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) |_Behavioral graphs

Web graphs Research trends
Host graphs O Empirical analysis:
Social networks examining properties of

real-world graphs

O Modeling: finding good
models for behavioral
graphs

Collaboration networks
Sensor networks
Biological networks

O O O O O O O

There has been a
tendency to lump
together behavioral

. | ial raphs arising from a
flicke~ Q). graphs arising

variety of contexts
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) | Properties of behavioral graphs

O Heavy-tail degree distributions, eg, power law p(x) o< x©
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| Other structural properties

O Clustering
High clustering coefficient
O Communities and dense
subgraphs

Abundance; locally dense,
globally sparse

O Connectivity

Exhibit a “bow-tie” structure;
low diameter; small-world
properties
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) |_A remarkable empirical fact

« Snapshots of the web graph 185 Vipages, 300 ks rom ok

R Average reference chain Bits/node Bits/link

can be losslessly compressed | |w=i|w=s|w=r|wi|w=s|w=7|w=1|w-: HEES

oo | 171.45 | 198.68 | 19598 | 4422 | 3828 | 35.81 2.75 2.38
H I h 3 b H d 3 1.04 1.41 170 | 6231 | 5237 | 4830 3.87 3.25
usin g ess t an Its p ere ge 1 0.36 0.55 064 | 81.24 | 6296 | 55.69 5.05 3.91
Tranpose
. . oo | 1850 | 2534 | 2661 ] 3623 3348 | 31.88 225 2.08
BOIdl, Vlgna WWW 2004 3 0.69 1.01 123 | 37.68 | 3509 | 33.81 234 2.18
0.27 0.43 051 | 39.83 | 3697 | 35.69 2.47 2.30

. . 118 Mpages, 1 Glinks from WebBase

I d ~2 b g R Average reference chain Bits/node Bits/link
¢ mprove to Its USIn W=1|W=3|W=7|W=1|W=3|W=7|W=1|W=3 g,
oo 85.27 | 118.56 | 119.65 30.99 27.79 26.57 3.59 3.22

another data mining_inspired ? 079 | 110| 132 3846 | 3386 | 3229 | 446 | 3.92

0.28 0.43 0.51 46.63 38.80 36.02 5.40 4.49

Tranpose

com prESSion tECh niq ue oo | 2749 | 3069 [ 3160 | 2786 | 2597 [ 2496 [ 323 [ 301
3| 076 1.09| 131] 2920| 2740 | 2675 | 338 | 3.7
1| 020] o046| 054| 3109 29000 2835| 360 | 336

Buehrer, Chellapilla WSDM 2008

« Subsequent improvements

Boldi, Santini, Vigna WAW 2009
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| Why study compressibility?

O Efficient storage

Serve adjacency queries in-memory — enables efficient
algorithms

Archival purposes — store multiple snapshots efficiently
O Obtain new insights

Compression captures global network structure

Study the randomness in behavioral graphs

Validate existing graph models
o Algorithmic considerations

Possibility of working directly on compressed
representations
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| Adjacency list representation

O Each row corresponds to a node u in the graph

O Entries in a row are sorted integers, representing
the neighborhood of u, ie, edges (u, v)

1:1, 2,4, 8, 16, 32,64

2:1,4,9, 16, 25, 36,49, 64
3:1,2,3,5,8, 13, 21, 34, 55, 89, 144
4:1, 4,8, 16, 25, 36, 49, 64

O Can answer adjacency queries fast

O Expensive to store
Though, better than storing a list of edges

Berkeley
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| Neighborhood similarity

O Similar neighborhoods: Neighborhood of a web
page can be expressed in terms of other web pages
with similar neighborhoods 11248163 64

Rows in adjacency table have similar entries %;%E%}:}:}}}ss’lﬂ
Possible to choose a leader row

O Locality: Most edges are intra-host and hence local
Small integers can represent edge destination wrt source

O Gap encoding: Instead of storing destination of each
edge, store the difference from the previous entry
in the same row

Distribution of gap values: Optimal codes

’

’
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) |_The Boldi-Vigna scheme

Boldi-Vigha get down to an average of ~3 bits/
URL-URL edge, for an 118M node web graph

O How does it work?
o Why does it work?
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| Main ideas of Boldi-Vigna

Canonical ordering: Sort URLs alphabetically, treating them as
strings

17: www.berkeley.edu/alchemy

18: www.berkeley.edu/biology

19: www.berkeley.edu/biology/plant

20: www.berkeley.edu/biology/plant/copyright
21: www.berkeley.edu/biology/plant/people
22: www.berkeley.edu/chemistry

This gives an identifier for each URL

Source and destination of edges are likely to get nearby IDs

Templated webpages
Many edges are intra-host or intra-site

Berkeley
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) |_Main ideas (contd)

O Due to templates, the adjacency list of a node is similar
to one of the 7 preceding URLs in the alphabetic
ordering

O Express adjacency list in terms of one of these

O Eg, consider these adjacency lists
1:1, 2,4, 8, 16, 32, 64
2:1,4,9, 16, 25, 36, 49, 64
3:1,2,3,5, 8, 13, 21, 34, 55, 89, 144
4:1,4,8, 16, 25, 36,49, 64 <«

S

Encode as (-2), remove 9, add 8

Berkeley
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) |_Gap encodings

O Given a sorted list of integers x, v, z, ..., represent
them by x, y-x, z-y, ...
O Compress each integer using a code

v code: x is represented by concatenation of unary
representation of |Ig x| (length of x in bits) followed by
binary representation of x — 2 l'sx]

Number of bits =1 + 2 |Ig x|

d code: ...
Information theoretic bound: 1 + | Ig x| bits

C code: Works well for integers from a power law

Berkeley 12
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| BV compression algorithm

Each node has a unique ID from the
canonical ordering

Let w = copying window parameter
To encode a node v

O Check if out-neighbors of v are
similar to any of w-1 previous
nodes in the ordering

O If yes, let u be the leader: use lgw
bits to encode the gap from v to u
+ difference between out-
neighbors of uand v

O If no, write Ig w zeros and encode
out-neighbors of v explicitly

Use gap encoding on top of this

Berkeley
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) |_Main advantages of BV

O Depends only on locality in a canonical ordering
Alphabetic ordering works well for web graph

O Adjacency queries can be answered very efficiently

To fetch out-neighbors, trace back the chain of leaders
until a list whose encoding beings with Ig w zeros is
obtained (no-leader case)

This chain is typically short in practice (since similarity is
mostly intra-host)

Can also explicitly limit the length of the chain during
encoding

O Easy to implement and a one-pass algorithm

Berkeley 14
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| Practice vs Theory

Why does Boldi-Vigna compression work?

O Similarity: Many nodes have similar neighborhoods
O Locality: Most edges are local

Graph models and compression

O Are graphs generated by existing models
compressible?

O Can we formulate a model with locality?
Social networks and compression

O Are social networks as compressible as the Web?

Berkeley 15
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‘ Preferential attachment model

Observation: Rich-get-richer
Popular papers are cited more
Popular people are befriended more

Each step has one new incoming node along with an edge

Probability this new node links to a pre-existing node is
proportional to how popular is the latter, ie, its degree

Pr[new node links to node il =d;/ } d,
Theorem. Degree distribution is a power law with exponent 3
Intuitive proof. ad. / ot = d. / (2t)
If node i was added at time t,, then d.(t) = (t/t,)°>
Pr[d.(t) > k] = Pr[t, < t/k?] = 1/k?

Berkeley
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) |_Other “non-local” models

o Copying model

Observation: People copy their friend’s webpage when creating a
new one or copy their friend’s contacts when joining a social
network

When a new node arrives, it copies edges from a pre-existing node

with probability 1 - o

The degree distribution is a power-law with exponent
(2-0)/(1-0a)

Can explain communities: The number of dense bipartite cliques in

this model is large

O Forest-fire model
An iterated version of the copying model

In addition to the above, leads to densification and shrinking
diameters

Berkeley
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|_Incompressibility

Theorem. The following generative models all require C2(log n)
bits per edge on average, even if the node labels are
removed

the preferential attachment model

the copying model

the evolutionary ACL model
multiplication model

Model for navigability in social networks

O We remove labels since BV compresses unlabeled Web
graphs to O(1) bits per edge
O Min-entropy argument: Find a subset of graphs

not too large: to avoid graphs that are “easy”

not too small: should still contain interesting graphs about which we

can show incompressibility
Berkeley 18
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| A new graph model

O Begin with a seed graph of nodes with out-degree k,
arranged in a cycle

O Additional nodes arrive in sequence

O An arriving node is inserted before a random node
in the cycle (leader)
It links to k-1 out-neighbors of its leader
It links to the leader

Berkeley
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| An example, k=2




) |_Locality in the new model

O If a web designer wants to add a new web page to
her web site
likely to take some existing web page on her website

modify it as needed (perturbing the set of its outlinks) to
obtain the new page

adding a reference to the old web page
and publish the new web page on her website

O Since web pages are sorted by URL in our ordering,
the old and the new page will be close!

Berkeley 21
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|_Basic properties of the model

O Rich get richer: in the model, in-degrees converge
to a power law with exponent -2-1/(k-1)

O High clustering coefficient
O Polynomially many bipartite cliques
O Logarithmic undirected diameter

O Compressible to O(1) bits per edge
O In fact, BV algorithm achieves O(1) bits per edge

Berkeley
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| Compressibility

O Theorem. The number of bits required by BV
algorithmis >,_, Y, (logl), where Y, is the number
of edges of length |

O Theorem. In the model, edge lengths converge to a
power law with exponent -1-1/k

O Corollary. The new model produces graphs
compressible to O(1) bits per edge

Berkeley 23



) |_Long gets longer

© 0 0@ O

Recall the process: pick a leader node uniform at random
and place new node to its immediate left

The probability to become longer is proportional to the
number of nodes “below” the edge, ie, its length

Making this precise requires pinning down subtle
combinatorial properties of the model

Berkeley 24



) | Are social networks compressible?

O How does BV perform on social networks?

O Can we take use special properties, eg, social
networks are highly reciprocal, despite being
directed

If A is a friend of B, then it is likely B is also A’s friend

O How to exploit reciprocity in compression?
Can avoid storing reciprocal edges twice
Just the reciprocity “bit” is sufficient
Modify BV to get a new scheme

Berkeley
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| Canonical orderings

O BV compressions depend on a canonical ordering of
nodes

This canonical ordering should exploit neighborhood
similarity and edge locality

O How do we get a good canonical ordering?

Unlike the web page case, it is unclear if social networks
have a natural canonical ordering

O Caveat: BV is only one genre of compression
scheme

Lack of good canonical ordering does not mean graph is
incompressible

Berkeley 26
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O

| Some natural canonical orderings

Random order
Natural order

Time of joining in a social network
Lexicographic order of URLs
Crawl order

Graph traversal orders
BFS and DFS

Use attributes of the nodes
Eg, Geographic location: order by zip codes
May produce a bucket order

Ties can be broken using more than one order

Berkeley
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Performance of simple orderings

Graph #nodes #edges %reciprocal
edges
Flickr 25.1M 69.7M 64.4
UK host graph 0.58M 12.8M 18.6
IndoChina 7.4M 194.1M 20.9
Graph Natural Random DFS
Flickr 21.8 23.9 22.9
UK host 10.8 15.5 14.6
IndoChina 2.02 21.44 -

Berkeley
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| Detour: Shingles

O Jaccard coefficient: Measures similarity between
sets Aand B

J(A,B)=|ANB|/|AUB|
o 1-J(A, B)is a metric

Berkeley
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| MinHash fingerprinting

O Can we construct a hash function h such that
Pr[h(A)=h(B)]=|ANB|/|AUB| =J(A, B)
O Given a universe U, pick a permutation 7 on U
uniformly at random

O Hash each subset S C U to the minimum value it
contains according to
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| Shingle ordering heuristic

O Chierichetti et al KDD 2009

O Obtain a canonical ordering by bringing nodes with
similar neighborhoods close together

O Fingerprint neighborhood of each node

Order the nodes according to the fingerprint

If fingerprint can capture neighborhood similarity and
edge locality, then it can produce good compression via
BV

O Double shingle order: break ties within shingle
order using a second shingle

Berkeley 31
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| Performance of shingle ordering

Graph Natural Shingle Double
shingle
Flickr 21.8 13.5 13.5
UK host 10.8 8.2 8.1
IndoChina 2.02 2.7 2.7

Berkeley

Geography does not seem to help for Flickr graph
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) |_Flickr: Compressibility over time
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) | A property of shingle ordering

Theorem. Using shingle ordering, a constant fraction
of edges will be “copied” in graphs generated by
preferential attachment/copying models

O Preferential attachment model: Rich get richer — a
new node links to an existing node with probability
proportional to its degree

O Shows that shingle ordering helps BV-style
compressions in stylized graph models

Berkeley 34
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| Who is the culprit

T T T T T T T 2M
Total +
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Low degree nodes are responsible for incompressibility

Berkeley
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Compression-friendly orderings

) |

In BV, canonical order is all that matters

Problem. Given a graph, find the canonical ordering that
will produce the best compression in BV

The ordering should capture locality and similarity
The ordering must help BV-style compressions

O We propose a formulation of this problem
O Recent developments

Gray-code ordering
Multi-scale ordering
Layered Label Propagation

Berkeley 36
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| MLogGapA formulation

MLogGapA. For an ordering m, let f_(u) = cost of
compressing the out-neighbors of u under

If u,, ..., u, are out-neighbors ordered wrt &, u, = u

fo(u) = Dicr. 18 loe(u;)-me(uy ) |
Find an ordering it of nodes to minimize

2 flu)

O Minimize encoding gaps of neighbors of a node
Theorem. MLinGapA is NP-hard
Conjecture. MLogGapA is NP-hard

Berkeley
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| Summary

O Social networks appear to be not very
compressible, but the Web graph is

Both exhibit “local” power laws
Host graphs are equally challenging

O BV compression

Optimal orderings

Combinatorial formulations and heuristics
O Generative models

Lower bounds for prior models
New compressible model

Berkeley
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‘ Future directions

O Can we compress social networks better?

O Is there a lower bound on incompressibility?
Our analysis applies only to BV-style compressions

o Algorithmic questions
Hardness of MLogGapA
Good approximation algorithms for good orderings
Algorithms that work on compressed graphs

O Modeling questions
More nuanced, tractable models for compressibility

Berkeley 39
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| Thank you!

ravi.k53@gmail.com

Berkeley
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