . , yi−1, yi+1, . . . , yn) 2 Yn−1 :9yi 2 Y su
h that (y1, . . . , yn) 2 tr(xn

1)
}
.The asso
iated 
ombinatorial entropy is h(xn

1) = logb |tr(xn
1)| where b is anarbitrary positive number.Just like in the 
ase of v
 entropy, 
ombinatorial entropies may beshown to have the self-bounding property. (The details are left as an exer-
ise.) Then we immediately obtain the following generalization:Theorem 17 Assume that h(xn

1) = logb |tr(xn
1)| is a 
ombinatorial en-tropy su
h that for all x 2 Xn and i � n,

h(xn
1) − h(x(i)) � 1 .If Xn

1 = (X1, . . . , Xn) is a ve
tor of n independent random variablestaking values in X , then the random 
ombinatorial entropy Z = h(Xn
1)satis�es P [Z � E [Z] + t] � exp "− t2

2E[Z] + 2t/3

#
,and P [Z � E [Z] − t] � exp "− t2

2E[Z]

#
.48



Moreover,E [logb |tr(Xn
1)|] � logbE[|tr(Xn

1)|] � b− 1logbE [logb |tr(Xn
1)|] .Example. in
reasing subsequen
es. Re
all the setup of the example ofin
reasing subsequen
es of Se
tion 4.2, and let N(xn

1) denote the numberof di�erent in
reasing subsequen
es of xn
1 . Observe that log2N(xn

1) is a
ombinatorial entropy. This is easy to see by 
onsidering Y = {0, 1}, andby assigning, to ea
h in
reasing subsequen
e i1 < i2 < � � � < im of xn
1 , abinary n-ve
tor yn

1 = (y1, . . . , yn) su
h that yj = 1 if and only if j = ik forsome k = 1, . . . ,m (i.e., the indi
es appearing in the in
reasing sequen
eare marked by 1). Now the 
onditions of Theorem 17 are obviously met,and therefore Z = log2N(Xn
1) satis�es all three inequalities of Theorem 17.This result signi�
antly improves a 
on
entration inequality obtained byFrieze [34℄ for log2N(Xn

1).5.7 Variations on the themeIn this se
tion we show how the te
hniques of the entropy method forproving 
on
entration inequalities may be used in various situations not
onsidered so far. The versions di�er in the assumptions on how ∑n

i=1(Z−

Z 0i)2 is 
ontrolled by di�erent fun
tions of Z. For various other versionswith appli
ations we refer to Bou
heron, Lugosi, and Massart [15℄. Inall 
ases the upper bound is roughly of the form e−t2/σ2 where σ2 is the
orresponding Efron-Stein upper bound on Var(Z). The �rst inequality maybe regarded as a generalization of the upper tail inequality in Theorem 16.Theorem 18 Assume that there exist positive 
onstants a and b su
hthat
n∑

i=1

(Z− Z 0i)21Z>Z0
i
� aZ+ b .Then for s 2 (0, 1/a),logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b)49



and for all t > 0,P {Z > EZ+ t} � exp −t2

4aEZ+ 4b+ 2at

!
.Proof. Let s > 0. Just like in the �rst steps of the proof of Theorem 15,we use the fa
t that for x > 0, τ(−x) � x2, and therefore, by Theorem 14we have

sE hZesZ
i
−E hesZ

i logE hesZ
i � E 24esZ

n∑

i=1

(Z− Z 0i)21Z>Z0
i

35� s2
�
aE hZesZ

i
+ bE hesZ

i�
,where at the last step we used the assumption of theorem.Denoting, on
e again, F(s) = E hesZ

i, the above inequality be
omes
sF 0(s) − F(s) log F(s) � as2F 0(s) + bs2F(s) .After dividing both sides by s2F(s), on
e again we see that the left-handside is just the derivative of H(s) = s−1 log F(s), so we obtain

H 0(s) � a(log F(s)) 0 + b .Using the fa
t that lims→0H(s) = F 0(0)/F(0) = EZ and log F(0) = 0, andintegrating the inequality, we obtain
H(s) � EZ+ a log F(s) + bs ,or, if s < 1/a, logE[exp(s(Z−E[Z]))] � s2

1− as
(aEZ+ b) ,proving the �rst inequality. The inequality for the upper tail now followsby Markov's inequality and Exer
ise 17. 2There is a subtle di�eren
e between upper and lower tail bounds. Boundsfor the lower tail P {Z < EZ− t} may be easily derived, due to the as-so
iation inequality of Theorem 3, under mu
h more general 
onditionson ∑n

i=1(Z − Z 0i)21Z<Z0
i
(note the di�eren
e between this quantity and

∑n

i=1(Z− Z 0i)21Z>Z0
i
appearing in the theorem above!).50



Theorem 19 Assume that for some nonde
reasing fun
tion g,
n∑

i=1

(Z− Z 0i)21Z<Z0
i
� g(Z) .Then for all t > 0,P [Z < EZ− t] � exp −t2

4E[g(Z)]

!
.Proof. To prove lower-tail inequalities we obtain upper bounds for F(s) =E[exp(sZ)] with s < 0. By the third inequality of Theorem 14,

sE hZesZ
i
−E hesZ

i logE hesZ
i� n∑

i=1

E hesZτ(s(Z 0i − Z))1Z<Z0
i

i� n∑

i=1

E hesZs2(Z 0i − Z)21Z<Z0
i

i(using s < 0 and that τ(−x) � x2 for x > 0)
= s2E 24esZ

n∑

i=1

(Z− Z 0i)21Z<Z0
i

35� s2E hesZg(Z)
i
.Sin
e g(Z) is a nonde
reasing and esZ is a de
reasing fun
tion of Z, Cheby-shev's asso
iation inequality (Theorem 3) implies thatE hesZg(Z)
i � E hesZ

iE[g(Z)] .Thus, dividing both sides of the obtained inequality by s2F(s) and writing
H(s) = (1/s) log F(s), we obtain

H 0(s) � E[g(Z)] .integrating the inequality in the interval [s, 0) we obtain
F(s) � exp(s2E[g(Z)] + sE[Z]) .51



Markov's inequality and optimizing in s now implies the theorem. 2The next result is useful when one in interested in lower-tail bounds but
∑n

i=1(Z−Z 0i)21Z<Z0
i
is di�
ult to handle. In some 
ases ∑n

i=1(Z−Z 0i)21Z>Z0
iis easier to bound. In su
h a situation we need the additional guaranteethat |Z−Z 0i| remains bounded. Without loss of generality, we assume thatthe bound is 1.Theorem 20 Assume that there exists a nonde
reasing fun
tion g su
hthat ∑n

i=1(Z−Z 0i)21Z>Z0
i
� g(Z) and for any value of Xn

1 and Xi
0, |Z−Z 0i| �

1. Then for all K > 0, s 2 [0, 1/K)logEhexp(−s(Z−E[Z]))
i � s2τ(K)

K2
E[g(Z)] ,and for all t > 0, with t � (e− 1)E[g(Z)] we haveP [Z < EZ− t] � exp −

t2

4(e− 1)E[g(Z)]

!
.Proof. The key observation is that the fun
tion τ(x)/x2 = (ex − 1)/x isin
reasing if x > 0. Choose K > 0. Thus, for s 2 (−1/K, 0), the se
ondinequality of Theorem 14 implies that

sE hZesZ
i
−E hesZ

i logE hesZ
i � n∑

i=1

E hesZτ(−s(Z− Z(i)))1Z>Z0
i

i� s2
τ(K)

K2
E 24esZ

n∑

i=1

(Z− Z(i))21Z>Z0
i

35� s2
τ(K)

K2
E hg(Z)esZ

i
,where at the last step we used the assumption of the theorem.Just like in the proof of Theorem 19, we boundE hg(Z)esZ

i byE[g(Z)]E hesZ
i.The rest of the proof is identi
al to that of Theorem 19. Here we took K = 1.
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Exer
isesExer
ise 15 Relax the 
ondition of Theorem 15 in the following way. Showthat if E 24 n∑

i=1

(Z− Z 0i)21Z>Z0
i

����Xn
1

35 � cthen for all t > 0, P [Z > EZ+ t] � e−t2/4cand if E 24 n∑

i=1

(Z− Z 0i)21Z0
i
>Z

����Xn
1

35 � c ,then P [Z < EZ− t] � e−t2/4c .Exer
ise 16 m
diarmid's bounded differen
es inequality. Provethat under the 
onditions of Corollary 4, the following improvement holds:P [|Z−EZ| > t] � 2e−2t2/C(M
Diarmid [59℄). Hint: Write Z as a sum of martingale di�eren
es as inthe proof of Theorem 7. Use Cherno�'s bounding and pro
eed as in theproof of Hoe�ding's inequality, noting that the argument works for sumsof martingale di�eren
es.Exer
ise 17 Let C and a denote two positive real numbers and denote
h1(x) = 1+ x−

p
1+ 2x. Show thatsup

λ2[0,1/a)

 
λt−

Cλ2

1− aλ

!
=
2C

a2
h1

�
at

2C

� � t2

2
�
2C + at

�and that the supremum is attained at
λ =

1

a

 
1−

�
1+

at

C

�−1/2
!
.Also, sup

λ2[0,∞)

 
λt−

Cλ2

1+ aλ

!
=
2C

a2
h1

�
−at

2C

� � t2

4C53



if t < C/a and the supremum is attained at
λ =

1

a

 �
1−

at

C

�−1/2

− 1

!
.Exer
ise 18 Assume that h(xn

1) = logb|tr(x)| is a 
ombinatorial entropysu
h that for all x 2 Xn and i � n,
h(xn

1) − h(x(i)) � 1Show that h has the self-bounding property.Exer
ise 19 Assume that Z = g(Xn
1) = g(X1, . . . , Xn) where X1, . . . , Xn areindependent real-valued random variables and g is a nonde
reasing fun
tionof ea
h variable. Suppose that there exists another nonde
reasing fun
tion

f : Rn → R su
h that
n∑

i=1

(Z− Z 0i)21Z<Z0
i
� f(Xn

1) .Show that for all t > 0,P[Z < EZ− t] � e−t2/(4Ef(Xn
1

))
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6 Con
entration of measureIn this se
tion we address the �isoperimetri
� approa
h to 
on
entration in-equalities, promoted and developed, in large part, by Talagrand [76, 77, 78℄.First we give an equivalent formulation of the bounded di�eren
es inequal-ity (Corollary 4) whi
h shows that any not too small set in a produ
t prob-ability spa
e has the property that the probability of those points whoseHamming distan
e from the set is mu
h larger than pn is exponentiallysmall. Then, using the full power of Theorem 15, we provide a signi�
antimprovement of this 
on
entration-of-measure result, known as Talagrand's
onvex distan
e inequality.6.1 Bounded di�eren
es inequality revisitedConsider independent random variables X1, . . . , Xn taking their values ina (measurable) set X and denote the ve
tor of these variables by Xn
1 =

(X1, . . . , Xn) taking its value in Xn.Let A � Xn be an arbitrary (measurable) set and write P[A] = P[Xn
1 2

A]. The Hamming distan
e d(xn
1 , y

n
1) between the ve
tors xn

1 , y
n
1 2 Xn isde�ned as the number of 
oordinates in whi
h xn

1 and yn
1 di�er. Introdu
e

d(xn
1 , A) = min

yn
1
2A
d(xn

1 , y
n
1),the Hamming distan
e between the set A and the point xn

1 . The basi
result is the following:Theorem 21 For any t > 0,P "d(Xn
1 , A) � t+

s
n

2
log 1P[A]

# � e−2t2/n .Observe that on the right-hand side we have the measure of the 
om-plement of the t-blowup of the set A, that is, the measure of the set ofpoints whose Hamming distan
e from A is at least t. If we 
onsider a set,say, with P[A] = 1/106, we see something very surprising: the measureof the set of points whose Hamming distan
e to A is more than 10pn is55



smaller than e−108! In other words, produ
t measures are 
on
entrated onextremely small sets�hen
e the name �
on
entration of measure�.Proof. Observe that the fun
tion g(xn
1) = d(xn

1 , A) 
annot 
hange by morethan 1 by altering one 
omponent of xn
1 , that is, it has the bounded di�er-en
es property with 
onstants c1 = � � � = cn = 1. Thus, by the boundeddi�eren
es inequality (Theorem 4 with the optimal 
onstants given in Ex-er
ise 16), P[Ed(Xn

1 , A) − d(Xn
1 , A) � t] � e−2t2/n.But by taking t = Ed(Xn

1 , A), the left-hand side be
omes P[d(Xn
1 , A) �

0] = P[A], so the above inequality impliesE[d(Xn
1 , A)] � s

n

2
log 1P[A]

.Then, by using the bounded di�eren
es inequality again, we obtainP "d(Xn
1 , A) � t+

s
n

2
log 1P{A}

# � e−2t2/nas desired. 2Observe that the bounded di�eren
es inequality may also be derivedfrom the above theorem. Indeed, if we 
onsider a fun
tion g on Xn havingthe bounded di�eren
es property with 
onstants ci = 1 (for simpli
ity),then we may let A = {xn
1 2 Xn : g(xn

1) � M[Z]}, where M[Z] denotes amedian of the random variable Z = g(X1, . . . , Xn). Then 
learly P[A] �
1/2, so the above theorem impliesP[Z−MZ � t+

s
n

2
log 2] � e−2t2/n .This has the same form as the bounded di�eren
es inequality ex
ept thatthe expe
ted value of Z is repla
ed by its median. This di�eren
e is usuallynegligible, sin
e

|EZ−MZ| � E|Z−MZ| =

∫∞

0

P[|Z−MZ| � t]dt,so whenever the deviation of Z from its mean is small, its expe
ted valuemust be 
lose to its median (see Exer
ise 19).56



6.2 Convex distan
e inequalityIn a remarkable series of papers (see [78℄,[76℄,[77℄), Talagrand developed anindu
tion method to prove powerful 
on
entration results in many 
aseswhen the bounded di�eren
es inequality fails. Perhaps the most widelyused of these is the so-
alled �
onvex-distan
e inequality�, see also Steele[75℄, M
Diarmid [60℄ for surveys with several interesting appli
ations. Herewe use Theorem 15 to derive a version of the 
onvex distan
e inequality.For several extensions and variations we refer to Talagrand [78℄,[76℄,[77℄.To understand Talagrand's inequality, we borrow a simple argumentfrom [60℄. First observe that Theorem 21 may be easily generalized byallowing the distan
e of the point Xn
1 from the set A to be measured by aweighted Hamming distan
e

dα(xn
1 , A) = inf

yn
1
2A
dα(xn

1 , y
n
1) = inf

yn
1
2A

∑

i:xi 6=yi

|αi|where α = (α1, . . . , αn) is a ve
tor of nonnegative numbers. Repeating theargument of the proof of Theorem 21, we obtain, for all α,P 24dα(Xn
1 , A) � t+

vuutkαk2

2
log 1P[A]

35 � e−2t2/kαk2

,where kαk =
q∑n

i=1α
2
i denotes the eu
lidean norm of α. Thus, for exam-ple, for all ve
tors α with unit norm kαk = 1,P "dα(Xn

1 , A) � t+

s
1

2
log 1P[A]

# � e−2t2

.Thus, denoting u =
q

1
2
log 1P[A]

, for any t � u,P [dα(Xn
1 , A) � t] � e−2(t−u)2

.On the one hand, if t � q
−2 logP[A], then P[A] � e−t2/2. On the otherhand, sin
e (t−u)2 � t2/4 for t � 2u, for any t � q

2 log 1P[A]
the inequalityabove implies P [dα(Xn

1 , A) � t] � e−t2/2 . Thus, for all t > 0, we havesup
α:kαk=1

P[A]�P [dα(Xn
1 , A) � t] � sup

α:kαk=1

min (P[A],P [dα(Xn
1 , A) � t]) � e−t2/2 .57



The main message of Talagrand's inequality is that the above inequalityremains true even if the supremum is taken within the probability. Tomake this statement pre
ise, introdu
e, for any xn
1 = (x1, . . . , xn) 2 Xn, the
onvex distan
e of xn

1 from the set A by
dT(xn

1 , A) = sup
α2[0,∞)n :kαk=1

dα(xn
1 , A) .The next result is a prototypi
al result from Talagrand's important paper[76℄. For an even stronger 
on
entration-of-measure result we refer to [77℄.Theorem 22 
onvex distan
e inequality. For any subset A � Xnwith P[Xn

1 2 A] � 1/2 and t > 0,min (P[A],P [dT(X
n
1 , A) � t]) � e−t2/4 .Even though at the �rst sight it is not obvious how Talagrand's result
an be used to prove 
on
entration for general fun
tions g of Xn

1 , appar-ently with relatively little work, the theorem may be 
onverted into veryuseful inequalities. Talagrand [76℄, Steele [75℄, and M
Diarmid [60℄ surveya large variety of appli
ations. Instead of reprodu
ing Talagrand's originalproof here we show how Theorem 15 and 20 imply the 
onvex distan
e in-equality. (This proof gives a slightly worse exponent than the one obtainedby Talagrand's method stated above.)Proof. De�ne the random variable Z = dT(X
n
1 , A). First we observe that

dT(xn
1 , A) 
an be represented as a saddle point. Let M(A) denote the setof probability measure on A. Then

dT(xn
1 , A) = sup

α:kαk�1

inf
ν2M(A)

∑

j

αjEν[1xj 6=Yj
](where Yn

1 is distributed a

ording to ν)
= inf

ν2M(A)
sup

α:kαk�1

∑

j

αjEν[1xj 6=Yj
]where the saddle point is a
hieved. This follows from Sion's minmax The-orem [72℄ whi
h states that if f(x, y) denotes a fun
tion from X � Y to Rthat is 
onvex and lower-semi-
ontinuous with respe
t to x, 
on
ave and58



upper-semi-
ontinuous with respe
t to y, where X is 
onvex and 
ompa
t,then inf
x
sup

y
f(x, y) = sup

y
inf
x
f(x, y) .(We omit the details of 
he
king the 
onditions of Sion's theorem, see [15℄.)Let now (bν, bα) be a saddle point for xn

1 . We have
Z 0i = inf

ν2M(A)
sup

α

∑

j

αjEν[1
x

(i)

j
6=Yj

] � inf
ν2M(A)

∑

j

bαjEν[1x
(i)

j
6=Yj

]where x(i)
j = xj if j 6= i and x(i)

i = x 0i. Let �ν denote the distribution on Athat a
hieves the in�mum in the latter expression. Now we have
Z = inf

ν

∑

j

bαjEν[1xj 6=Yj
] � ∑

j

bαjE�ν[1xj 6=Yj
] .Hen
e we get

Z− Z 0i � ∑

j

bαjE�ν[1xj 6=Yj
− 1

x
(i)

j
6=Yj

] = bαiE�ν[1xi 6=Yi
− 1

x
(i)

i
6=Yi

] � bαi .Therefore ∑n

i=1(Z − Z 0i)21Z>Z0
i
� ∑

i
bα2

i = 1. Thus by Theorem 15 (morepre
isely, by its generalization in Exer
ise 15), for any t > 0,P [dT(X
n
1 , A) −EdT(X

n
1 , A) � t] � e−t2/4.Similarly, by Theorem 20 we getP [dT(Xn

1 , A) −EdT(Xn
1 , A) � −t] � e−t2/(4(e−1))whi
h, by taking t = EdT(Xn

1 , A), impliesEdT(X
n
1 , A) � s

4(e− 1) log 1P[A]
.P "dT(Xn

1 , A) −

s
4(e− 1) log 1P[A]

� t# � e−t2/4 .
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Now if 0 < u � q
−4 logP[A] then P[A] � e−u2/4. On the other hand, if

u � q
−4 logP[A] thenP [dT(Xn

1 , A) > u] � P 24dT(Xn
1 , A) −

s
4(e− 1) log 1P[A]

> u− u

s
e− 1

e

35� exp



−
u2
�
1−

q
(e− 1)/e

�2

4




where the se
ond inequality follows from the upper-tail inequality above.In 
on
lusion, for all u > 0, we havemin (P[A],P [dT(Xn
1 , A) � u]) � exp




−
u2
�
1−

q
(e− 1)/e

�2

4




whi
h 
on
ludes the proof of the 
onvex distan
e inequality (with a worse
onstant in the exponent). 26.3 ExamplesIn what follows we des
ribe an appli
ation of the 
onvex distan
e inequalityfor the bin pa
king dis
ussed in Se
tion 4.1, appearing in Talagrand [76℄.Let g(xn
1) denote the minimum number of bins of size 1 into whi
h thenumbers x1, . . . , xn 2 [0, 1] 
an be pa
ked. We 
onsider the random variable

Z = g(Xn
1) where X1, . . . , Xn are independent, taking values in [0, 1].Corollary 6 Denote Σ =

qE∑n

i=1X
2
i . Then for ea
h t > 0,P[|Z−MZ| � t+ 1] � 8e−t2/(16(2Σ2+t)) .Proof. First observe (and this is the only spe
i�
 property of g we use inthe proof!) that for any xn

1 , y
n
1 2 [0, 1]n,

g(xn
1) � g(yn

1) + 2
∑

i:xi 6=yi

xi + 1 .60



To see this it su�
es to show that the xi for whi
h xi 6= yi 
an be pa
kedinto at most j2∑
i:xi 6=yi

xi

k
+ 1 bins. For this it enough to �nd a pa
kingsu
h that at most one bin is less than half full. But su
h a pa
king mustexist be
ause we 
an always pa
k the 
ontents of two half-empty bins intoone.Denoting by α = α(xn

1) 2 [0,∞)n the unit ve
tor xn
1/kxn

1k, we 
learlyhave ∑

i:xi 6=yi

xi = kxn
1k ∑

i:xi 6=yi

αi = kxn
1kdα(xn

1 , y
n
1) .Let a be a positive number and de�ne the set Aa = {yn

1 : g(yn
1) � a}. Then,by the argument above and by the de�nition of the 
onvex distan
e, forea
h xn

1 2 [0, 1]n there exists yn
1 2 Aa su
h that

g(xn
1) � g(yn

1) + 2
∑

i:xi 6=yi

xi + 1 � a+ 2kxn
1kdT(xn

1 , Aa) + 1from whi
h we 
on
lude that for ea
h a > 0, Z � a+2kXn
1kdT(Xn

1 , Aa)+1.Thus, writing Σ =
qE∑n

i=1X
2
i for any t � 0,P[Z � a+ 1+ t]� P "Z � a+ 1+ t
2kXn

1k
2
p
2Σ2 + t

#
+P �kXn

1k � q
2Σ2 + t

�� P "dT(Xn
1 , Aa) � t

2
p
2Σ2 + t

#
+ e−(3/8)(Σ2+t)where the bound on the se
ond term follows by a simple appli
ation ofBernstein's inequality, see Exer
ise 20.To obtain the desired inequality, we use the obtained bound with twodi�erent 
hoi
es of a. To derive a bound for the upper tail of Z, we take

a =MZ. Then P[Aa] � 1/2 and the 
onvex distan
e inequality yieldsP[Z �MZ+ 1+ t] � 2 �e−t2/(16(2Σ2+t)) + e−(3/8)(Σ2+t)
� � 4e−t2/(16(2Σ2+t)) .We obtain a similar inequality in the same way for P[Z � MZ− 1 − t] bytaking a =MZ− t− 1. 261



Exer
isesExer
ise 20 Let X be a random variable with medianMX su
h that thereexist positive 
onstants a and b su
h that for all t > 0,P[|X−MX| > t] � ae−t2/b .Show that |MX −EX| � apbπ/2.Exer
ise 21 Let X1, . . . , Xn be independent random variables taking val-ues is [0, 1]. Show thatP 264vuuut n∑

i=1

X2
i � vuuut2E n∑

i=1

X2
i + t

375 � e−(3/8)(E∑n
i=1 X2

i
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