
Spectral Graph Theory Lecture 7

Cheeger’s Inequality

Daniel A. Spielman September 23, 2009

7.1 Overview

Today, we will prove Cheeger’s Inequality. I consider it to be the most important theorem in
spectral graph theory. Cheeger’s inequality has many variants, all of which tell us in some way that
when λ2 of a graph is small, the graph has a cut of small conductance (or ratio or sparsity).

Recall that in Lecture 5 we proved:

Theorem 7.1.1. Let G = (V,E) be a graph and let LG be its Laplacian matrix. Let S ⊂ V and
set σ = |S| / |V |. Then,

|∂(S)| ≥ λ2 |S| (1− σ).

Cheeger’s inequality will provide a converse to this theorem.

7.2 Warning

I’m pretty sure that I’ve missed a factor of 4 in one of the bounds in this lecture.

7.3 Conductance

Different versions of Cheeger’s inequality are related to different measures of the quality of a cut. In
Theorem 7.1.1, we were concerned with the number of edges cut divided by the number of vertices
removed. The sharpest versions of Cheeger’s inequality hold when edges are treated as the most
important objects, rather than vertices. That is, we weight vertices by their degrees. In this case,
we will be interested in two measures of the quality of a cut, its conductance and its sparsity. These
are closely related, and their names are often interchanged. For this course, I use the convention
that the conductance of a set of vertices S is given by

φ(S) def= d(V )
|∂(S)|

d(S)d(S̄),

where I define
d(S) =

∑
i∈S

d(i),
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and d(i) is the degree of vertex i. The constant d(V ) out front just helps us normalize this
quantity. Note that when all vertices have the same degree, the conductance differs from the
quantity measured in Theorem 7.1.1 by precisely a factor of d.

For this class, we will define the sparsity of a set S to be

sp(S) def=
|∂(S)|

min
(
d(S), d(S̄)

)
.

As one of d(S) or d(S̄) is always at least half of d(V ), we have

φ(S) ≥ sp(S) ≥ φ(S)/2,

so these two quantities will never differ by more than a factor of 2.

The conductance of a graph is defined to be the minimum of conductance of a cut, and similarly
for the sparsity:

φG
def= min

S
φ(S)

spG
def= min

S
sp(S).

7.4 The Normalized Laplacian

The conductance of a graph is best approximated by the eigenvalues of the Normalized Laplacian
matrix of the graph. We define the Normalized Laplacian by

NG = D
−1/2
G LGD

−1/2
G = I −MG = I −D−1/2

G AGD
−1/2,

where MG is the normalized adjacency matrix we saw on the homework. We will always denote
the eigenvalues of NG by ν1, . . . , νn, where for a connected graph G we have

0 = ν1 < ν2 ≤ · · · ≤ νn.

Recall from the problem set that the eigenvector of ν1 is d1/2, where this is the vector whose ith
entry is the square root of d(i).

We first establish an analog of Theorem 7.1.1.

Theorem 7.4.1.
φG ≥ ν2/2.

We will prove this by constructing an optimization problem whose answer is φG, and then proving
that ν2 is the solution to a relaxation of this problem. First, note that for every S,

d(S)d(S̄) =

(∑
i∈S

d(i)

)∑
j 6∈S

d(j)

 =
∑

i∈S,j 6∈S
d(i)d(j).
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To create an optimization problem, we consider characteristic vectors of sets instead of sets them-
selves. As

|∂(S)| = χTSLχS ,

and
d(S)d(S̄) =

∑
χS(i)>χS(j)

d(i)d(j)(χS(i)− χS(j))2 =
∑
i<j

d(i)d(j)(χS(i)− χS(j))2,

we have

φ(S) = d(V )
χTSLχS∑

i<j d(i)d(j)(χS(i)− χS(j))2
.

If we let y be a vector of {0, 1} valued variables, then we have

φG = min
S
φ(S) = min

y∈{0,1}n
d(V )

yTLy∑
i<j d(i)d(j)(y(i)− y(j))2

.

Of course, we only consider the minimum over y for which the denominator is non-zero.

One of the most useful ideas in optimization is that of relaxation. It means that one takes a problem
like the above, and removes some constraints. In this case, we remove the constraint that the values
of y lie in {0, 1}. As we are minimizing, and we are removing a constraint, the minimum can only
become lower. Thus,

φG ≥ min
y∈IRn

d(V )
yTLy∑

i<j d(i)d(j)(y(i)− y(j))2
.

Theorem 7.4.1 may now be seen to be a consequence of the following characterization of ν2.

Theorem 7.4.2.

ν2 = min
y∈IRn

2d(V )
yTLyS∑

i<j d(i)d(j)(y(i)− y(j))2
.

Proof. Since d1/2 is an eigenvector of eigenvalue 0 of NG, the Courant-Fischer Theorem tells us
that

ν2 = min
x⊥d1/2

xTNGx

xTx
= min

x⊥d1/2

xTD
−1/2
G LGD

−1/2
G x

xTx
.

Now, set y = D
−1/2
G x . We obtain

xTD
−1/2
G LGD

−1/2
G x

xTx
=

yTLGy

yTDGy
.

As x (i) = d(i)1/2y(i), the condition x ⊥ d1/2 becomes y ⊥ d . So,

ν2 = min
y⊥d

yTLGy

yTDGy
.

The denominator of this expression is
∑

i d(i)y(i)2. I claim that, when y ⊥ d

2d(V )
∑
i

d(i)y(i)2 =
∑
i,j

d(i)d(j)(y(i)− y(j))2.
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To prove this, compute∑
i,j

d(i)d(j)(y(i)− y(j))2 =
∑
i,j

d(i)d(j)(y(i)2 + y(j)2)− 2
∑
i,j

d(i)d(j)y(i)y(j)

= 2
∑
i,j

d(i)d(j)y(i)2 − 2

(∑
i

d(i)y(i)

)∑
j

d(j)y(j)


= 2

∑
j

d(j)

∑
i

d(i)y(i)2.

We have shown

ν2 = min
y⊥d

2d(V )
yTLGy∑

i,j d(i)d(j)(y(i)− y(j))2.
(7.1)

To finish the proof, note that for every vector y , there is a c for which y − c1 is orthogonal to d .
However, the addition of a constant c to every entry of y does not change the value of (7.1). So,

ν2 = min
y∈IRn

2d(V )
yTLGy∑

i,j d(i)d(j)(y(i)− y(j))2.

7.5 Cheeger’s Inequality

Theorem 7.4.1 is the easy part. Cheeger’s inequality provides the following converse

ν2 ≥ φ2
G/8.

Moreover, an examination of most proofs of Cheeger’s inequalities reveal that a cut S for which

ν2 ≥ φG(S)2/8

may be found by an examination of v2. In fact, we can find such a set S of the form

S =
{
d−1/2(i)v2(i) ≥ t

}
for some t.

We will prove a strengthening of this inequality due to Mihail, which allows us to use any vector
of small Rayleigh quotient instead of v2.

Theorem 7.5.1. Let x be a vector orthogonal to d1/2. There exists a t for which the set of vertices

S =
{
i : d−1/2(i)x (i) ≥ t

}
satisfies

xTNGx

xTx
≥ φ(S)2/8.
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Our proof of this theorem will use the following three inequalities.

Lemma 7.5.2 (Dan’s Favorite Inequality). Let A,B,C and D be non-negative. Then

A+B

C +D
≥ min

(
A

C
,
B

D

)
.

Proof.

A+B = C
A

C
+D

B

D
≥ (C +D) min

(
A

C
,
B

D

)
.

Lemma 7.5.3 (Square of difference). For all 0 < φ < 1,

(a− b)2 ≥ φa2 − φ

1− φ
b2.

Proof. Using 1 + φ/(1− φ) = 1/(1− φ), we compute

(a− b)2 −
(
φa2 − φ

1− φ
b2
)

= (1− φ) a2 − 2ab+
(

1
1− φ

)
b2

=
(√

1− φa− 1√
1− φ

b

)2

≥ 0.

Lemma 7.5.4 (Inequality 3). Let z1, . . . , zk be real numbers such that

z1 ≥ z2 ≥ · · · ≥ zk ≥ 0.

If the real numbers a1, . . . , ak and b1, . . . , bk satisfy

k∑
i=1

aizi ≥
k∑
i=1

bizi,

then there exists a j for which
j∑
i=1

ai ≥
j∑
i=1

bi.

Proof. Assume, by way of contradiction that(
j∑
i=1

ai

)
<

(
j∑
i=1

bi

)
(7.2)

for all j. Define zk+1 = 0, so that we can write

zi = (zi − zi+1) + (zi+1 − zi+1) + · · ·+ (zk − zk+1),
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From (7.2) and the fact that each (zi − zi+1) is non-negative, we compute

k∑
i=1

aizi =
k∑
j=1

(zj − zj+1)

(
j∑
i=1

ai

)
<

k∑
j=1

(zj − zj+1)

(
j∑
i=1

bi

)
=

k∑
i=1

zibi,

contradicting the hypothesis of the lemma.

Proof of Theorem 7.5.1. Let x be any vector orthogonal to d1/2, and set

ν =
xTNGx

xTx
.

As before, set
y = D−1/2x ,

and recall this transformation ensures
yTd = 0.

Let c be a number such that∑
i:y(i)>c

d(i) ≤ d(V )/2 and

∑
i:y(i)<c

d(i) ≤ d(V )/2.

That is, c is d -weighted median of y . Let z be the vector y − c1, so that∑
i:z (i)>0

d(i) ≤ d(V )/2 and

∑
i:z (i)<0

d(i) ≤ d(V )/2.

One may easily show
z TDz ≥ yTDy ,

by taking a derivative of the expression for z with respect to c. We now have

ν =
xTNx

xTx
=

yTLy

yTDy
≥ z TLz

z TDz
.

Define vectors z+ and z− that capture the positive and negative parts of z ,

z+(i) =

{
z (i) if z (i) ≥ 0
0 otherwise,

and

z−(i) =

{
z (i) if z (i) ≤ 0
0 otherwise.



Lecture 7: September 23, 2009 7-7

We have
z TDz = z T+Dz+ + z T−Dz−.

On the other hand, we can show

z TLz ≥ z T+Lz+ + z T−Lz−.

To see this, note that if z (i) and z (j) have the same sign

(z (i)− z (j))2 = (z+(i)− z+(j))2 + (z−(i)− z−(j))2,

whereas when they have opposite signs,

(z (i)− z (j))2 = z (i)2 + z (j)2 − 2z (i)z (j) ≥ z (i)2 + z (j)2 = (z+(i)− z+(j))2 + (z−(i)− z−(j))2.

So,

ν ≥ z TLz

z TDz
≥

z T+Lz+ + z T−Lz−

z T+Dz+ + z T−Dz−
≥ z Ts Lz s

z TsDz s
,

for one of s ∈ {+,−}, by my favorite inequality. Let’s assume without loss of generality that it
holds for s = +. Also without loss of generality, assume that

z (1) ≥ z (2) ≥ · · · ≥ z (k) ≥ 0

are exactly the positive elements of z . For ease of notation, we will replace all the vertices with
non-postive values in z by a vertex k + 1, set z (k + 1) = 0, and let E+ be the set of edges

{(i, j) ∈ E : i, j ≤ k} ∪ {(i, k + 1) : (i, j) ∈ E, i ≤ k < j} .

So,
z T+Lz+ =

∑
(i,j)∈E+

(z (i)− z (j))2.

We will prove the theorem by showing that for one of the sets

Sj
def= {i : i ≤ j} ,

z T+Lz+

z T+Dz+
≥ sp(Sj)2/2.

To this end, set
σ = min

j
sp(Sj).

By our choice of c above, d(Sj) ≤ d(V )/2, so

sp(Sj) =
|∂(Sj)|
d(Sj)

≥ σ.

For each 1 ≤ i ≤ k, set
ai =

∣∣{(i, j) ∈ E+
}

: j > i
∣∣ ,
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and
bi =

∣∣{(i, j) ∈ E+
}

: j < i
∣∣ .

We have d(i) = ai + bi,

|∂(Sj)| =
j∑
i=1

(ai − bi),

and
j∑
i=1

bi =
d(Sj)− |∂(Sj)|

2
.

By assumption,
j∑
i=1

(ai − bi) ≥ σ
j∑
i=1

d(i).

We now compute

z T+Lz+ =
∑

i<j:(i,j)∈E

(z (i)− z (j))2

≥ σz (i)2 − σ

1− σ
z (j)2 by Lemma 7.5.3

=
k∑
i=1

(
aiσ − bi

σ

1− σ

)
z (i)2.

So,

ν
k∑
i=1

d(i)z (i)2 ≥
k∑
i=1

(
aiσ − bi

σ

1− σ

)
z (i)2.

Thus, Lemma 7.5.4 tells us that there is some j for which

νd(Sj) = ν

j∑
i=1

d(i) ≥
j∑
i=1

(
aiσ − bi

σ

1− σ

)

= σ

j∑
i=1

(ai − bi)−
σ2

1− σ

j∑
i=1

bi

= σ |∂(Si)| −
σ2

1− σ
1− σ

2
d(Si)

=
σ2

2
d(Si).

Thus, we may conclude

ν ≥ σ2

2
.

As we chose σ to be the minimum of σ(Sj), this tells us that there is a j for which

ν ≥ σ(Sj)2

2
≥ 1

8
φ(Sj)2.
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7.6 History

Cheeger [?] originally proved his inequality for manifolds. The extensions to graphs, in various
forms, were proved by [?]. I belive that these notes contain the first proof of Mihail’s version of
Cheeger’s theorem for the normalized Laplacian, although it should have been written somewhere
before.


